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Dispersion in femtosecond entangled two-photon interference

Jan Perˇina, Jr.,* Alexander V. Sergienko, Bradley M. Jost, Bahaa E. A. Saleh, and Malvin C. Teich†

Quantum Imaging Laboratory,‡ Department of Electrical and Computer Engineering, Boston University,
8 Saint Mary’s Street, Boston, Massachusetts 02215

~Received 24 July 1998!

We theoretically investigate the quantum interference of entangled two-photon states generated in a nonlin-
ear crystal pumped by femtosecond optical pulses. Interference patterns generated by the polarization analog of
the Hong-Ou-Mandel interferometer are studied. Attention is devoted to the effects of the pump-pulse profile
~pulse duration and chirp! and the second-order dispersion in both the nonlinear crystal and the interferometer’s
optical elements. Dispersion causes the interference pattern to have an asymmetric shape. Dispersion cancel-
lation occurs in some cases.@S1050-2947~99!03003-6#

PACS number~s!: 42.50.Dv, 42.65.Ky
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I. INTRODUCTION

Significant consideration has recently been given to
process of spontaneous parametric down-conversion in
linear crystals pumped by cw lasers@1–4#. The nonclassica
properties of entangled two-photon light generated by
process have been used in many experimental schem
elucidate distinctions between the predictions of class
and quantum physics@5#. Coincidence-count measuremen
with entangled two-photon states have revealed violation
Bell’s inequalities@6#, and have been considered for use
nonclassical imaging@7# and quantum cryptography@8#.

A new frontier in these efforts is the generation of qua
tum states with three correlated particles~GHZ states! @9,10#,
which would be most useful for further tests of the pred
tions of quantum mechanics. One way to create such stat
to make use of pairs of two-photon entangled states that
synchronized in time, i.e., generated within a sharp time w
dow @11#. This can be achieved by using femtosecond pu
beams. Also, successful quantum teleportation has alre
been observed using femtosecond pumping@12#.

For these reasons, the theoretical and experimental p
erties of pulsed spontaneous parametric down-conver
have been scrutinized@13–16#. It has been shown that ul
trashort pumping leads to a loss of visibility of th
coincidence-count interference pattern in type-II parame
down-conversion@13–15#, and narrowband frequency filter
are required to restore the visibility@11,13,15#.

This paper is devoted to a theoretical investigation of d
persion effects in femtosecond-pulsed spontaneous para
ric down-conversion. Particular attention is given to the
fects of pump-pulse chirp and second-order dispersion~in
both the pump and down-converted beams! on the visibility
and shape of the photon-coincidence pattern generated b
polarization analog of the Hong-Ou-Mandel interferome
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@17#. Dispersion cancellation, which has been extensiv
studied in the case of cw pumping@18#, is also predicted to
occur under certain conditions for femtosecond dow
converted pairs.

II. SPONTANEOUS PARAMETRIC DOWN-CONVERSION
WITH AN ULTRASHORT PUMP PULSE

We consider a nonlinear crystal pumped by a stro
coherent-state field. Nonlinear interaction then leads to
spontaneous generation of two down-converted fields~the
signal and the idler! which are mutually strongly correlate
@1#. Such a correlation can be conveniently described
terms of the two-photon amplitudeA12 which is defined as a
matrix element of the product of electric-field operato
Ê1

(1)(z1 ,t1) and Ê2
(1)(z2 ,t2) sandwiched between the en

tangled two-photon stateuc (2)& ~for details, see Appendix A!
and the vacuum stateuvac&:

A12~z1 ,t1 ,z2 ,t2!

5^vacuÊ1
~1 !~z1 ,t1!Ê2

~1 !~z2 ,t2!uc~2!~0,t !&. ~1!

The positive-frequency partÊj
(1) of the electric-field opera-

tor of the jth beam is defined as

Êj
~1 !~zj ,t j !5(

kj

ej~kj ! f j~vkj
!â j~kj !

3exp~ ik j
vzj2 ivkj

t j !, j 51,2, ~2!

where âkj
stands for the annihilation operator of the mo

with wave vectorkj ,ej (kj ) denotes the normalization ampl
tude of the modekj , and f j (vkj

) characterizes an externa

frequency filter placed in thejth beam. The symbolsk1
v and

k2
v denote wave vectors in vacuum.

At the termination of the nonlinear interaction in the cry
tal, the down-converted fields evolve according to free-fi
evolution and thus the two-photon amplitudeA12 depends
only on the differencest12t and t22t. When the down-

f
,
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2360 PRA 59PEŘINA, JR., SERGIENKO, JOST, SALEH, AND TEICH
converted beams propagate through a dispersive materi
the lengthl, the entangled two-photon stateuc (2)& given in
Eq. ~A4! in Appendix A provides the expression forA12,l :

A12,l~t1 ,t2!5CE
2L

0

dz(
kp

(
k1

f 1~vk1
!(

k2

f 2~vk2
!

3E p
~1 !~0,vkp

2vp
0!exp@ i ~kp2k12k2!z#

3exp@ i ~ k̃11 k̃2!l #d~vkp
2vk1

2vk2
!

3exp@2 ivk1
t1#exp@2 ivk2

t2#. ~3!

The timest1 andt2 are given as follows:

2 ivkj
t j5 ik j

vzj2 ivkj
~ t j2t !, j 51,2. ~4!

The symbolE p
(1)(0,vkp

2vp
0) denotes the positive-frequenc

part of the envelope of the pump-beam electric-field am
tude at the output plane of the crystal andvp

0 stands for the
central frequency of the pump beam; the wave vect

kp , k1 , andk2 ( k̃1 andk̃2) are appropriate for the nonlinea
crystal~dispersive material!. The symbolL means the length
of the crystal. The amplitudese1(k1) and e2(k2) from Eq.
~2! are absorbed into the constantC.

A typical experimental setup for coincidence-count me
surement is shown in Fig. 1. We consider type-II parame
down-conversion for this exposition. In this case two mu
ally perpendicularly polarized photons are provided at
output plane of the crystal. They propagate through a b
fringent material of a variable lengthl and then impinge on a
50/50 beamsplitter. Finally they are detected at the detec
DA andDB . The coincidence-count rateRc is measured by a
coincidence deviceC. The beams might be filtered by th
frequency filtersFA andFB which can be placed in front o
the detectors. Analyzers rotated by 45° with respect to
ordinary and extraordinary axes of the nonlinear crystal
able quantum interference between two paths to be obser
either a photon from beam 1 is detected by the detectorDA
and a photon from beam 2 by the detectorDB , or vice versa.

Including the effects of the beamsplitter and analyze
the coincidence-count rateRc can be determined as follow
@13,14#:

FIG. 1. Sketch of the system under consideration: a pump p
at the frequencyvp generates down-converted photons at frequ
ciesv1 andv2 in the nonlinear crystal~NLC!. These waves propa
gate through a delay line of lengthl and are detected at the detecto
DA andDB ; BS denotes a beamsplitter;AA andAB are analyzers;
FA and FB are frequency filters; andC indicates a coincidence
device.
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Rc~ l !5
1

4E2`

`

dtAE
2`

`

dtBuA12,l~ tA ,tB!2A12,l~ tB ,tA!u2,

~5!

where the two-photon amplitudeA12,l is given in Eq.~3!.
The normalized coincidence-count rateRn is then ex-

pressed in the form

Rn~ l !512r~ l !, ~6!

where

r~ l !5
1

2R0
E

2`

`

dtAE
2`

`

dtB Re@A12,l~ tA ,tB!A12,l* ~ tB ,tA!#

~7!

and

R05
1

2E2`

`

dtAE
2`

`

dtBuA12,l~ tA ,tB!u2. ~8!

The symbol Re denotes the real part of its argument.

III. SPECIFIC MODELS INCLUDING
SECOND-ORDER DISPERSION

Let us assume that the nonlinear crystal and the opt
material in the path of the down-converted photons are b
dispersive. We proceed to generalize the models provide
Refs. @13–15# by including the effects of second-order di
persion.

The wave vectorskp(vkp
), k1(vk1

), andk2(vk2
) of the

beams in the nonlinear crystal can be expressed in the
lowing form, when the effects of material dispersion up
the second order are included@19#:

kj~vkj
!5kj

01
1

v j
~vkj

2v j
0!1

D j

4p
~vkj

2v j
0!2, j 5p,1,2.

~9!

The inverse of group velocity 1/v j and the second-order dis
persion coefficientD j are given by

1

v j
5

dkj

dvkj
U

vkj
5v

j
0

, ~10!

D j52p
d2kj

dvkj

2 U
vkj

5v
j
0

, j 5p,1,2. ~11!

The symbolv j
0 denotes the central frequency of beamj. The

wave vectorkj
0 is defined by the relationkj

05kj (v j
0).

Similarly, the wave vectorsk̃1(vk1
) and k̃2(vk2

) of the
down-converted beams in a dispersive material outside
crystal can be expressed as

k̃ j~vkj
!5 k̃ j

01
1

gj
~vkj

2v j
0!1

dj

4p
~vkj

2v j
0!2, j 51,2,

~12!
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where

1

gj
5

dk̃j

dvkj

U
vkj

5v
j
0

, ~13!

dj52p
d2k̃ j

dvkj

2 U
vkj

5v
j
0

, j 51,2, ~14!

and k̃ j
05 k̃ j (v j

0).
We further assume that frequency filters with a Gauss
se
ia
-

e

n

profile, and centered around the central frequenciesv1
0 and

v2
0, are incorporated:

f j~vkj
!5expF2

~vkj
2v j

0!2

s j
2 G , j 51,2, ~15!

wheres j is the frequency width of thejth filter.
Assuming frequency- and wave-vector phase match

for the central frequencies (vp
05v1

01v2
0) and central wave

vectors (kp
05k1

01k2
0), respectively, the two-photon ampl

tudeA12,l(t1 ,t2) defined in Eq.~3! can be expressed in th
form
A12,l~t1 ,t2!5CA exp~2 iv1
0t1!

3exp~2 iv2
0t2!E

2L

0

dzE dVpE p
~1 !~0,Vp!E dV1 expF2S 1

s1
2

2 i
d1l

4p D V1
2G

3E dV2 expF2S 1

s2
2

2 i
d2l

4p D V2
2Gd~Vp2V12V2!expF i S Vp

vp
2

V1

v1
2

V2

v2
D zG

3expF i S Dp

4p
Vp

22
D1

4p
V1

22
D2

4p
V2

2D zGexpF2 i S t12
l

g1
DV1GexpF2 i S t22

l

g2
DV2G . ~16!
m-

:

The frequenciesV j , V j5vkj
2v j

0 , for j 51, 2,p have been

introduced in Eq.~16!; CA denotes a constant.
We proceed to devote further attention to special ca

We first consider an ultrashort pump pulse with a Gauss
profile: the envelopeE p

(1)(0,t) of the pump pulse at the out
put plane of the crystal then assumes the form@20#

E p
~1 !~0,t !5jp0 expS 2

11 ia

tD
2

t2D , ~17!

wherejp0 is the amplitude,tD is the pulse duration, and th
parametera describes the chirp of the pulse.

The complex spectrumE p
(1)(z,Vp) of the envelope

E p
(1)(z,t) is defined by

E p
~1 !~z,Vp!5

1

2pE2`

`

dtE p
~1 !~z,t !exp~ iVpt !. ~18!

For a pulse of the form given in Eq.~17! we obtain

E p
~1 !~0,Vp!5jp

tD

2ApA4 11a2

3expF2
tD

2

4~11a2!
~12 ia !Vp

2G , ~19!

wherejp5jp0 exp@2i arctan(a)/2#.
Substituting Eq.~19! into Eq. ~16! and using the identity
s.
n

E
2`

`

dV1E
2`

`

dV2 exp@2a1V1
22a2V2

222a12V1V2

1 ia1V12 ia2V2#

5
p

Aa1a22a12
2

expF2
a1

2a21a2
2a112a12a1a2

4~a1a22a12
2 !

G ,

~20!

we arrive at the following expression for the two-photon a
plitudeA12,l(t1 ,t2):

A12,l~t1 ,t2!5CA
jptD

2ApA4 11a2
exp~2 iv1

0t1!

3exp~2 iv2
0t2!A12,l~t1 ,t2!, ~21!

A12,l~t1 ,t2!5E
2L

0

dz
1

Ab1b22g2

3expF2
c1

2b21c2
2b112gc1c2

4~b1b22g2!
G . ~22!

The functionsb j (z), cj (z), andg(z) are defined as follows
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b j~z!5
1

s j
2

1b~12 ia !2 i
dj

4p
l 2 i

Dp2D j

4p
z, j 51,2,

~23!
cj~z!5~21!~ j 21!F S 1

vp
2

1

v j
D z1

l

gj
2t j G , j 51,2,

g~z!5b~12 ia !2 i
Dp

4p
z.

The parameterb is a characteristic parameter of the pum
pulse:

b5
tD

2

4~11a2!
. ~24!

The quantitiesr( l ) andR0 are then determined in acco
dance with their definitions in Eqs.~7! and~8!, respectively.
The quantityr( l ) as a function of the lengthl of the bire-
fringent material then takes the form (v1

05v2
0 is assumed!

r~ l !5
p2uCAu2ujpu2tD

2

2A11a2R0

ReH E2L

0

dz1E
2L

0

dz2

1

Ab̄1b̄22ḡ2

3expF2
c̄1

2b̄21 c̄2
2b̄112ḡ c̄1c̄2

4~ b̄1b̄22ḡ2!
G J . ~25!

The functionsb̄ j (z1 ,z2), c̄ j (z1 ,z2), and ḡ(z1 ,z2) are ex-
pressed as follows:

b̄ j~z1 ,z2!5
1

s1
2

1
1

s2
2

2 i
dj2d32 j

4p
l 12b2 i

Dp2D j

4p
z1

1 i
Dp2D32 j

4p
z2 , j 51,2,

~26!
c̄ j~z1 ,z2!5S 1

vp
2

1

v1
D zj2S 1

vp
2

1

v2
D z32 j

1S 1

g1
2

1

g2
D l , j 51,2,

ḡ~z1 ,z2!52b2 i
Dp

4p
~z12z2!.

Similarly, the normalization constantR0 is given by the
expression

R05
p2uCAu2ujpu2tD

2

2A11a2
E

2L

0

dz1E
2L

0

dz2

1

Ab̃1b̃22g̃2

3expF2
c̃1

2b̃21 c̃2
2b̃112g̃ c̃1c̃2

4~ b̃1b̃22g̃2!
G , ~27!

where
b̃ j~z1 ,z2!5
2

s j
2

12b2 i
Dp2D j

4p
~z12z2!, j 51,2,

c̃ j~z1 ,z2!5S 1

vp
2

1

v j
D ~zj2z32 j !, j 51,2, ~28!

g̃~z1 ,z2!52b2 i
Dp

4p
~z12z2!.

It is convenient to consider the pump-pulse characteris
at the output plane of the crystal, i.e., to use the parame
tD anda. They can be expressed in terms of the parame
tDi andai appropriate for the input plane of the crystal:

a5S tDi
2 ai

4~11ai
2!

1
DpL

4p D S tDi
2

4~11ai
2!
D 21

,

~29!

tD5tDiA11a2

11ai
2
.

In this case, the parameterbi

bi5
tDi

2

4~11ai
2!

~30!

has the same value as the parameterb defined in Eq.~24!.
Ignoring second-order dispersion in all modes (Dp5D1

5D250), Eq. ~25! reduces to the following analytical ex
pression for the quantityr:

r~Dt l !5Ap

2

1

uLuL
tDi

A11ai
2

3erfFA2uLu
D

A11ai
2

tDi
S DL

2
2uDt l u D G , ~31!

in which

D5
1

v1
2

1

v2
,

~32!
L5

1

vp
2

1

2 S 1

v1
1

1

v2
D ,

and

Dt l5t l2DL/2. ~33!

The symbol erf denotes the error function. When derivi
Eq. ~31!, the conditionD.0 was assumed. In Eq.~33!, t l
denotes the relative time delay of the down-converted be
in a birefringent material of lengthl and is defined as fol-
lows:

t l5S 1

g2
2

1

g1
D l . ~34!

When second-order dispersion in the down-conver
fields is omitted, the interference pattern can be determi
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for an arbitrary pump-pulse profile in terms of the autoc
relation function of the pump pulse. For details, see App
dix B.

IV. DISCUSSION

We now proceed to examine the behavior of the norm
ized coincidence-count rateRn on various parameters, from
both analytical and numerical points of view.

The profile of the interference dip in the coincidenc
count rate@17# ~described byr as a function ofl!, formed by
the overlap of a pair of two-photon amplitudes, can be
derstood as follows. The expression in Eq.~7! for r( l ) can
be rewritten in the form

r~ l !5
1

2R0
E

2`

`

dtE
2`

`

dt@A 12,l
r ~ t,t!A 12,l

r ~ t,2t!

1A 12,l
i ~ t,t!A 12,l

i ~ t,2t!#, ~35!

where

t5
tA1tB

2
, t5tA2tB , ~36!

andA 12,l
r 5Re@A12,l #; A 12,l

i 5Im@A12,l #. The symbol Im de-
notes the imaginary part of the argument. Hence, accord
to Eq. ~35!, the overlaps of the real and imaginary parts
the two-photon amplitudesA12,l(t,t) andA12,l(t,2t) deter-
mine the values of the interference termr. The amplitude
A12,l(t,2t) can be considered as a mirror image of the a
plitudeA12,l(t,t) with respect to the planet50. When only
first-order dispersion in the optical material is taken into
count, the shape of the two-photon amplitudeA12,l(t,t) does
not depend on the lengthl; as l increases, the amplitud
A12,l(t,t) moves only in thet-t plane. The shift in thet
direction is important, because it changes the degree of o
lap of the amplitudes. This reveals the origin of the shape
the dip.

The overlap of the two-photon amplitudes can be int
preted from the point of view of distinguishability of tw
paths leading to coincidence detection@13#. When the over-
lap is complete, the two paths cannot be distinguished
the interference pattern has maximum visibility. Incomple
overlap means that the paths can be ‘‘partially dist
guished’’ and thus the visibility is reduced.

We consider, in turn, the role played by pump-pulse d
ration and chirp, second-order dispersion in the nonlin
down-converting medium, second-order dispersion in the
tical elements of the interferometer, and dispersion cance
tion.

A. Pump-pulse duration and chirp

In the absence of second-order dispersion and freque
filters, a useful analytical expression for the two-photon a
plitude A12,l 50(t,t) can be obtained:
-
-

l-

-

-

g
f

-

-

r-
f

-

d
e
-

-
r

p-
a-

cy
-

A12,l 50~ t,t!5
4pApA4 11ai

2

tDi uDu
rectS t

DL D
3expF2

11 iai

tDi
2 S t1

L

D
t D 2G . ~37!

The coefficientsD and L are defined in Eq.~32!. Equation
~37! elucidates the role of pump-pulse parameters as
cussed below.

It is well known that for a cw-pump field the coincidenc
count rateRn(t l) forms a triangular dip of widthDL @1#.
The visibility is 100%, indicating maximum interference. A
ultrashort pump pulse of durationtDi leads to a loss of vis-
ibility ~see Fig. 2! but the width of the dip remains un
changed@13#. This can be understood from the shape of t
two-photon amplitudeA12,l 50(t,t) given in Eq.~37!. In the
t direction the two-photon amplitude is confined to the
gion 0,t,DL for either cw or an ultrashort pump pulse
this confinement is responsible for the width of the dip. T
two-photon amplitude is confined in thet direction by the
ultrashort pump-pulse duration@see Eq.~37!#. The tilt @given
by the ratioL/D, see Eq.~37!# of the amplitude in thet-t
plane leads to a loss of visibility since the overlap of t
amplitudesA12,l(t,t) and A12,l(t,2t) for a given optimum
value of l cannot be complete for a nonzero tilt. The shor
the pump-pulse duration, the smaller the overlap, and
lower the values of visibility that result. However, when va
ues of the first-order dispersion parameters are chosen
that L50, the tilt is zero@see Eq.~37!# and no loss of vis-
ibility occurs as the pump-pulse duration shortens~for de-
tails, see@14#!.

As indicated by Eq.~37! for the amplitudeA12,l 50 , pump-
pulse chirp~characterized byai) introduces a phase modula
tion of the two-photon amplitude in thet direction. This
modulation decreases the overall overlap of the correspo

FIG. 2. Visibility V @V5r/(22r)# as a function of the pump-
pulse durationtDi ;L53 mm, s5` nm, andai50; values of the
other parameters are zero. In Figs. 2–8, the following parame
apply. Values of the inverse group velocities appropriate for
BBO crystal with type-II interaction at the pump wavelengthlp

5397.5 nm and at down-conversion wavelengthsl15l25795 nm
are 1/vp557.05310213 s/mm, 1/v1556.2310213 s/mm, and 1/v2

554.26310213 s/mm. We assume that the optical materials for t
interferometer are quartz, for which 1/g1551.81310213 s/mm and
1/g2552.08310213 s/mm.
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ing two-photon amplitudes, given as a sum of the overlap
their real and imaginary parts. Increasing values of the ch
parameterai thus lead to a reduction of visibility. Howeve
the width of the dip does not change. In fact, it is the para
eterbi given in Eq.~30!, combining both the pulse duratio
tDi and the chirp parameterai , that determines the visibility
in case of a Gaussian pump pulse. To be more specific,
parameterbi is determined by the bandwidthDVp @DVp

5A2A11ai
2/tDi , see Eq.~19!# of the pump pulse accordin

to the relationbi51/@2(DVp)2#. Thus, more generally, it is
the bandwidth of the pump pulse that determines the in
ference pattern. As a consequence, dispersion of the p
beam between the pump-pulse source and the nonlinear
tal does not influence the interference pattern because a p
propagating through dispersive material does not chang
bandwidth.

Examination of Eqs.~B3! and~B4! in Appendix B shows
that the dip remains symmetric since the functionr(Dt l) in
Eq. ~B3! is an odd function ofDt l for an arbitrary pump-
pulse profile.

Frequency filters inserted into the down-converted bea
serve to broaden the two-photon amplitudeA12,l(t,t) both in
the t andt direction. Broadening in thet direction leads to
wider dips, whereas that in thet direction smooths out the
effect of tilt discussed above and thereby results in a hig
visibility. The narrower the spectrum of frequency filters, t
wider the dip, and the higher the observed visibility. T
effect of chirp is suppressed by the presence of freque
filters, because they effectively make the complex pum
pulse spectrum narrower and hence diminish relative ph
changes across such a narrowed complex spectrum.

B. Second-order dispersion in the nonlinear crystal

Second-order dispersion in thepump beam causes
changes in the pulse phase~chirp! as the pulse propagate
and this leads to broadening of the pulse. The effect of s
pump-pulse broadening is transferred to the down-conve
beams, as is clearly shown by the behavior of the two-pho
amplitudeA12,l(t,t) illustrated in Fig. 3. In this figure, the

FIG. 3. Absolute value of the two-photon amplitudeA
5uA12,l 50(t,t)u for nonzero second-order dispersion of the pum
beam; the variablest and t are in units of 10213 s; tDi51.55
310213 s, L53 mm, s5100 nm,Dp51310225 s2/mm, andai

50; values of the other parameters are zero.
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amplitude in the region neart50 s has its origin near the
output plane of the crystal where the pump pulse is alre
broadened as a result of its having propagated through
dispersive crystal. At the other edge, neart'6310213 s the
down-converted light arises from the beginning of the crys
where the pump pulse has not yet suffered dispersive bro
ening. The profile of the interference dip is modified as f
lows: An increase in the second-order dispersion param
Dp leads to an increase of visibility, but no change in t
width of the dip, as illustrated in Fig. 4~a!. For appropriately
chosen values ofDp a small local peak emerges at the bo
tom of the dip@see Fig. 4~a!#. Nonzero initial chirp (ai) of
the pump beam can provide a higher central peak but, on
other hand, it reduces the visibility@see Fig. 4~b!#. The peak
remains, but is suppressed, in the presence of narrow
quency filters.

Now we turn to second-order dispersion in thedown-
converted beams~nonzeroD1 ,D2), which broadens the two
photon amplitudeA12,l(t,t) in thet as well as in thet direc-
tion. As demonstrated in Fig. 5, this leads to a broadening
the dip, as well as asymmetry and oscillations at its bord
When values ofD1 increase, visibility decreases at first an
then later increases. Nonzero chirp leads to a lower visibil
but tends to suppress oscillations at the borders of the
Frequency filters, which behave as discussed above, sup
asymmetry.

FIG. 4. Coincidence-count rateRn(Dt l) ~a! for various values
of the second-order dispersion parameterDp :Dp50 s2/mm ~plain
curve!, Dp55310226 s2/mm (*), Dp51310225 s2/mm (n), and
Dp53310225 s2/mm (L), ai50, and~b! for various values of the
chirp parameterai :ai50 ~plain curve! and ai52 (*), Dp55
310226 s2/mm; tDi51.55310213 s; L53 mm; s550 nm; values
of the other parameters are zero.
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When second-order dispersion occurs in all three mod
the two-photon amplitudeA12,l(t,t) is broadened for smalle
values oft ~mainly owing to dispersion in the pump beam!
as well as for greater values oft ~mainly owing to dispersion
in the down-converted beams!. As a result, the interferenc
pattern comprises all of the features discussed above: a
peak may emerge at the bottom of the dip, the dip is bro
ened and asymmetric, and oscillations occur at the borde
the dip.

To observe the above-mentioned effects caused by dis
sion in a nonlinear crystal, relatively large values of the d
persion parametersDp , D1 , and D2 are required. For ex-
ample, our simulations make use of parameter values tha
approximately an order of magnitude higher than those of
BBO crystals commonly used in type-II down-conversio
based interferometric experiments.

C. Second-order dispersion in the interferometer’s
optical elements

Second-order dispersion in an optical material (d1 ,d2)
through which down-converted photons propagate lead
asymmetry of the dip. The dip is particularly stretched
larger values ofl ~see Fig. 6! as a consequence of the defo
mation and lengthening of the two-photon amplitudeA12,l in
a dispersive material. The higher the differenced12d2 of the
dispersion parameters, the higher the asymmetry and
wider the dip; moreover, its minimum is shifted further
smaller values ofl ~see Fig. 6!. Asymmetry of the dip is also
preserved when relatively narrow frequency filters are u
though the narrowest filters remove it. Chirp decreases
ibility but the shape of the dip remains unchanged.

D. Dispersion cancellation

Asymmetry of the dip caused by second-order dispers
in an optical material through which down-converted ph
tons propagate can be suppressed in two cases. In the
case, for a pump pulse of arbitrary duration, dispersion c
cellation occurs when the magnitude of second-order dis
sion in the path of the first photon~given byd1l ) equals that
of the second photon~given by d2l ). This observation im-

FIG. 5. Coincidence-count rateRn(Dt l) in the case of second
order dispersion in beam 1~plain curve, D151310225 s2/mm,
D250 s2/mm! and in beam 2 (*,D150 s2/mm, D251310225

s2/mm!; tDi51.55310213 s, L53 mm, ands15s2550 nm; val-
ues of the other parameters are zero.
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mediately follows from Eqs.~25! and ~26!, in which the
effect of second-order dispersion is prescribed by the par
eter (d12d2) l . Dispersion cancellation is a result of com
pletely destructive interference between the amplitu
A12,l(t,t) and A12,l(t,2t) for which there is nonzero over
lap. This is demonstrated in Fig. 7 forl 525 mm, i.e., for
which r50.

When the pulse duration is sufficiently long~in the cw
regime!, dispersion cancellation occurs for arbitrary mag
tudes of second-order dispersion~given by d1l and d2l )
present in the paths of the down-converted photons.
gradual suppression of the asymmetry of the dip as
pump-pulse duration increases is shown in Fig. 8.

Dispersion cancellation has its origin in the entanglem
of the photons, i.e., in the fact that the permitted values
the frequencyv1 and the frequencyv2 are governed by the
relation d(vp2v12v2), wherevp lies within the pump-
pulse spectrum.

FIG. 6. Coincidence-count rateRn( l ) for various values of the
second-order dispersion parameterd5d12d2 of an optical mate-
rial; d50 s2/mm ~plain curve!, d51310226 s2/mm (*), d55
310226 s2/mm (n), and d51310225 s2/mm (L); tDi51.55
310213 s, L53 mm, ands15s2550 nm; values of the othe
parameters are zero.

FIG. 7. Absolute value of the two-photon amplitudeA
5uA12,l(t,t)u for the same amount of second-order dispersion in
down-converted beams (d15d251310225 s2/mm! for l 525 mm;
the variablest and t are in units of 10213 s; tDi51.55310213 s,
L53 mm, ands5100 nm; values of the other parameters are ze
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V. CONCLUSION

We have developed a description of two-photon type
spontaneous parametric down-conversion produced whe
trashort pulses from a femtosecond laser are used to pum
appropriate nonlinear medium, as well as the associated
photon interference effects. The model includes freque
modulation of the pump pulse~chirp! and dispersion in both
the nonlinear crystal and the interferometer’s optical e
ments. The influence of these features on the depth
asymmetry characteristics of a photon-coincidence inter
ence dip have been established.

We showed that the interference pattern is determined
the bandwidth of the pump pulse; the larger the bandwid
the lower the interference-pattern visibility. This implies th
dispersion of the pump beam before the nonlinear cry
does not influence the interference pattern. Second-order
persion of the pump beam in the nonlinear crystal can re
in the occurrence of a local peak at the bottom of the in
ference dip. Second-order dispersion of the down-conve
photons in the crystal can result in oscillations at the bord
of the dip, whereas dispersion of the down-converted p
tons in the interferometer’s optical materials~e.g., the delay
line! can produce an asymmetry in the dip. These effects
be used to measure the dispersion parameters of both a
linear crystal and an arbitrary optical material. Dispers
cancellation has been revealed for pump pulses of arbit
duration when the amount of dispersion in the two dow
converted beams is identical and in general for sufficien
long pump pulses.
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FIG. 8. Coincidence-count rateRn( l ) shows a gradual suppres
sion of dispersion effects~asymmetry! as the pump-pulse duratio
increases;tDi51.55310213 s ~plain solid curve!, tDi55310213 s
(*), and tDi51310211 s (L), d5d12d255310226 s2/mm; for
comparisontDi51.55310213 s, d50 s2/mm ~dashed curve!; L
53 mm; s15s2550 nm; values of the other parameters are ze
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APPENDIX A: DETERMINATION OF AN ENTANGLED
TWO-PHOTON STATE

The interaction Hamiltonian of the process of sponta
ous parametric down-conversion can be written in the fo
@1#

Ĥ int~ t !5E
2L

0

dzx~2!Ep
~1 !~z,t !Ê1

~2 !~z,t !Ê2
~2 !~z,t !1H.c.,

~A1!

wherex (2) is the second-order susceptibility,Ep
(1) denotes

the positive-frequency part of the electric-field amplitude
the pump field, andE1

(2) (E2
(2)) is the negative-frequency

part of the electric-field operator of down-converted field
~2!. The nonlinear crystal extends fromz52L to z50. The
symbol H.c. denotes Hermitian conjugate.

Expanding the interacting fields into harmonic pla

waves, the interaction HamiltonianĤ int in Eq. ~A1! can be
recast into the form

Ĥ int~ t !5CintE
2L

0

dz(
kp

(
k1

(
k2

x~2!E p
~1 !~0,vkp

2vp
0!

3â1
†~k1!â2

†~k2!exp@ i ~kp2k12k2!z

2 i ~vkp
2vk1

2vk2
!t#1H.c., ~A2!

whereCint is a constant. The symbolE p
(1)(0,vkp

2vp
0) de-

notes the complex spectrum of the envelope of the pum
beam electric-field amplitude at the output plane of the cr
tal; kp stands for the wave vector of a mode in the pum
beam andvp

0 stands for the central frequency of the pum

beam. The symbolâ1
†(k1) @ â2

†(k2)# represents the creatio
operator of the mode with wave vectork1 (k2) and fre-
quencyvk1

(vk2
) in the down-converted field 1~2!. We note

that the phases of all three interacting fields in space
chosen in such a way that they are zero at the output plan
the crystal.

The wave functionuc (2)(0,t)& describing an entangled
two-photon state whose phases are set equal to 0 atz50 is
given by

uc~2!~0,t !&5
2 i

\ E
2`

t

dt8Ĥ int~ t8!uvac&, ~A3!

whereuvac& denotes a multimode vacuum state.
For timest sufficiently long so that the nonlinear intera

tion is complete, the entangled two-photon stateuc (2)(0,t)&
can be obtained in the form

uc~2!~0,t !&5CcE
2L

0

dz(
kp

(
k1

(
k2

E p
~1 !~0,vkp

2vp
0!

3â1
†~k1!â2

†~k2!exp@ i ~kp2k12k2!z#

3d~vkp
2vk1

2vk2
!exp@ i ~vk1

1vk2
!t#uvac&.

~A4!

.
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The susceptibilityx (2) is included in the constantCc . We
note that for times during which the down-converted fie
are being created in the crystal, the appropriate wave fu
tion differs from that in Eq.~A4!. However, detectors ar
placed at a sufficiently large distance from the output pla
of the crystal to assure that such ‘‘partially evolved’’ stat
cannot be detected.

APPENDIX B: INTERFERENCE PATTERN FOR AN
ARBITRARY PUMP-PULSE PROFILE

We assume an arbitrary complex spectru
E p

(1)(2L,Vp) for the envelope of the pump pulse at th
input plane of the crystal. We further take into account
effect of second-order dispersion only in the pump beam
assume frequency filters of the same width (s15s2). Under
these conditions, the normalized coincidence-count rateRn
in Eq. ~6! can be expressed in terms of the autocorrelat
function of the pump field.

Let us introduce the fieldE ps
(1)(z,t) according to the defi-

nition

E ps
~1 !~z,t !5E

2`

`

dVpE p
~1 !~2L,Vp!expF i

Dp~z1L !

4p
Vp

2G
3expF2

Vp
2

s2 Gexp~2 iVpt !, ~B1!

wheres5A2s1 . The above expression describes the pro
gation of the pump beam through a dispersive mate
~a multiplicative term describing first-order dispersion is n
explicitly included here!. Equation~B1! also includes fre-
quency filtering having its origin in the filtering of the down
converted beams and their entanglement with the pu
beam.

The two-photon amplitudeA12,t l
(t1 ,t2) can then be de-

rived from the expression in Eq.~16!:

A12,t l
~t1 ,t2!5

CA
2

exp~2 iv1
0t1!exp~2 iv2

0t2!Aps

3E
2L

0

dzE ps
~1 !

„z,~t11t l1t2!/22Lz…

3expF2
s2

16
~t11t l2t21Dz!2G , ~B2!

where the parametersD and L are defined in Eq.~32! and
the relative time delayt l of the down-converted beams
introduced in Eq.~34!.

The quantityr given in Eq.~7! then has the form~again it
is assumed thatv1

05v2
0)

r~Dt l !5
uCAu2A2pps

4R0

3ReH E
2L/2

L/2

dz1E
2L/2

L/2

dz2gs„z1 ,z2 ,L~z12z2!…

3expF2
s2

8 S Dt l1
D

2
~z11z2! D 2G J , ~B3!
s
c-

e

e
d

n

-
l

t

p

whereDt l is defined in Eq.~33!. The correlation function
gs(z1 ,z2 ,x) of two pulsed fields at positionsz1 and z2 is
written as

gs~z1 ,z2 ,x!5E
2`

`

dtE ps
~1 !~z12L/2,t !E ps

~2 !~z22L/2,t1x!.

~B4!

The constantR0 occurring in Eq.~B3! is expressed as fol
lows:

R05
uCAu2A2pps

4 E
2L/2

L/2

dz1

3E
2L/2

L/2

dz2gs„z1 ,z2 ,L~z12z2!…

3expF2
s2D2

32
~z12z2!2G . ~B5!

For a Gaussian pulse with the complex spectrum as gi
in Eq. ~19!, the correlation functiongs becomes

gs„z1 ,z2 ,L~z12z2!…5
AptDi

2

2A11ai
2

ujpu2

Ac~z1 ,z2!

3expF2
L2~z12z2!2

4c~z1 ,z2! G ,

c~z1 ,z2!52bi1
2

s2
2 i

Dp

4p
~z12z2!, ~B6!

which, together with Eqs.~B3! and ~B5!, leads to expres-
sions which agree with those derived from Eqs.~25! and
~27!. The parameterbi is defined in Eq.~30!.

The experimental setup without frequency filters (s
→`) is of particular interest. In this case, using the ident
Aps exp(2s2y2/4)→2pd(y) for s→`, Eqs.~B3! and~B5!
provide a useful expression for the functionr(Dt l)

r~Dt l !5
1

g`~0,0,0!L
ReH E

2L/2

L/2

dzrect„z/L11/2

12Dt l /~DL !…g`~z,2z22Dt l /D,2z

12Dt l /D !J , ~B7!

where rect(x) is the rectangular function@rect(x)51 for
0,x,1 and rect(x)50 otherwise#.
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