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Using a multidimensional Gaussian approximation of the wave function for the signal and idler light
generated by spontaneous parametric down-conversion, we derive analytical expressions for the second-order
coherence function and the fourth-order coherence function~which is proportional to the signal-idler photon
coincidence rate!. The magnitudes of these functions are expressed as products of Gaussian functions of the
azimuthal angles, the polar angles, and the time delay. Their widths determine six parameters: the coherence
angles and coherence time, and the entanglement angles and entanglement time. We show how these param-
eters are governed by the pump-beam waist, the pump spectral width, and the crystal length. We thereby derive
relations analogous to the van Cittert–Zernike theorem and the Siegert relation for thermal light. We show that
the normalized photon coincidence rate decreases sharply as the signal and idler apertures become mismatched
or misaligned. We experimentally confirm this latter prediction by using parametrically down-converted light
obtained from a LiIO3 crystal pumped by Kr1-ion laser radiation at 413 nm.

PACS number~s!: 42.50.Ar, 42.50.Dv, 42.65.Ky

I. INTRODUCTION

Spontaneous parametric down-converted light has un-
usual spatiotemporal coherence properties that are imposed
by the requirements of energy and phase matching@1–7#.
The signal and idler beams have spectra that vary with di-
rection, forming rainbow-type rings, and the coherence angle
and coherence time are also dependent on direction@1,4,7,8#,
so that these beams are clearly not cross-spectrally pure in
second order@9#. The fourth-order coherence function deter-
mines the coincidence rate of the signal and idler photons as
a function of their time delay and propagation directions and
therefore governs the degree of spatiotemporal entanglement
between the twin photons@2–7,10–14#. The entanglement
angles and the entanglement time, representing angular and
temporal widths of the fourth-order coherence function, are
also dependent on direction@3,7#. When apertures are used to
collect signal and idler photons, the ratios between the aper-
ture angles and the corresponding entanglement angles have
a significant effect on the rate of photon coincidence. Any
misalignment of either of the apertures with respect to the
direction of maximum entanglement also has a strong effect
on the measured coincidence rates@7#.

In the ideal case of a monochromatic, plane-wave pump
interacting with an infinite-length nonlinear crystal, energy
and momentum conservation restrict the down-converted
light so that it is monochromatic in each direction, and each
signal direction has one and only one matching idler direc-
tion. Thus the entanglement angle is zero everywhere and the
coincidence rate at matched directions is independent of the

time delay, i.e., the entanglement time is infinite.
For a crystal of finite length, however, momentum mis-

matching in the longitudinal direction is tolerated. For a
pump of finite spectral width, this also applies and, in addi-
tion, energy matching is more flexible. As a result, the signal
in any given direction is no longer monochromatic and is
entangled with the idler photons within a sector of finite
angle in the polar direction, viz., the polar entanglement
angle@7#. For a plane-wave pump, the entanglement angle in
the azimuthal direction is zero and the entanglement time
remains infinite@3,7#. When the pump beam has a finite
transverse width, however, the pump wave vector occupies a
cone of finite angle so that momentum conservation in the
transverse direction can be satisfied in more than one way.
This too affects both the coherence and entanglement angles
and results in a nonvanishing azimuthal entanglement angle,
as well as a finite entanglement time. All of these effects are,
of course, present in real experiments.

In a previous study@7# we developed a theory for the
second- and fourth-order spatiotemporal coherence proper-
ties of spontaneous parametrically down-converted light, as-
suming a crystal of finite length and a pump of finite spectral
width. However, the pump was assumed to be a plane wave.
In this paper we extend our theory to include the effect of the
pump transverse width and develop the theory further to
study the interplay among these three effects in determining
the coherence and entanglement angles and times. We also
report the results of an experiment in which the signal-idler
photon coincidence rate was observed through apertures of
various sizes and different misalignments from the optimal
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directions. The experimental results agree with the theory.

II. QUANTUM STATE OF DOWN-CONVERTED LIGHT

Consider type-I~ooe! parametric down-conversion in a
crystal of lengthl , with ordinary and extraordinary refractive
indicesno(v) andne(v) at the angular frequencyv and an
effective second-order nonlinear susceptibilityxeff

(2) . The
pump is a beam pointing in theẑ direction, as depicted in
Fig. 1, with a waistw in the transverse direction and a spec-
tral width Dvp . The pump field is treated classically and is
expressed by the spectral expansion

E~r ;t !5êf ~x,y!E
0

`

dvpA~vp! expF i S vpne~vp!

c
z2vpt D G

1c.c., ~1!

whereê is the pump extraordinary polarization direction and
f (x,y) is the pump amplitude distribution in the transverse
plane, which is assumed to be the same throughout the crys-
tal and to have a widthw. The pump spectral widthDvp ,
determined fromA(vp), is assumed to be sufficiently small
so that the beam’s spatial distribution in the transverse plane
is frequency independent. Herec is the speed of light in free
space.

Using this expression for the pump field, in first-order
perturbation with the quadratic interaction Hamiltonian, the
state of the down-converted light can be shown to be a su-
perposition of the vacuum state and a state with a single
photon in each of the signal and idler beams. This twin state,
expressed as an expansion in the wave-vector space@7,15#, is

uT &5E E dksdk ic~ks ,k i !uks&suk i& i , ~2a!

whereT denotes the twin state,

c~ks ,k i !5xeff
~2!A~vs1v i !F~ks'1k i'!

3 l sincF l

2p
$kz,s1kz,i2kp~vs1v i !%G

~2b!

is the wave function ink space, sinc(x)[sin(px)/px, and
F(k') denotes the two dimensional Fourier transform of
f (x,y). The wave vectorskp , ks , andk i of the pump, the
signal, and the idler have magnitudesvpne(vp)/c,
vsno(vs)/c, andv ino(v i)/c, respectively. The wave func-
tion in Eq. ~2b! is the same as its counterpart in@7# @see Eq.
~6! in @7##, except for the delta functiond(k'), which is
replaced here byF(k'), accounting for the finiteness of the
pump beam waist.

It is convenient to select central signal and idler wave
vectorsks

0 andk i
0 that are phase and frequency matched to

the central pump wave vectorkp
05kp

0ẑ and to take the wave
vectorsks

0 andk i
0 to lie in thex-z plane. These central wave

vectors are determined by their azimuthal anglesfs
050 and

f i
05p, polar anglesus

0 andu i
0 ~internal to the crystal!, and

frequenciesvs
0 and v i

0 , as shown in Fig. 1. We are only
interested in directionsk̂s and k̂ i and in frequenciesvs and
v i in the vicinity of these central directions and frequencies.
To obtain an explicit expression for the wave function in
Eq.~2b!, we expand the wave vectorsks andk i to first order
in frequency and in angular deviations from their central val-
ues, to obtain

Dkx~vs ,us ,v i ,u i ![ksx1kix5
Ns sinus

0

c
Vs2

Ni sinu i
0

c
V i

1
2pns cosus

0

ls
0 us2

2pni cosu i
0

l i
0 u i ,

~3a!

Dky~fs ,f i ![ksy1kiy5
2pns sinus

0

ls
0 ~fs2f i !, ~3b!

and

Dkz~vs ,us ,v i ,u i ![ksz1kiz2kp

5
Ns cosus

02Np

c
Vs1

Ni cosu i
02Np

c
V i

2
2pns sinus

0

ls
0 ~us1u i !, ~3c!

whereV j5v j2v j
0 , u j andf j are internal to the crystal and

measured from their respective central valuesu j
0 andf j

0 as
shown in Fig. 1,nj5no(v j

0), andNp andNj are group in-
dices of refraction (j5s,i ). These equations give the com-
ponents of the wave-vector mismatch and include dispersion.
We also used the relationksx

0 5kix
0 ~i.e., nsl i

0 sinu s
0

5nils
0 sinu i

0) to obtain Eqs.~3b! and ~3c!.
Using Eq.~3!, the twin state can be expressed in the form

uT &5E dvsdusdfs

3E dv idu idf ic~vs ,us ,fs ,v i ,u i ,f i !

3uvs ,us ,fs&suv i ,u i ,f i& i , ~4a!

FIG. 1. Geometry for spontaneous parametric down-conversion
arrangement. Arrow directions indicate positive-sign conventions
for signal and idler polar (u) and azimuthal (f) angles.
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where

c~vs ,us ,fs ,v i ,u i ,f i !5NA~vs1v i !

3F~Dk'! sincS l

2p
DkzD . ~4b!

Here the second-order susceptibility and the Jacobian needed
in transforming fromdk3 to dv du df are assumed to be
slowly varying in comparison with the remaining function
and are included in the normalization constantN. Equation
~4! is the counterpart of Eq.~10! in @7#.

The wave function is therefore the product of three func-
tions, representing the effects of the pump spectral width, the
pump beam width, and the crystal length. The properties of
the emitted light are therefore governed by the three normal-
ized variablesDvp /vp

0 , lp
0/w, andlp

0/ l representing these
three effects, respectively. The ultimate goal of this paper is
to examine the effect of these three variables on the coher-
ence and entanglement properties of the signal and idler
light.

III. COHERENCE FUNCTIONS

A. General results

In this section, general expressions for the second-order
~amplitude! and fourth-order~intensity! coherence functions
for the signal and idler fields of the down-converted light are
determined. As in@7#, the far-field electric-field operators are
written in terms of annihilation and creation operators satis-
fying appropriate commutation relations. The coherence
functions are then determined by averaging the appropriate
field operators using Eq.~4a! for the twin state and integrat-
ing over time t to obtain the stationary results. Since the
analysis is a straightforward generalization of that carried out
in @7# we only report the results here.

Because the projected signal and idler states are single-
photon states, the second-order coherence function at a point
within the signal field and at another within the idler field
vanishes. The second-order coherence function at pairs of
points within the signal field is given by

Gss
~1!~us ,fs ,us8 ,fs8 ;t!

5E dvsSss
~1!~us ,fs ,us8 ,fs8 ;vs! exp~ ivst!, ~5a!

where

Sss
~1!~us ,fs ,us8 ,fs8 ;vs!

5E dv idu idf ic* ~vs ,us8 ,fs8 ,v i ,u i ,f i !

3c~vs ,us ,fs ,v i ,u i ,f i ! ~5b!

is the signal cross-power spectral density. In our previous
paper@7#, the dependence of this cross-power spectral den-
sity on the signal angles is described by ad function, i.e., the
signal field is spatially incoherent. This is a direct conse-
quence of the plane-wave pump assumption and implies that
the product wave functions in Eq.~5b! do not overlap when

the two signal directions are not the same. In this paper, the
assumption of finite pump-beam waist results in nonvanish-
ing polar and azimuthal coherence angles for the down-
converted light, as will be seen later.

The fourth-order coherence function within the signal~or
the idler! beam vanishes, so that only random coincidences
arise within the signal~or the idler! beam. This is a conse-
quence of the fact that the twin state projects into a one-
photon state in the signal subspace and a one-photon state in
the idler subspace.

The coincidence rate for a signal photon and an idler pho-
ton is determined by the signal-idler fourth-order coherence
function @16#. Using an analysis similar to that in@7#, we
obtain

Gsi
~2!~us ,fs ,u i ,f i ;t!

5E dV Ssi
~2!~us ,fs ,u i ,f i ;V! exp~ iVt!, ~6a!

where

Ssi
~2!~us ,fs ,u i ,f i ;V!

5E dvsE dv ic* ~vs ,us ,fs ,v i ,u i ,f i !

3c~vs2V,us ,fs ,v i1V,u i ,f i ! ~6b!

represents the fourth-order cross-power spectral density. It is

straightforward to verify thatSsi
(2)(2V)5Ssi

(2)* (V), indicat-
ing that the fourth-order coherence function in Eq.~6a! is
real. The integral in Eq.~6b! implies that, for fixed signal
and idler directions, the overlap betweenc* (vs ,v i) and
c(vs8 ,v i8) contributes to the cross-power spectral density at
frequencyV only if vs85vs2V andv i85v i1V, i.e., from
down-conversion originating from the same pump frequency
vp5vs1v i5vs81v i8 . In @7#, Ssi

(2)(V) was proportional to
d(V) so that the wave functions overlapped only at
V[vs2vs850, resulting in a coincidence rate independent
of the time delayt.

Since the dependence of this function ont is known to be
in the picosecond range@5,11,12#, slower detectors will in-
tegrate Eq.~6a! over t, leading to an integrated fourth-order
coherence function

Gsi
~2!~us ,fs ,u i ,f i !

5E dvsE dv i uc~vs ,us ,fs ,v i ,u i ,f i !u2. ~7!

This function describes the degree of entanglement between
the twin photons as a function of their directions. It is pro-
portional to the rate of photon coincidences observed by a
pair of detectors with fine angular resolution. The counter-
part to Eq.~7! given by Eq.~44! in @7# involves integration
over only signal frequencies since, for fixed propagation di-
rections, there is only one idler frequency matching each
signal frequency. This is not the case here because of the
added tolerance to transverse wave-vector matching.
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For coincidence detection through apertures centered at
the signal and idler central wave vectors, of respective sizes
Dus3Dfs andDu i3Df i , the coincidence rate is propor-
tional to

Gsi
~2!5E

Dus3Dfs

dusdfsE
Du i3Df i

du idf i

3E dvsdv i uc~vs ,us ,fs ,v i ,u i ,f i !u2. ~8!

In the case of misalignment of one of the apertures from its
central direction, the coincidence rate remains identically as
in Eq. ~8!, with the misalignment accounted for by appropri-
ate change of the limits of integration.

The normalized coincidence rate, which is a measure of
the degree of entanglement of the detected photons, is

Rsi
~2![

Gsi
~2!

AI sI i
, ~9a!

where

I s5E
Dus3Dfs

dusdfsE du idf i

3E dvsdv i uc~vs ,us ,fs ,v i ,u i ,f i !u2 ~9b!

and I i is given by a similar expression@7#. Equation~9b!
differs from Eq. ~8! in that it is integrated over the entire
idler space.

B. Gaussian approximations

In order to evaluate the integrals in Eqs.~5a! and~6a!, and
to obtain explicit expressions for the dependence of the co-
herence functions on the key parameters of the interacting
beams, we make several simplifying assumptions and ap-
proximations. The pump spectral distribution is assumed to
be a Gaussian function

A~v!}expF2
~v2vp

0!2

4Dvp
2 G ~10!

and its transverse spatial distribution is also assumed to be a
circularly symmetric Gaussian function ofx andy, so that its
Fourier transform is also Gaussian:

F~k'!}expF2w2
kx
21ky

2

4 G . ~11!

We also approximate the sinc function in Eq.~4b! by the
Gaussian function

sincS l

2p
DkzD'expF2

~a lDkz!
2

4 G , ~12!

wherea50.430 is chosen such that the two functions have
equal 1/e widths.

1. The wave function

Using Eqs.~10!–~12!, the twin-state wave function takes
the following jointly Gaussian form:

c~Vs ,us ,fs ,V i ,u i ,f i !5N expF2
1

4 H fs
2

sfs

2 1
f i
2

sf i

2 12hfsf i
fsf iJ GexpF2

1

4 H Vs
2

svs

2 1
V i

2

sv i

2 1
us
2

sus
2 1

u i
2

su i
2 12hvsv i

VsV i

12hvsus
Vsus12hvsu i

Vsu i12hv ius
V ius12hv iu i

V iu i12husu i
usu iJ G , ~13!

where

1

sfs

2 5
1

Dfsy
2 , ~14a!

hfsf i
52

1

DfsyDf iy
, ~14b!

1

svs

2 5
1

Dvp
2 1

1

Dvsx
2 1

1

Dvsz
2 , ~14c!

1

sus
2 5

1

Dusx
2 1

1

Dusz
2 , ~14d!

hvsv i
5

1

Dvp
2 2

1

DvsxDv ix
1

1

DvszDv iz
, ~14e!

hvsus
5

1

DvsxDusx
2

1

DvszDusz
, ~14f!

hvsu i
52

1

DvsxDu ix
2

1

DvszDu iz
, ~14g!

husu i
52

1

DusxDu ix
1

1

DuszDu iz
, ~14h!

and the remaining coefficients are given by the interchange
of the signal and idler indices. The spectral and angular pa-
rameters that appear in Eqs.~14a!–~14h! are given by

53 4363COHERENCE PROPERTIES OF ENTANGLED LIGHT BEAMS . . .



Dfsy5Df iy5
l j
0/nj

2pw sinu j
0 , ~15a!

Dv jx5v j
0

l j
0/Nj

2pw sinu j
0 , ~15b!

Dv jz5v j
0
l j
0/~Nj cosu j

02Np!

2pa l
, ~15c!

Du jx5
l j
0/nj

2pw cosu j
0 , ~15d!

and

Dusz5Du iz5
l j
0/nj

2pa l sinu j
0 , ~15e!

wherej5s,i and the second subscript (x,y, or z! denotes the
component of the phase mismatch contributing to the given
frequency or angular broadening.

The jointly Gaussian expression for the wave function in
Eq. ~13! is characterized by coefficients forming a 636 ma-
trix that is separable into 232 and 434 blocks, so that the
signal and idler azimuthal angles (fs andf i) are uncorre-
lated with the signal and idler polar angles (us andu i) and
frequencies (vs andv i). This factorization follows from the
expressions in Eqs.~3a!–~3c! in which only the azimuthal
angles determine the wave-vector mismatch in they direc-
tion and do not contribute to the mismatch in thex and z
directions. The structure of the 434 matrix is indicative of
coupling between the signal and idler polar angles and fre-
quencies resulting from their mutual contributions to wave-
vector mismatch in thex and thez directions, as indicated by
Eqs.~3a! and ~3c!.

The magnitude of the wave function in Eq.~13! has its
maximum value at points in the (ks ,k i) space that are per-
fectly phase and frequency matched tokp

0 and vs
0 . These

points, in the linear approximation used here, are given by

the line in the (fs ,f i) plane determined fromDky50 in Eq.
~3b! ~i.e.,fs5f i) and the line in the (Vs ,us ,V i ,u i) space
~spectral-polar space! determined fromDkx50 in Eq. ~3a!,
Dkz50 in Eq.~3c!, andVs1V i50; for the noncollinear and
degenerate down-conversion (us

05u i
0Þ0 andvs

05v i
0) used

here to illustrate the theory and the reported experiment, the
spectral-polar line is given by the parametric equations
u i52us , Vs52(nsvs

0 cotus
0/Ns)us, andV i52Vs .

2. Second-order coherence function

Using the Gaussian wave function in Eq.~13!, the signal
second-order coherence function in Eq.~5a! can be cast in
the separable form

Gss
~1!~us ,fs ,us8 ,fs8 ;t!}expF2

~fs2fs8!2

2fs
c2 G

3expF2
~us2us8!2

2us
c2 G

3expF2
t2

2ts
c2G

3exp@ i $vs
01j~us1us8!%t#.

~16!

The first factor, representing the amplitude coherence of the
signal field in the azimuthal direction, is a Gaussian function
of width

fs
c52sfs

5
ls
0/ns

pw sinus
0 , ~17!

which is the azimuthal signal coherence angle. The second
factor in Eq.~16! in which a small term proportional tousu s8
in the exponent has been neglected, represents the amplitude
coherence of the signal field in the polar direction and has a
width us

c , the polar signal coherence angle, given by

1

us
c2

5
1

2sus
2 2

1

4 S hvsus
2

sv i

2 su i
2 1

hv ius
2

svs

2 su i
2 1

husu i
2

svs

2 sv i

2 2
2hvsus

hv ius
hvsv i

su i
2 2

2hvsus
husu i

hvsu i

sv i

2 2
2hv ius

husu i
hv iu i

svs

2

12hvsus
hv ius

hvsu i
hv iu i

12hvsus
husu i

hvsv i
hv iu i

12hv ius
husu i

hvsv i
hvsu i

2hvsus
2 hv iu i

2 2hv ius
2 hvsu i

2 2husu i
2 hvsv i

2 D
3S 2hvsv i

hvsu i
hv iu i

1
1

svs

2 sv i

2 su i
2 2

hvsv i

2

su i
2 2

hvsu i
2

sv i

2 2
hv iu i
2

svs

2 D 21

. ~18!

The third factor is a Gaussian function oft of width ts
c , the signal coherence time, given by

ts
c25

1

svs

2 1
2hvsv i

hvsu i
hv iu i

su i
2 sv i

2 2hvsv i

2 sv i

2 2hvsu i
2 su i

2

12hv iu i
2 su i

2 sv i

2 . ~19!

The fourth factor in Eq.~16! indicates a frequency shift
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j~us1us8!52
h̄vsus

2ts
c2

~us1us8! ~20a!

that is a linear function ofus1us8 , where

h̄vsus
5hvsus

1
hvsv i

husu i
hv iu i

su i
2 sv i

2 1hvsu i
hv ius

h v iu i
su i
2 sv i

2 2hvsv i
hv ius

sv i

2 2hvsu i
husu i

su i
2

12hv iu i
2 su i

2 sv i

2 . ~20b!

As expected from the form of the wave function in Eq.
~13!, the second-order coherence function factors into a
product of a function of azimuthal angles and a function of
polar angles and time delay. Thus the signal~and similarly
the idler! field is cross-spectrally pure in the azimuthal direc-
tion, but not so in the polar direction. The lack of cross-
spectral purity of the signal field in the polar direction is
exhibited by a signal polar-angle-dependent frequency shift
in the fourth factor of Eq.~16!. The frequency shift in Eq.
~20a! can also be determined directly from the spectral-polar
phase and frequency matching line and is independent of

Dvp , w, andl ~it is completely set by phase matching@7#!.
The signal intensityI[Gss

(1)(us ,fs ,us ,fs ;0) is indepen-
dent of direction in this approximation.

The expression forfs
c in Eq. ~17! has the same form as

the coherence angle for light emitted from an incoherent
source with a circular cross section of diameterwsinu s

0 . This
might suggest that the second-order coherence properties of
spontaneous parametrically down-converted light are equiva-
lent to those of an incoherent source@8#. However, the ex-
pressions forus

c andts
c in Eqs.~18! and~19! are very differ-

ent from those for an incoherent source and incorporate
coherent effects imposed by phase- and frequency-matching
requirements. The coherence parametersus

c and ts
c have a

complex dependence on the wave-function coefficients in
Eq. ~13! resulting from the integration overvs ,v i , andu i .

3. Fourth-order coherence function

Using the Gaussian wave function in Eq.~13!, the signal-
idler fourth-order coherence function in Eq.~6a! can be cast
in the separable form

Gsi
~2!~us ,fs ,u i ,f i ;t!}expF2

~fs2f i !
2

2fs
e2 G

3expF2
~us1bu i !

2

2us
e2 G expF2

t2

2te
2G .

~21!

The first factor, representing entanglement in the azimuthal
direction, is a Gaussian function of width

fs
e5sfs

5
ls
0/ns

2pw sinus
0 , ~22!

which we call the signal azimuthal entanglement angle.
Points for whichfs5f i have the highest entanglement, and
points for whichufs2f i u exceedfs

e are weakly entangled.
Because of the symmetry of the down-converted lumines-
cence about the pump propagation direction in type-I phase
matching, the idler azimuthal entanglement anglef i

e is equal
to its signal counterpartfs

e ~even for nondegenerate down-
conversion!.

The second factor in Eq.~21!, whose exponent is gener-
ally a quadratic function ofus andu i , takes the specifiic form
shown in Eq.~21! for l @w; it represents entanglement in
the polar direction, is a Gaussian function of widthus

e , the
signal polar entanglement angle, given by

FIG. 2. Dependence of the polar~solid curves! and azimuthal
~dashed curves! coherence angleus

c andfs
c of the signal on~a! the

crystal lengthl for fixed values of the pump-beam waistw and~b!
the pump-beam waistw for fixed values of crystal lengthl . Both
coherence angles do not depend on the pump spectral width
Dvp .
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1

us
e2

5
1

sus
2

1
2hvsv i

hvsus
hv ius

svs

2 sv i

2 2hv ius
2 sv i

2 2hvsus
2 svs

2

12hvsv i

2 svs

2 sv i

2 .

~23!

The idler polar entanglement angle is given by a similar

expression. This second factor has its peak value when
us52bu i , where

b[
us
e

u i
e5

l i
0ns@Ni cos~us

01u i
0!2Ns#

ls
0ni@Ns cos~us

01u i
0!2Ni #

~24!

and us
e5u i

e only whenb51 as in the case of degenerate
down-conversion. The third factor is a Gaussian function of
t whose widthte, the entanglement time, is given by

te
2
5
1

4 S 1

svs

2 1
1

sv i

2 22hvsv i D 5
w2

4 F sin2us0~c/Ns!
21

sin2u i
0

~c/Ni !
21

2 sinu i
0sinus

0

~c2/NiNs! G
1

a2l 2

4 F 1

c2/~Nscosu s
02Np!

21
1

c2/~Nicosu i
02Np!

22
2

c2/~Nscosu s
02Np!~Nicosu i

02Np!G ~25!

The azimuthal dependence of the fourth-order coherence
function is expected to factor, as in the case of the second-
order coherence function, because of the factorization of the
Gaussian wave function itself. In general, Eq.~21! should
have a phase factor@as in the case of second-order coherence
in Eq. ~16! due to the cross term betweenV and the angles
us and u i#. However, because the fourth-order coherence
function is real, the cross term betweenV and the angles
cancels out and the polar-temporal part of this coherence
function also factors.

The signal azimuthal entanglement angle in Eq.~22! is
inversely proportional to the pump waistw and is indepen-
dent of the pump spectral widthDvp and the crystal length
l . Also, this angle is related to its corresponding coherence
angle byfs

c52fs
e . This is similar to the situation for inco-

herent light, in which the Siegert relation is obeyed@9#. In
general, the signal and idler polar entanglement anglesus

e

andu i
e, and the signal-idler entanglement timete, depend in

a complex manner on all three variables of interest:Dvp , w,
and l . Also, there are no simple relations that we can recog-
nize between these fourth-order coherence parameters and
their corresponding second-order coherence parameters. Fi-
nally, the fourth-order coherence function in Eq.~21! is con-
stant atfs2f i5const andus1bu i5const and the wave
function in Eq.~13! is not normalizable.

4. Example

As an example, we consider degenerate noncolinear
down-conversion in a lithium iodate~LiIO3) crystal in the
configuration shown in Fig. 1 and determine the dependence
of the coherence anglesus

c andfs
c ~Fig. 2!, the coherence

time ts
c ~Fig. 3!, the entanglement anglesus

e andfs
e ~Fig. 4!,

and the entanglement timete ~Fig. 5! on Dvp , w, and l .
The following parameters, which are applicable to the ex-
periment reported in Sec. IV, are used:lp

05413.1 nm,
ls
05l i

05826.2 nm,us
05u i

0517.5° ~internal to the crystal!,
np51.7786 ~extraordinary!, ns5ni51.8649 ~ordinary!,
Np51.9479, andNs5Ni51.9095.

In Fig. 2 we show the dependence of the azimuthal and
polar coherence anglesfs

c and us
c , given in Eqs.~17! and

~18!, respectively, onl @Fig. 2~a!# and w @Fig. 2~b!#. The
azimuthal coherence angle depends only on the pump beam

FIG. 3. ~a! Dependence of the signal coherence timets
c on the

crystal lengthl for fixed values of the pump-beam waistw and for
a pump spectral width fixed atDvp510210vp

0 . ~b! Dependence of
ts
c on the pump spectral widthDvp for fixed values of the crystal
length l and fixed beam waistw51 mm.
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waist, while the polar coherence angle depends on both the
pump beam waist and the crystal length. The polar coherence
angle vanishes (us

c→0) as l→` @ log10(lp
0/l)→2`# regard-

less ofw. In this limit of exact phase matching in thez
direction, there is no overlap between the power spectral
densities at two different signal directionsus and us8 origi-
nating from down-conversion with a fixed idler wave vector
@7#. The same is true in the limitw→`. As l decreases
~valid for l larger thanlp

0), us
c increases and saturates to a

fixed value governed byw, i.e., set by the phase-matching
requirement in thex direction. A similar result is obtained in
the limit of smallw. As for the azimuthal coherence angles,
it turns out that the polar coherence angle is independent of
the pump spectral widthDvp . This can be explained by the
fact that even though a largerDvp corresponds to a larger
signal bandwidth, any frequency component of the signal in
a fixed direction contributes to the signal cross-power spec-
trum in other directions extending over the polar coherence
angleus

c .
The dependence of the signal coherence timets

c in Eq.
~19! on Dvp , w, and l is shown in Fig. 3. In the limit of
largew, largel , or smallDvp , the coherence time is set by
the remaining two parameters. In the opposite limits, the
coherence time reduces to zero. As shown in Fig. 3~b!, the
pump spectral width begins to reduce the coherence time
only at relatively large values (Dvp.1025vp

0), so that the
often-made assumption of a monochromatic pump is easily
achievable~at least in this configuration!.

The dependence of the signal entanglement anglesfs
e and

us
e on l , w, andDvp is shown in Fig. 4. As expected from
Eq. ~22!, the azimuthal entanglement angle depends only on
w. The polar entanglement angle generally depends on all
three variables. However, for the degenerate down-
conversion case under consideration, it depends onl and
Dvp , but is independent ofw. When l is sufficiently large
so that exact longitudinal wave-vector matching is required,
and for u i50, fixedvp , and different values ofv i , down
conversion occurs only forvs5vp2v i and fixed signal di-
rection. Thus the polar entanglement angleus

e is independent
of the beam waistw, as shown in Fig. 4~b!. On the other
hand, when exact transverse wave vector matching is re-
quired and foru i50, fixedvp , and different values ofv i ,
down-conversion still occurs only forvs5vp2v i but now
the signal direction is a function ofv i . Thus the polar en-
tanglement angleus

e depends on the crystal lengthl , as
shown in Fig. 4~a!. The dependence ofus

e on l is similar to
the dependence offs

e onw; bothus
e andfs

e are reduced asl
or w increase. However, in the limit of small pump spectral
width Dvp , the entanglement angleus

e is governed by the
crystal lengthl and does not approach zero, as shown in Fig.
4~c!. The pump spectral widthDvp has an effect on the

FIG. 4. Dependence of the polar~solid curves! and azimuthal
~dashed curves! entanglement anglesus

e andfs
e of the signal on~a!

the crystal lengthl for fixed values of the pump-beam waistw and
for Dvp510210vp

0, ~b! the pump-beam waistw for fixed values of
crystal lengthl and forDvp510210vp

0 , and~c! the pump spectral
width Dvp for fixed values of the crystal lengthl and the beam
width w50.5 mm.

FIG. 5. The entanglement timete in the case of degenerate
down-conversion.

53 4367COHERENCE PROPERTIES OF ENTANGLED LIGHT BEAMS . . .



entanglement angle us
e only at large values

(Dvp.1024vp
0).

For degenerate down-conversion, the entanglement time
te in Eq. ~25! does not depend on the crystal lengthl ; its
dependence on the beam waistw is shown in Fig. 5. In the
case of exact longitudinal wave-vector matching, and for
u i50, fixedvp , and different values ofv i ~i.e., idler photon
emitted in the central idler direction!, down-conversion oc-
curs only forvs5vp2v i and fixed signal directionus50
~i.e., the signal photon is emitted in the central signal direc-
tion!. Thus the width of the fourth-order power spectrum in
Eq. ~6b!, for the given signal-idler directions, is expected to
vary in an inverse proportionality tow ~even for a mono-
chromatic pump becausevs5vp

02v i does not fixvs and
v i) and therefore, as shown in Fig. 5,te→0 asw→0 and
te→` asw→`. However, in the case of exact transverse
phase matching, and foru i50, fixedvp , and different val-
ues of v i , down-conversion still occurs only for
vs5vp2v i , but nowus5us(v i), i.e., the signal photon is
emitted in different signal directions depending on the fre-
quency of the idler photon. Therefore, the crystal lengthl
does not contribute to the width of the fourth-order power
spectrum in Eq.~6b! and the entanglement timete is inde-
pendent ofl .

Finally, the pump spectral widthDvp has no effect on the
entanglement timete, in agreement with experimental obser-
vations@11#.

IV. EXPERIMENT

We have experimentally investigated the predictions of
the jointly Gaussian twin state model by measuring coinci-
dence rates of down-converted photons observed through
aligned and misaligned apertures of various sizes, as shown
in Fig. 6. The 413.1-nm line of a krypton-ion laser was fo-
cused to a waist ofw'0.4 mm to create the pump. A 10-
mm-long (l510 mm! lithium iodate crystal was oriented for
type-I ~ooe! phase matching with the extraordinary pump
incident at 90° to the crystal’s optic axis. Avalanche photo-
diodes operated in the photon-counting Geiger mode were
used as detectors. They have a diameter of approximately
100 mm and were placed at distances ofr s5738 mm and
r i5435 mm from the center of the crystal. The down-
converted light was filtered by RG695 filters placed in front
of the detectors to block the pump radiation. The signal and
idler directions for degenerate down-conversion were set at
maximum coincidence rate when filters centered at 830 nm
(ls

05l i
05826.2 nm! and linear polarizers~oriented to let the

o rays through! were placed in front of both detectors. The
directions obtained were consistent with the computed values
of us

05u i
0517.5° ~internal to the crystal!. The 830-nm filters

and polarizers were then removed and one aperture~the sig-
nal aperture! was fixed by the detector area, whereas the
other aperture~idler aperture! was varied, as shown in Fig. 6.
With this setup, we measured the signal-idler coincidence
rate, for different idler apertures, as a function of misalign-
ment of the signal aperture in the polar and azimuthal direc-
tions.

In Fig. 7 we present the results when the polar and azi-
muthal signal directions were scanned, in Figs. 7~a! and 7~b!,
respectively, with both apertures defined by the detector

sizes, namely, Dus50.063 mrad, Dfs50.112 mrad,
Du i50.107 mrad, andDf i50.190 mrad, internal to the
crystal. In both cases, the pump power was set at 180 mW
and the output pulses from the detectors were counted for 10
s to provide a measure of the rate of photon detection in each
of the channels. The sequence of standardized pulses from
the two detector were also passed through a 10-ns AND gate
and counted for 10 s to provide a measure of the coincidence
rate. The dots in the figures represent the raw coincidence
data.

In Fig. 8 we present the results when the signal polar
direction was scanned, with the signal aperture still set by the
detector size and with the idler aperture~determined by a
variable aperture and a lens that focused the light onto the
idler detector! varied from Du i51.069 mrad and
Df i51.908 mrad in Fig. 8~a!, to Du i52.715 mrad and
Df i54.846 mrad in Fig. 8~b!, and toDu i53.802 mrad and
Df i56.784 mrad in Fig. 8~c!, internal to the crystal. The
counting time was set to 10 s and the pump power varied
from 75 mW in Fig. 8~a! to 25 mW in Figs. 8~b! and 8~c! to
minimize dead-time effects in the idler detector.

To compare these experimental results with the theory,
we express the observed coincidence rate in the form

Rc5Rrc1h~RsRi !
1/2Rsi

~2! , ~26!

whereRrc represents the observed random coincidence rate
~determined from completely misaligned apertures!, h repre-
sents the quantum efficiencies of the signal and idler chan-
nels ~assumed to be the same for both channels!, Rs5hI s
andRi5hI i represent the observed signal and idler single
rates, andRsi

(2) is the normalized coincidence rate in Eq.~9a!.
This latter quantity is evaluated from the theory by integrat-
ing the Gaussian-model expression in Eq.~21! over t and
over the given apertures. The required entanglement angles
f j
e and u j

e ( j5s,i ) are evaluated from Eqs.~22! and ~23!,
where the indices of refraction and the group indices of re-
fraction, calculated from Sellmeier formula@17#, are
np51.7786 ~extraordinary!, ns5ni51.8649 ~ordinary!,
Np51.9479, andNs5Ni51.9095, as given in the example
provided in Sec. III.

This theoretical expression is represented by the solid
curves in Figs. 7 and 8. To fit the theory to the experiment
we adjusted the values of the entanglement angles by varying
l for u j

e and varyingw for f j
e ( j5s,i ). We have been able to

fit all data sets by choosingl57 mm andw50.4 mm. The

FIG. 6. Experimental setup.
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difference between the actual value of the crystal length, 10
mm, and the value used to achieve the fit, are related to
possible walkoff of the signal and idler beams with respect to
the pump beam so that an effective crystal length smaller
thanl determines the phase-matching tolerance@4#. For these
values of l and w, the entanglement angles areus

e5u i
e

50.181 mrad andfs
e5f i

e50.586 mrad. The quantum effi-
ciencyh required for best fit was 10% in Figs. 7~a! and 7~b!,
14% in Figs. 8~a! and 8~b!, and 11% in Fig. 8~c!, consistent
with the 10% efficiency reported in@18#, in which a similar
experimental apparatus was used. The remaining parameters
Rrc , Rs , andRi , required in Eq.~26!, are estimated from the
data for each plot and are reported in the figure captions.

The effect of aperture mismatch on the normalized coin-
cidence rateRsi

(2) for perfectly aligned apertures is shown as
the solid curve in Fig. 9. Here the signal aperture is fixed at
(Dus3Dfs)/(us

e3fs
e)50.067, as set by the detector area,

and the idler aperture is varied. The dots are calculated by
solving for Rsi

(2) using Eq.~26!, and substituting from the
data, averaged values for the maximum coincidence rateRc
~the coincidence rate for perfect alignment!, the random co-
incidence rateRrc and the singles ratesRs andRi . The fit is

obtained by settingh50.13, which is intermediate between
the values used to obtain the best fits in Figs. 7 and 8. The
optimal value ofRsi

(2) , for the given signal aperture, is 6.1%,
which was attainable by choosing (Du i3Df i)/
(u i

e3f i
e)57. This value of the normalized idler aperture

giving the optimalRsi
(2) is higher than that reported in@7#, but

the result in@7# is for a one-dimensional model whereas this
result is for a two-dimensional model.

V. CONCLUSION

We have developed an approximate Gaussian expression
for the wave function of the twin photon beams emitted by
the spontaneous parametric down-conversion process, with
the effects of pump spectral width, pump beam waist, and
crystal length accounted for. This simple model was used to
determine the second-order coherence function at pairs of
points within the signal~and idler! beams, and the fourth-
order coherence function~photon coincidence probability! at

FIG. 7. Experimental data and theoretical curves for the photon
coincidence rate~counts per 10 s! as a function of signal aperture
misalignment in~a! the u direction and~b! the f direction. The
ratios of the aperture angles to the entanglement angles were
Dus /us

e50.35, Dfs /fs
e50.19, Du i /u i

e50.59, and Df i /f i
e5

0.35; h50.1. ~a! Rrc518, Rs517 930, andRi539 036; ~b!
Rrc520,Rs521 400, andRi545 403.

FIG. 8. Experimental data and theoretical curves for the photon
coincidence rate~counts per 10 s! as a function of signal aperture
misalignment in theu direction. The normalized signal aperture
angles are as in Fig. 6. The remaining parameters are~a!
Du i /u i

e55.90, Df i /f i
e53.26, h50.14, Rrc515, Rs59787, and

Ri555 790; ~b! Du i /u i
e515.00, Df i /f i

e58.27, h50.14,
Rrc513, Rs54099, and Ri5143 104; ~c! Du i /u i

e521.00,
Df i /f i

e511.58,h50.11,Rrc524,Rs56210, andRi5226 657.
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one point within the signal beam and the other within the
idler beam.

The magnitude of the second-order coherence function is
a product of Gaussian functions of the azimuthal angles, po-
lar angles, and time delay. Its phase is a linear function of
time delay, representing a spectral shift that varies with the
polar angles. The coherence angles generally decrease as the
pump beam width or the crystal length increase. The coher-
ence time increases as the length of the crystal or the beam
width increases and also as the pump spectral width is re-
duced. Although the pump beam possesses complete spatial
coherence, the down-converted beam has an elliptically
shaped coherence area in this Gaussian model. Even if the
pump is perfectly monochromatic, the down-converted light
is not.

The photon coincidence rate is also separable as a product
of Gaussian functions of the azimuthal angles, polar angles,
and time delay, with widths representing the entanglement
angles and time. The azimuthal entanglement angle increases
with decreasing pump-beam width, but is independent of the
crystal length and the pump spectral width. The polar en-
tanglement angle, in contrast, is independent of the pump
beam width, but increases with a reduction of the crystal
length or an increase of the pump spectral width. The en-
tanglement area is also elliptical, but it does not match the
coherence area, so that the Siegert relation@9# is not satisfied.
The entanglement time increases with an increase of the
pump beam width or with a decrease of the pump spectral
width. When the signal and idler photons are collected by
apertures of finite area, the photon coincidence rates drop
sharply if the aperture areas mismatch the entanglement ar-
eas in size or locations. These effects have been demon-
strated experimentally.

The Gaussian model of the twin-beam wave function has
proven to be very helpful in analytically determining the
coherence and photon coincidence properties of parametri-
cally down-converted light. It can also be employed in more
general situations such as in interferometers of the following
types: Hong-Ou-Mandel@19–21#, Michelson@22,23#, Mach-
Zehnder@6,18,24#, and Franson@22,23,25,26#; as well as for
light passing through slits as in Young-type experiments
@8,14#.
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