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We employ a number of statistical measures to characterize
neural discharge activity in cat retinal ganglion cells (RGCs)
and in their target lateral geniculate nucleus (LGN) neurons
under various stimulus conditions, and we develop a new
measure to examine correlations in fractal activity between
spike-train pairs. In the absence of stimulation (i.e., in the
dark), RGC and LGN discharges exhibit similar properties. The
presentation of a constant, uniform luminance to the eye
reduces the fractal fluctuations in the RGC maintained dis-
charge but enhances them in the target LGN discharge, so
that neural activities in the pair cease to be mirror images of
each other. A drifting-grating stimulus yields RGC and LGN
driven spike trains similar in character to those observed in the
maintained discharge, with two notable distinctions: action
potentials are reorganized along the time axis so that they
occur only during certain phases of the stimulus waveform,
and fractal activity is suppressed. Under both uniform-lumi-
nance and drifting-grating stimulus conditions (but not in the
dark), the discharges of pairs of LGN cells are highly correlated
over long time scales; in contrast discharges of RGCs are
nearly uncorrelated with each other. This indicates that action-
potential activity at the LGN is subject to a common fractal
modulation to which the RGCs are not subjected. q 2001
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The sequence of action potentials recorded from cat
retinal ganglion cells (RGCs) and lateral geniculate
nucleus (LGN) cells is always irregular. This is true
whether the retina is in the dark (1, 2), or whether
it is adapted to a stimulus of fixed luminance (3–6).
It is also true for time-varying visual stimuli such as
drifting gratings. With few exceptions, the statistical
properties of these spike trains have been investi-
gated from the point of view of the interevent-inter-
val histogram (3), which provides a measure of the
relative frequency of intervals of different durations.
The mathematical model most widely used to de-
scribe the interevent-interval histogram under all of
these stimulus conditions derives from the gamma
renewal process (7), though point processes incorpo-
rating refractoriness have also been considered (3,
8, 9).

However, there are properties of a sequence of ac-
tion potentials, such as long-duration correlation or
memory, that cannot generally be inferred from mea-
sures that reset at short times such as the interevent-
interval histogram (6, 10). The ability to uncover
features such as these demands the use of measures
such as the count-based normalized wavelet vari-
ance, the periodogram, or rescaled range analysis (R/
S), which can extend over time (or frequency) scales
that span many events. RGC and LGN spike trains
exhibit variability and correlation properties over a
broad range of time scales, and the analysis of these
discharges reveals that the spike rates exhibit frac-
tal properties.
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Fractals are objects that possess a form of self-
similarity: parts of the whole can be made to fit to
the whole by shifting and stretching. The hallmark
of fractal behavior is power-law dependence in one
or more statistical measures, over a substantial
range of the time or frequency scale at which the
measurement is conducted (11). Fractal behavior
represents a form of memory because the occurrence
of an event at a particular time increases the likeli-
hood of another event occurring some time later, with
this likelihood decaying in power-law fashion. Frac-
tal signals are also said to be self-similar or self-af-
fine.

This fractal behavior is most readily illustrated by
plotting the estimated firing rate of a sequence of
action potentials for a range of averaging times. This
is illustrated in Fig. 1A for the maintained discharge
of a cat RGC. The rate estimates are formed by divid-
ing the number of spikes in successive counting win-
dows of duration T by the counting time T. The rate
estimates of the shuffled (randomly reordered) ver-
sion of the data are presented in Fig. 1B. This surro-
gate data set maintains the same relative frequency
of interevent-interval durations as the original data,
but destroys any long-term correlations (and there-
fore fractal behavior) arising from other sources,
such as the relative ordering of the intervals.

Comparing Figs. 1A and 1B, it is apparent that the
magnitude of the rate fluctuations decreases more
slowly with increasing counting time for the original
data than for the shuffled version. Fractal processes
exhibit slow power-law convergence: the standard
deviation of the rate decreases more slowly than
1/T1/2 as the averaging time increases. Nonfractal
signals, such as the shuffled RGC spike train, on
the other hand, exhibit fluctuations that decrease
precisely as 1/T1/2. The data presented in Fig. 1 are

typical of all RGC and LGN spike trains.

cousin of the homogeneous Poisson point process that
1. ANALYSIS TECHNIQUES

1.1. Point Processes

The statistical behavior of a neural spike train can
be studied by replacing the complex waveforms of
each individual electrically recorded action potential
(Fig. 2, top) by a single point event corresponding to
the time of the peak (or other designator) of the action
potential (Fig. 2, middle). In mathematical terms,
the neural spike train is then viewed as an unmarked
point process. This simplification greatly reduces the
computational complexity of the problem and per-
mits use of the substantial methodology previously
developed for stochastic point processes (6, 10, 11).

The occurrence of a neural spike at time tn is there-
fore simply represented by an impulse d(t 2 tn) at
that time, so that the sequence of action potentials
is represented by

s(t) 5 o
n

d (t 2 tn) .

A realization of a point process is specified by the
set of occurrence times of the events or, equivalently,
of the times {tn} between adjacent events, where
tn 5 tn+1 2 tn. A single realization of the data is gener-
ally all that is available to the observer, so that the
identification of the point process, and elucidation of
the mechanisms that underlie it, must be gleaned
from this one realization.

One way in which the information in an experi-
mental sequence of events can be made more digest-
ible is to reduce the data into a statistic that empha-
sizes a particular aspect of the data, at the expense
of other features. These statistics fall into two broad
classes which have their origins, respectively, in the
sequence of interevent intervals {tn} illustrated at
the lower left of Fig. 2 or in the sequence of counts
{Zn} shown at the lower right of Fig. 2.

1.1.1. Examples of Point Processes

The homogeneous Poisson point process, which is
the simplest of all stochastic point processes, is de-
scribed by a single parameter, the rate l. This point
process is memoryless: the occurrence of an event at
any time t0 is independent of the presence (or ab-
sence) of events at other times t Þ t0. Because of this
property, both the intervals {tn} and counts {Zn} form
sequences of independent, identically distributed
(iid) random variables. The homogeneous Poisson
point process is therefore completely characterized
by the interevent-interval distribution (which is ex-
ponential) or the event-number distribution (which
is Poisson) together with the iid property. This proc-
ess serves as a benchmark against which other point
processes are measured; it therefore plays the role
that the white Gaussian process enjoys in the realm
of continuous-time stochastic processes.

A related point process is the nonparalyzable fixed-
dead-time-modified Poisson point process, a close
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differs only by the imposition of a dead-time (refrac-
tory) interval after the occurrence of each event, dur-
ing which other events are prohibited from occurring
(9). Another cousin is the gamma-r renewal process
which, for integer r, is generated from a homogeneous
Poisson point process by permitting every rth event
to survive while deleting all intermediate events (6).
Both the dead-time-modified Poisson point process
and the gamma renewal process require two parame-
ters for their description. All the examples of point
process presented above belong to the class of re-
newal point processes, which are defined in Sec-
tion 1.2.1.
However, spike trains in the visual system cannot
be adequately described by renewal point processes;
rather, nonrenewal processes are required (6). Of
particular interest are fractal-rate stochastic point
processes, in which one or more statistics exhibit
power-law behavior in time or frequency (11). One
feature of such processes is the relatively slow power-
law convergence of the rate standard deviation, as
illustrated in Fig. 1A. We have previously shown
that a fractal, doubly stochastic point process that
imparts multiscale fluctuations to the gamma-r re-
newal process provides a reasonable description of
the RGC and LGN maintained discharges (6).
FIG. 1. Rate estimates formed by dividing the number of events in successive counting windows by the counting time T. The stimulus
was a uniformly illuminated screen (with no temporal or spatial modulation) of luminance 50 cd/m2. (A) Rate estimate for a cat RGC
generated using three different counting times (T 5 1, 10, and 100 s). The fluctuations in the rate estimates converge relatively
slowly as the counting time is increased. This is characteristic of fractal-rate processes. The convergence properties are quantified
by measures such as the normalized wavelet variance and periodogram. (B) Rate estimates from the same recording after the intervals
are randomly reordered (shuffled). This maintains the same relative frequency of interval sizes but destroys the original relative
ordering of the intervals and, therefore, any correlations or dependencies among them. For such nonfractal signals, the rate estimate
converges more quickly as the counting time T is increased. The data presented here are typical of the 50 data sets examined.
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1.2. Interevent-Interval Measures of a Point Process

Two statistical measures are often used to charac-
terize the discrete-time stochastic process {tn} illus-
trated in the lower left corner of Fig. 2. These are
the interevent-interval histogram (IIH) and rescaled
range analysis (R/S).

1.2.1. Interevent-Interval Histogram

The interevent-interval histogram (often referred
to as the interspike-interval histogram or ISIH in
the physiology literature) displays the relative fre-
quency of occurrence pt(t) of an interval of size t; it
is an estimate of the probability density function of
interevent-interval magnitude (see Fig. 2, lower left).
It is, perhaps, the most commonly used of all statisti-
cal measures of point processes in the life sciences.
The interevent-interval histogram provides informa-
tion about the underlying process over time scales
that are of the order of the interevent intervals. Its
construction involves the loss of interval ordering
and, therefore, dependencies among intervals; a reor-
dering of the sequence does not alter the interevent-
interval histogram since the order plays no role in
the relative frequency of occurrence.

Some point processes exhibit no dependencies
among their interevent intervals at the outset, in
which case the sequence of interevent intervals forms
a sequence of iid random variables and the point
process is completely specified by its interevent-in-
terval histogram. Such a process is called a renewal
process, a definition motivated by the replacement
of failed parts (such as light bulbs), each replacement
FIG. 2. A sequence of action potentials (top) is reduced to a set of events (represented by arrows, middle) that form a point process.
A sequence of interevent intervals {tn} is formed from the times between successive events, resulting in a discrete-time, positive, real-
valued stochastic process (lower left). All information contained in the original point process remains in this representation, but the
discrete-time axis of the sequence of interevent intervals is distorted relative to the real-time axis of the point process. The sequence
of counts {Zn}, a discrete-time, nonnegative, integer-valued stochastic process, is formed from the point process by recording the
numbers of events in successive counting windows of duration T (lower right). This process of mapping the point process to the
sequence {Zn} results in a loss of information, but the amount lost can be made arbitrarily small by reducing T. An advantage of this
representation is that no distortion of the time axis occurs.
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of which forms a renewal of the point process. The
homogeneous Poisson point process, dead-time-mod-
ified Poisson point process, and gamma renewal proc-
ess are all renewal processes, but experimental RGC
and LGN spike trains are not.

1.2.2. Rescaled Range (R/S) Analysis

Rescaled range (R/S) analysis provides informa-
tion about correlations among blocks of interevent
intervals. For a block of k interevent intervals, the
difference between each interval and the mean inter-
event interval is obtained and successively added to
a cumulative sum. The normalized range R(k) is the
difference between the maximum and minimum val-
ues that the cumulative sum attains, divided by the
standard deviation of the interval size. R(k) is plotted
against k. Information about the nature and the de-
gree of correlation in the process is obtained by fitting
R(k) to the function kH, where H is the so-called Hurst
exponent (12). For H . 0.5 positive correlation exists
among the intervals, whereas H , 0.5 indicates the
presence of negative correlation; H 5 0.5 obtains
for intervals with no correlation. Renewal processes
yield H 5 0.5. For negatively correlated intervals,
an interval that is larger than the mean tends, on
average, to be preceded or followed by one smaller
than the mean.

This widely used measure is generally assumed to
be well suited to processes that exhibit long-term
correlation or have a large variance (12–15), but it
robust since it exhibits large systematic errors and
highly variable estimates of the Hurst coefficient for
some fractal sequences (16, 17). Nevertheless, it pro-
vides a useful indication of correlation in a point
process arising from the ordering of the interevent
intervals alone.

1.3. Event-Number Measures of a Point Process

It is advantageous to study some characteristics
of a point process in terms of the sequence of event
numbers (counts) {Zn} rather than via the sequence
of intervals {tn}.

Figure 2 illustrates how the sequence is obtained.
The time axis is divided into equally spaced, contigu-
ous time windows (center), each of duration T s, and
the (integer) number of events in the nth window is
counted and denoted Zn. This sequence {Zn} forms
a random counting process of nonnegative integers
(lower right). Closely related to the sequence of
counts is the sequence of rates (events/second), ln ,
which is obtained by dividing each count Zn by the
counting time T. This is the measure used in Fig. 1.

We describe several statistical measures useful for
characterizing the counting process {Zn}: the normal-
ized variance (Fano factor), the normalized wavelet
variance (Allan factor), and the event-number-based
power spectral density estimate (periodogram).

1.3.1. Normalized Variance

The normalized variance, or (Fano factor) is de-
fined as the event-number variance divided by the
event-number mean, which is a function of the count-
ing time T:

F(T ) [
Var [Zn(T )]
E [Zn(T )]

.

This quantity provides an abbreviated way of de-
scribing correlation in a sequence of events. It indi-
cates the degree of event clustering or anticlustering
in a point process relative to the benchmark homoge-
neous Poisson point process, for which F(T ) 5 1 for
all T.

The Fano factor must approach unity at suffi-
ciently small values of the counting time T for any
regular point process (6, 11). In general, a Fano factor
less than unity indicates that a point process is more
orderly than the homogeneous Poisson point process
at the particular time scale T, whereas an excess
over unity indicates increased clustering at the given
time scale. This measure is sometimes called the
index of dispersion; it was first used by Fano in 1947
(18) for characterizing the statistical fluctuations of
the number of ions generated by individual fast
charged particles. For a fractal-rate stochastic point
process the Fano factor assumes the power-law form
TaF (0 , aF , 1) for large T. The parameter aF is
defined as an estimate of the fractal exponent (or
scaling exponent) a of the point-process rate.

Though the Fano factor can detect the presence of
self-similarity even when it cannot be discerned in
a visual representation of a sequence of events, math-
ematical constraints prevent it from increasing with
counting time faster than ,T1 (19). It therefore
proves to be unsuitable as a measure for fractal expo-
nents a . 1; it also suffers from bias for finite-length
data sets (20). For these reasons we employ other
count-based measures.

1.3.2. Normalized Wavelet Variance

The reliable estimation of a fractal exponent that
may assume a value greater than unity requires the



LOWEN ET AL.382
use of a measure whose increase is not constrained
as it is for the Fano factor, and which remains free
of bias. In this section we present a measure we first
defined in 1996 (19), and called the Allan factor, but
a more descriptive name for it is the normalized
wavelet variance. The Allan factor is the ratio of the
event-number Allan variance to twice the mean:

A(T ) [
E{[Zn(T ) 2 Zn11 (T )]2}

2E[Zn(T )]
.

The Allan variance was first introduced in connection
with the stability of atomic-based clocks (21). It is
defined in terms of the variability of differences of
successive counts; as such it is a measure based on
the Haar wavelet. Because this measure functions
as a derivative, it has the salutary effect of mitigating
against linear nonstationarities. More complex
wavelet Allan factors can be constructed to eliminate
polynomial trends (22, 23).

Like the Fano factor, the Allan factor is also a
useful measure of the degree of event clustering (or
anticlustering) in a point process relative to the
benchmark homogeneous Poisson point process, for
which A(T ) 5 1 for all T. In fact, for any point process,
the Allan factor is simply related to the Fano fac-
tor by

A(T ) 5 2F(T ) 2 F(2T )

so that, in general, both quantities vary with the
counting time T. In particular, for a regular point
process the Allan factor also approaches unity as T
approaches zero. For a fractal-rate stochastic point
process and sufficiently large T, the Allan factor ex-
hibits a power law dependence that varies with the
counting time T as A(T ) , TaA (0 , aA , 3); it can
rise as fast as ,T3 and can therefore be used to
estimate fractal exponents over the expanded range
0 , aA , 3.

1.3.3. Periodogram

Fourier-transform methods provide another ave-
nue for quantifying correlation in a point process.
The periodogram is an estimate of the power spectral
density of a point process, revealing how the power
is concentrated across frequency. The count-based
periodogram is obtained by dividing a data set into
contiguous segments of equal length 7. Within each
segment, a discrete-index sequence {Wm} is formed
by further dividing 7 into M equal bins, and then
counting the number of events within each bin. A
periodogram is then formed for each of the segments
according to

SW( f ) 5
1
M

. W̃( f ).2 ,

where W̃( f ) is the discrete Fourier transform of the
sequence {Wm} and M is the length of the transform.
All of the segment periodograms are averaged to-
gether to form the final averaged periodogram S( f ),
which estimates the power spectral density in the
frequency range from 1/7 to M /27 Hz. The periodo-
gram S( f ) can also be smoothed by using a suitable
windowing function (24).

The count-based periodogram, as opposed to the
interval-based periodogram (formed by Fourier
transforming the interevent intervals directly), pro-
vides direct undistorted information about the time
correlation of the underlying point process because
the count index increases by unity every 7/M s, in
proportion to the real time of the point process. In
the special case when the bin width 7/M is short
in comparison with most interevent intervals t, the
count-based periodogram essentially reduces to the
periodogram of the point process itself, since the bins
reproduce the original point process to a good approx-
imation.

For a fractal-rate stochastic point process, the peri-
odogram exhibits a power-law dependence that var-
ies with the frequency f as S( f ) , f 2aS; unlike the
Fano and Allan factor exponents, however, aS can
assume any value. Thus in theory the periodogram
can be used to estimate any value of fractal exponent,
although in practice fractal exponents a rarely ex-
ceed a value of 3. Compared with estimates based
on the Allan factor, periodogram-based estimates of
the fractal exponent aS suffer from increased bias
and variance (11). Other methods also exist for in-
vestigating the spectrum of a point process, some of
which highlight fluctuations about the mean rate
(25).

1.3.4. Relationship among Fractal Exponents

For a fractal-rate stochastic point process with
0 , a , 1, the theoretical Fano factor, Allan factor,
and periodogram curves all follow power-law forms
with respect to their arguments, and in fact we obtain
aF 5 aA 5 aS 5 a. For 1 # a , 3, the theoretical
Fano factor curves saturate, but the relation aA 5
aS 5 a still obtains. The fractal exponent a is ambigu-
ously related to the Hurst exponent H, since some
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authors have used the quantity H to index fractal
gaussian noise whereas others have used the same
value of H to index the integral of fractal gaussian
noise (which is fractional brownian motion). The re-
lationship between the quantities is a 5 2H 2 1 for
fractal gaussian noise and a 5 2H 1 1 for fractal
brownian motion. In the context of this paper, the
former relationship holds, and we can define another
estimate of the fractal exponent, aR 5 2HR 2 1, where
HR is the estimate of the Hurst exponent H obtained
from the data at hand. In general, aR depends on the
theoretical value of a, as well as on the probability
distribution of the interevent intervals. The distribu-
tions of the data analyzed in this paper, however,
prove simple enough so that the approximate theo-
retical relation aR 5 a will hold in the case of large
amounts of data.

1.4. Correlation Measures for Pairs of Point
Processes

Second-order methods prove useful in revealing
correlations between sequences of events, which indi-
cate how information is shared between pairs of spike
trains. Such methods may not detect subtle forms
of interdependence to which information-theoretic
approaches are sensitive (26), but the latter methods
suffer from limitations due to the finite size of the
data sets used. We consider two second-order meth-
ods here: the normalized wavelet cross-correlation
function (NWCCF) and the cross periodogram.

1.4.1. Normalized Wavelet Cross-Correlation
Function

We define the normalized wavelet cross-correla-
tion function A2(T ) as a generalization of the normal-
ized wavelet variance (see Sec. 1.3.2). It is a Haar
wavelet-based version of the correlation function and
is therefore insensitive to linear trends. It can be
readily generalized by using other wavelets and can
thereby be rendered insensitive to polynomial
trends. To compute the normalized wavelet cross-
correlation function at a particular counting time T,
the two spike trains first are divided into contiguous
counting windows T. The number of spikes Z1,n fall-
ing within the nth window is registered for all indices
n corresponding to windows lying entirely within the
first spike-train data set, much as in the procedure
to estimate the Allan factor. This process is repeated
for the second spike train, yielding Z2,n. The differ-
ence between the count numbers in a given window
in the first spike train (Z1,n) and the one after it
(Z1,n+1) is then computed for all n, with a similar
procedure followed for the second spike train. Paral-
leling the definition of the normalized wavelet vari-
ance, the normalized wavelet cross-correlation func-
tion is defined as

A2(T ) [
E{[Z1,n(T ) 2 Z1,n11(T )] [Z2,n(T ) 2 Z2,n11(T )]}

2{E[Z1,n(T )] E [Z2,n(T )]}1/2 .

The normalization has two salutary properties: (1)
it is symmetric in the two spike trains, and (2) when
the same homogeneous Poisson point process is used
for both spike trains the normalized wavelet cross-
correlation function assumes a value of unity for all
counting times T, again in analogy with the Allan
factor. To determine the significance of a particular
value for the normalized wavelet cross-correlation
function, we make use of two surrogate data sets:
a shuffled version of the original data sets (same
interevent intervals but in a random order), and ho-
mogeneous Poisson point processes with the same
mean rate. Comparison between the value of the nor-
malized wavelet cross-correlation function obtained
from the data at a particular counting time T, on the
one hand, and from the surrogates at that time T,
on the other hand, indicates the significance of that
particular value.

1.4.2. Cross Periodogram

The cross periodogram (27) is a generalization of
the periodogram for individual spike trains (see Sec-
tion 1.3.3), in much the same manner as the normal-
ized wavelet cross-correlation function derives from
the normalized wavelet variance. Two data sets are
divided into contiguous segments of equal length 7,
with discrete-index sequences {W1,m} and {W2,m}
formed by further dividing each segment of both data
sets into M equal bins, and then counting the number
of events within each bin. With the M-point discrete
Fourier transform of the sequence {W1,m} denoted by
W̃1( f ) (and similarly for the second sequence), we
define the segment cross periodograms as

S2,W( f ) [
1

2M
[W̃*1 ( f )W̃2( f ) 1 W̃1( f )W̃*2 ( f )]

5
1
M

Re [W̃*1 ( f )W̃2( f )] ,

where * represents complex conjugation and Re(?)
represents the real part of the argument. As with
the ordinary periodogram, all of the segment cross



LOWEN ET AL.384
periodograms are averaged together to form the final
averaged cross periodogram, S2( f ), and the result
can be smoothed. This form is chosen to be symmetric
in the two spike trains and to yield a real (although
possibly negative) result. In the case of independent
spike trains, the expected value of the cross periodo-
gram is zero. We again employ the same two surro-
gate data sets (shuffled and Poisson) to provide sig-
nificance information about cross periodogram
values for actual data sets.

The cross periodogram and normalized wavelet
cross-correlation function will have different immu-
nity to nonstationarities and will exhibit different
bias–variance trade-offs, much as their single-di-
mensional counterparts do (11).
2. RESULTS FOR RGC AND LGN ACTION-
POTENTIAL SEQUENCES

We have carried out a series of experiments to
determine the statistical characteristics of the dark,
maintained, and driven neural discharge in cat RGCs
and LGN cells. Using the analysis techniques pre-
sented in Section 1, we compare and contrast the
neural activity for these three different stimulus mo-
dalities, devoting particular attention to their fractal
features. The results we present all derive from on-
center X-type cells.

2.1. Experimental Methods

The experimental methods are similar to those
used by Kaplan and Shapley (28) and Teich et al. (6).
Experiments were carried out on adult cats. Anesthe-
sia was induced by intramuscular injection of xylaz-
ine (Rompun 2 mg/kg), followed 10 min later by intra-
muscular injection of ketamine HCl (Ketaset 10 mg/
kg). Anesthesia was maintained during surgery with
intravenous injections of thiamylal (Surital 2.5%) or
thiopental (Pentothal 2.5%). During recording, anes-
thesia was maintained with Pentothal (2.5%, 2–6
(mg/kg)/h). The local anesthetic Novocain was ad-
ministered, as required, during the surgical proce-
dures. Penicillin (750,000 units intramuscular) was
also administered to prevent infection, as was dexa-
methasone (Decadron, 6 mg intravenous) to forestall
cerebral edema. Muscular paralysis was induced and
maintained with gallium triethiodide (Flaxedil, 5–15
(mg/kg)/h) or vecuronium bromide (Norcuron, 0.25
(mg/kg)/h). Infusions of Ringer’s saline with 5% dex-
trose at 3–4 (ml/kg)/h were also administered.

The two femoral veins and a femoral artery were
cannulated for intravenous drug infusions. Heart
rate and blood pressure, along with expired CO2,
were continuously monitored and maintained in
physiological ranges. For male cats, the bladder was
also cannulated to monitor fluid outflow. Core body
temperature was maintained at 37.58C throughout
the experiment by wrapping the animal’s torso in a
dc heating pad controlled by feedback from a sub-
scapular temperature probe. The cat’s head was fixed
in a stereotaxic apparatus. The trachea was cannu-
lated to allow for artificial respiration. To minimize
respiratory artifacts, the animal’s body was sus-
pended from a vertebral clamp and a pneumothorax
was performed when needed.

Eyedrops of 10% phenylephrine hydrochloride
(Neo-synephrine) and 1% atropine were applied to
dilate the pupils and retract the nictitating mem-
branes. Gas-permeable hard contact lenses protected
the corneas from drying. Artificial pupils of 3-mm
diameter were placed in front of the contact lenses
to maintain fixed retinal illumination. The optical
quality of the animal’s eyes was regularly examined
by ophthalmoscopy. The optic discs were mapped
onto a tangent screen, by back-projection, for use as
a positional reference. The animal viewed a CRT
screen (Tektronix 608, 270 frames/s; or CONRAC,
135 frames/s) that, depending on the stimulus condi-
tion, was either dark, uniformly illuminated with a
fixed luminance level, or displayed a moving grating.

A craniotomy was performed over the LGN (center
located 6.5 mm anterior to the earbars and 9 mm
lateral to the midline of the skull), and the dura
mater was resected. A tungsten-in-glass microelec-
trode (5–10 mm in tip length) (29) was lowered until
spikes from a single LGN neuron were isolated. The
microelectrode simultaneously recorded RGC activ-
ity, in the form of S potentials, and LGN spikes,
with a timing accuracy of 0.1 ms. The output was
amplified and monitored using conventional tech-
niques. A cell was classified as Y-type if it exhibited
strong frequency doubling in response to contrast-
reversing high-spatial-frequency gratings, and X-
type otherwise (30, 31).

The experimental protocol was approved by the
Animal Care and Use Committee of Rockefeller Uni-
versity, and was in accord with the National Insti-
tutes of Health guidelines for the use of higher mam-
mals in neuroscience experiments.
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2.2. RGC and LGN Dark Discharge

Results for simultaneously recorded RGC and tar-
get LGN spike trains of 4000-s duration are pre-
sented in Fig. 3, when the retina is thoroughly
adapted to the dark (this is referred to as the “dark
discharge”). The normalized rate functions (A) for
both the RGC (solid curve) and LGN (dashed curve)
recordings exhibit large fluctuations over the course
of the recording; each window corresponds to a count-
ing time of T 5 100 s. Such large, slow fluctuations
often indicate fractal rates (6, 11). The two recordings
bear a substantial resemblance to each other, sug-
gesting that the fractal components of the rate fluctu-
ations either have a common origin or pass from one
of the cells to the other.

The normalized interevent-interval histogram (B)
of the RGC data follows a straight-line trend on a
semilogarithmic plot, indicating that the interevent-
interval probability density function is close to an
exponential form. The LGN data, however, yield a
nonmonotonic (bimodal) interevent-interval histo-
gram. This distribution favors longer and shorter
FIG. 3. Statistical measures of the dark discharge from a cat on-center X-type retinal ganglion cell (RGC) and its associated lateral
geniculate nucleus (LGN) cell, for data of duration L 5 4000 s. RGC results appear as solid curves, whereas LGN results are dashed.
(A) Normalized rate function constructed by counting the number of neural spikes occurring in adjacent 100-s counting windows,
and then dividing by 100 s and by the average rate. (B) Normalized interevent-interval histogram (IIH) versus normalized interevent
interval constructed by dividing the interevent intervals for each spike train by the mean, and then obtaining the histogram. (C)
Normalized range of sums R(k) versus number of interevent intervals k (see Section 1.2.2). (D) Periodogram S( f ) versus frequency
f (see Section 1.3.3) (E) Normalized wavelet variance (Allan factor) A(T ) versus counting time T (see Section 1.3.2).
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intervals at the expense of those near half the mean
interval, reflecting clustering in the event occur-
rences over the short term. Various kinds of unusual
clustering behavior have been previously observed
in LGN discharges (2, 32).

R/S plots (C) for both the RGC and LGN recordings
follow the k0.5 line for sums less than 1000 intervals,
but rise sharply thereafter in a roughly power law
fashion as kHR 5 k(aR11)/2, suggesting that the neural
firing pattern exhibits fractal activity for times
greater than about 1000 intervals (about 120 s for
these two recordings).

Both smoothed periodograms (D) decay with fre-
quency as f 2aS for small frequencies, and the Allan
factors (E ) increases with times as TaA for large
counting times, confirming the fractal behavior. The
0.3-Hz component evident in the periodograms of
both recordings is an artifact of the artificial respira-
tion; it does not affect the fractal analysis. As shown
in Table 1, the fractal exponents calculated from the
various measures bear rough similarity to each other,
as expected (11); further, the onset times also agree
reasonably well, being in the neighborhood of 100 s.
The coherence among these statistics leaves little
doubt that these RGC and LGN recordings exhibit
fractal features with estimated fractal exponents of
1.9 6 0.1 and 1.8 6 0.1 (mean 6 SD of the three
estimated exponents), respectively. Moreover, the
close numerical agreement of the RGC and LGN esti-
mated fractal exponents suggests a close connection
between the fractal activity in the two spike trains
under dark conditions (6). Curves such as those pre-
sented in Fig. 3 are readily simulated by using a
fractal-rate stochastic point process, as described
in (6).

With the exception of the interevent-interval dis-
tribution, it is apparent from Fig. 3 that the statisti-
cal properties of the dark discharges generated by
the RGC and its target LGN cell prove to be remark-
ably similar.

2.3. RGC and LGN Maintained Discharge

Figure 4 presents analogous statistical results for
simultaneously recorded maintained-discharge RGC
and target-LGN spike trains of 7000-s duration when
the stimulus presented by the CRT screen was a 50
cd/m2 uniform luminance. The cell pair from which
these recordings were obtained is different from the
pair whose statistics are shown in Fig. 3. As is evi-
dent from Table 1, the imposition of a stimulus in-
creases the RGC firing rate, though not that of the
LGN. In contrast to the results for the dark dis-
charge, the RGC and LGN action-potential se-
quences differ from each other in significant ways
under maintained-discharge conditions. We pre-
viously investigated some of these statistical mea-
sures and their roles in revealing fractal features,
for the maintained discharge (6).

The rate fluctuations (A) of the RGC and the LGN
no longer resemble each other. At these counting
times, the normalized RGC rate fluctuations are sup-
pressed, whereas those of the LGN are enhanced,
relative to the dark discharge shown in Fig. 3. Sig-
nificant long-duration fluctuations are apparently
imparted to the RGC S-potential sequence at the
LGN, through the process of selective clustered pas-
sage (26). Spike clustering is also imparted at the
LGN over short time scales; the RGC maintained
discharge exhibits a coefficient of variation (CV)
much less than unity, whereas that of the LGN sig-
nificantly exceeds unity (see Table 1).

The normalized interevent-interval histogram (B)
TABLE 1

Neural-Discharge Statistics for Cat Retinal Ganglion
Cells (RGCs) and Their Associated Lateral

Geniculate Nucleus (LGN) Cellsa

Moment Fractal exponent

Mean
Stimulus Cell (ms) CV aR aS aA

Dark RGC 112 1.54 1.71 1.89 1.96
LGN 152 1.62 1.66 1.75 1.85

Maintained RGC 32 0.52 0.53 0.58 0.99
LGN 284 1.63 0.89 2.01 1.41

Driven RGC 27 1.21 0.79 0.54 0.74
LGN 77 1.15 1.35 2.10 1.76

a Under three stimulus conditions: dark discharge in the
absence of stimulation (data duration L 5 4000 s); maintained
discharge in response to a uniform luminance of 50 cd/m2 (data
duration L 5 7000 s); and driven discharge in response to a drifting
grating (4.2 Hz frequency, 40% contrast, and 50 cd/m2 mean lumi-
nance; data duration L 5 7000 s). All cells are on-center X type.
The maintained and driven data sets were recorded from the same
RGC/LGN cell pair, whereas the dark discharge derived from a
different cell pair. Statistics, from left to right, are mean interevent
interval, interevent-interval coefficient of variation (CV 5 SD
divided by mean), and fractal exponents estimated by least-
squares fits on doubly logarithmic plots of (1) the rescaled range
(R/S) statistic for k . 1000, which yields an estimate of the Hurst
exponent, HR, and of aR, in turn, through the relation aR 5 2HR

2 1; (2) the count-based periodogram for frequencies between
0.001 and 0.01 Hz, which yields aS; and (3) the Allan factor for
counting times between L/100 and L/10, where L is the duration
of the recording, which yields aA.
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of the RGC data resembles that of a dead-time-modi-
fied Poisson point process (fit not shown), consistent
with the presence of relative refractoriness which
becomes more important at higher rates (9). Dead-
time effects in the LGN are secondary to the cluster-
ing that it imparts to the RGC S-potentials, in part
because of its lower rate.

The R/S (C), periodogram (D), and Allan factor
(E ) plots yield results that are consistent with, but
different from, those revealed by the dark discharge
shown in Fig. 3. Although both the RGC and LGN
recordings exhibit evidence of fractal behavior, the
two spike trains now behave quite differently in the
presence of a steady-luminance stimulus. For the
RGC recording, all three measures are consistent
with a fractal onset time of about 1 s and a relatively
small fractal exponent (0.7 6 0.3). For the LGN, the
fractal behavior again appears in all three statistics,
but begins at a larger onset time (roughly 20 s) and
exhibits a larger fractal exponent (1.4 6 0.6). Again,
all measures presented in Fig. 4 are well described
by a pair of fractal-rate stochastic point processes (6).

2.4. RGC and LGN Driven Discharge

Figure 5 presents these same statistical measures
for simultaneously recorded 7000-s-duration RGC
and LGN spike trains in response to a sinusoidal
stimulus (drifting grating) at 4.2-Hz frequency, 40%
contrast, and 50 cd/m2 mean luminance. The RGC/
FIG. 4. Statistical measures of the maintained discharge from a cat on-center X-type RGC and its associated LGN cell, at a steady
luminance of 50 cd/m2, for data of duration L 5 7000 s. This cell pair is different from that illustrated in Fig. 3. The results for the
RGC discharge appear as solid curves, whereas those for the LGN are presented as dashed curves. (A)–(E) as in Fig. 3.
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LGN cell pair from which these recording were ob-
tained is the same as the pair illustrated in Fig.4.
The results for this stimulus resemble those for the
maintained discharge, but with added sinusoidal
components associated with the restricted phases of
the stimulus during which action potentials occur.
Using terminology from auditory neurophysiology,
these spikes are said to be “phase locked” to the
periodicity provided by the drifting-grating stimulus.
The firing rate is greater than that observed with a
steady-luminance stimulus, particularly for the LGN

(see Table 1).

presented as dashed curves. (A)–(E) as in Figs. 3 and 4.
Again, the RGC and LGN spike trains exhibit dif-
ferent behavior. The rate fluctuations (A) of the LGN
still exceed those of the RGC, but not to as great an
extent as in Fig. 4. Both action-potential sequences
exhibit normalized interevent-interval histograms
(B) with multiple maxima, but the form of the histo-
gram is now dominated by the modulation imposed
by the oscillatory stimulus.

Over long times and small frequencies, the R/S
(C), periodogram (D), and Allan factor (E ) plots again
yield results in rough agreement with each other and

also with the results presented in Fig. 4. The most
FIG. 5. Statistical measures of the driven discharge from a cat on-center X-type RGC and its associated LGN cell, for a drifting-
grating stimulus with mean luminance 50 cd/m2, 4.2-Hz frequency, and 40% contrast, for data of duration L 5 7000 s. This cell pair
is the same as that illustrated in Fig. 4. The results for the RGC discharge appear as solid curves, whereas those for the LGN are
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obvious differences arise from the phase locking in-
duced by the sinusoidal stimulus, which appears di-
rectly in the periodogram as a large spike at 4.2
Hz, and in the Allan factor as local minima near
multiples of (4.2 Hz)21 5 0.24 s.

The RGC results prove consistent with a fractal
onset time of about 3 s and a relatively small fractal
exponent (0.7 6 0.1), whereas for the LGN the onset
time is about 20 s and the fractal exponent is 1.7 6
0.4. For both spike trains fractal behavior persists
in the presence of the oscillatory stimulus, though
its magnitude is slightly attenuated.

2.5. Correlation in the Discharges of Pairs of RGCs
and LGN Cells

We previously examined information exchange
among pairs of RGC and LGN spike trains using
information-theoretic measures (26). While these ap-
proaches are very general, finite data length renders
them incapable of revealing relationships between
spike trains over time scales longer than about 1 s.
We now proceed to investigate various RGC and LGN
spike-train pairs in terms of the correlation mea-
sures for pairs of point processes developed in Sec.
1.4.

Pairs of RGC discharges are only weakly correlated
over long counting times. This is readily illustrated
in terms of normalized rate functions such as those
presented in Fig. 6A, in which the rate functions of
two RGCs are computed over a counting time T 5
100 s. Calculation of the correlation coefficient (r 5
10.27) shows that the fluctuations are only mildly
correlated.

Unexpectedly, however, significant correlation
turns out to be present in pairs of LGN discharges
over long counting times. This is evident in Fig. 6B,
where the correlation coefficient r 5 10.98 ( p ,
10216) for the rates of two LGN discharges computed
over the same counting time T 5 100 s.

For shorter counting times, there is little cross-
correlation for pairs of RGC or of LGN spike trains
(not shown). However, strong correlations are pres-
ent in the spike rates of an RGC and its target LGN
cell as long as the rate is computed over times shorter
than 15 s for this particular cell pair.

The cross-correlation can be quantified at all time
and frequency scales by the normalized wavelet
cross-correlation function (see Section 1.4.1) and the
cross periodogram (see Section 1.4.2), respectively.
Figure 6C shows the normalized wavelet cross-corre-
lation function, as a function of the duration of the
counting window, between an RGC/LGN spike-train
pair recorded under maintained-discharge condi-
tions, as well as for two surrogate data sets (shuffled
and Poisson). For this spike-train pair, it is evident
that significant correlation exists over time scales
less that 15 s. The constant magnitude of the normal-
ized wavelet cross-correlation function for T , 15 s
is likely associated with the selective transmission
properties of the LGN (26). Figure 6D presents the
normalized wavelet cross-correlation function for the
same RGC/LGN spike-train pair shown in Fig. 6C
(solid curve), together with that between two RGC
action-potential sequences (long-dashed curve), and
between their two associated LGN spike trains
(short-dashed curve). Also shown is a dotted line rep-
resenting the aggregate behavior of the normalized
wavelet cross-correlation function absolute magni-
tude for all surrogate data sets, which resemble
each other.

While the two RGC spike trains exhibit a normal-
ized wavelet cross-correlation function value that re-
mains below 7, the two LGN action-potential se-
quences yield a curve that steadily grows with
increasing counting window T, attaining a value in
excess of 1000. Indeed, a logarithmic scale was cho-
sen for the ordinate to facilitate the display of this
wide range of values. It is of interest to note that the
LGN/LGN curve begins its steep ascent just as the
RGC/LGN curve abruptly descends. Further, the nor-
malized wavelet cross-correlation function between
the two LGN recordings closely follows a power law
form, indicating that the two LGN action-potential
rates are cofractal. One possible origin of this phe-
nomenon is a fractal form of correlated modulation
of the random-transmission processes in the LGN
that results in the two LGN spike trains. Some evi-
dence exists that global modulation of the LGN might
originate in the parabrachial nucleus of the brain
stem; the results presented here are consistent with
such a conclusion.

Analogous results for the cross-periodograms,
which are shown in Figs. 6E and 6F, provide results
that corroborate, but are not as definitive as, those
obtained with the normalized wavelet cross-correla-
tion function.

The behavior of the normalized wavelet cross-cor-
relation functions for pairs of driven spike trains,
shown in Fig. 7, closely follow those for pairs of main-
tained discharges, shown in Fig. 6, except for the
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FIG. 6. Statistical measures of the maintained discharge from pairs of cat on-center X-type RGCs and their associated LGN cells,
stimulated by a uniform luminance of 50 cd/m2, for data of duration L 5 7000 s. RGC and LGN spike trains denoted “1” are those
that have been presented in Figs. 4 and 5, while those denoted “0” are another simultaneously recorded pair. (A) Normalized rate
functions constructed by counting the number of neural spikes occurring in adjacent 100-s counting windows, and then dividing by
100 s and by the average rate, for RGC 1 and RGC 0. Note that the ordinate scale differs from that in Figs. 4A and 5A. (B) Normalized
rate functions for the two corresponding target LGN cells, LGN 1 and LGN 0. (C) Normalized wavelet cross-correlation function
(NWCCF) between the RGC 1 and LGN 1 recordings (solid curve), shuffled surrogates of these two data sets (long-dashed curve),
and Poisson surrogates (short-dashed curve). Unlike the Allan factor A(T ), the normalized wavelet cross-correlation function can
assume negative values and need not approach unity in certain limits. Negative normalized wavelet cross-correlation function values

for the data or the surrogates are not printed on this doubly logarithmic plot, nor are they printed in (D). Comparison between the
value of the normalized wavelet cross-correlation function obtained from the data at a particular counting time T, on the one hand,
and from the surrogates at that time T, on the other hand, indicates the significance of that particular value. (D) Normalized wavelet
cross-correlation functions between RGC 1 and LGN 1 (solid curve, repeated from (C)), the two RGC spike trains (long-dashed curve),
and the two LGN spike trains (short-dashed curve). Also included is the aggregate behavior of both types of surrogates for all three
combinations of recordings listed above (dotted line). (E) Cross periodograms of the data sets displayed in (C). (F) Cross periodograms
of the data sets displayed in (D).



FRACTAL FEATURES OF VISUAL-SYSTEM ACTION POTENTIALS 391
presence of structure at the stimulus period imposed

by the drifting grating.
3. DISCUSSION

The presence of a stimulus alters the manner in
which spike trains in the visual system exhibit frac-
tal behavior. In the absence of a stimulus, RGC and
LGN dark discharges display similar fractal activity
(see Fig. 3). The normalized rate functions of the two

recordings, when computed for long counting times,
follow similar paths. The R/S, Allan factor, and peri-
odogram quantify this relationship, and these three
measures yield values of the fractal exponents for
the two spike trains that correspond reasonably well
(see Table 1). The normalized interevent-interval his-
togram, a measure that operates only over relatively
short time scales, shows a significant difference be-
tween the RGC and LGN responses. Such short-time
behavior, however, does not affect the fractal activity,
which manifests itself largely over longer time scales.

The presence of a stimulus, either a constant lumi-

nance (Fig. 4) or a drifting grating (Fig. 5), causes
FIG. 7. Statistical measures of the driven discharge from pairs of cat on-center X-type RGCs and their associated LGN cells,
stimulated by a drifting grating with a mean luminance of 50 cd/m2, 4.2-Hz frequency, and 40% contrast, for data of duration L 5
7000 s. RGC and LGN spike trains denoted “1” are recorded from the same cell pair that have been presented in Figs. 4–6, while
those denoted “0” are recorded simultaneously from the other cell pair, which was presented in Fig. 6 only. (A)–(F) as in Fig. 6.
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the close linkage between the statistical character of
the RGC and LGN discharges over long times to
dissipate. The normalized rate functions of the LGN
spike trains display large fluctuations about their
mean, especially for the maintained discharge, while
the RGC rate functions exhibit much smaller fluctua-
tions that are minimally correlated with those of the
LGN. Again, the R/S, Allan factor, and periodogram
quantify this difference, indicating that fractal activ-
ity in the RGC consistently exhibits a smaller fractal
exponent (see also Table 1) and also a smaller fractal
onset time (higher onset frequency). Both the R/S
and Allan factor measures indicate that the LGN
exhibits more fluctuations than the RGC at all scales;
the periodogram does less so, apparently because it
is the only one of the three constructed without nor-
malization.

In the driven case (Fig. 5), the oscillatory nature
of the stimulus phase-locks the RGC and LGN spike
trains to each other at shorter time scales. The
periodogram displays a peak at 4.2 Hz, and the
Allan factor exhibits minima at multiples of (4.2
Hz)21 5 0.24 s, for both action-potential sequences.
The normalized interevent-interval histogram also
suggests a relationship between the two recordings
mediated by the time-varying stimulus; both RGC
and LGN histograms achieve a number of maxima.
Although obscured by the normalization, the peaks
do indeed coincide for an unnormalized plot (not
shown).

In the presence of a stimulus, RGCs are not corre-
lated with their target LGN cells over the long time
scales at which fractal behavior becomes most im-
portant, but significant correlation does exist be-
tween pairs of LGN spike trains for both the main-
tained and driven discharges (see Figs. 6 and 7,
respectively). These pairs of LGN discharges, ex-
hibiting linked fractal behavior, may be called co-
fractal. The normalized wavelet cross-correlation
function and cross periodogram plots between RGC
1 and LGN 1 remain significantly above the surro-
gates for small times (Figs. 6C and 6E). The results
for the two RGCs suggest some degree of cofractal
behavior, but no significant correlation over short
time scales for the maintained discharge (Figs. 6D
and 6F). Since the two corresponding RGC spike
trains do not appear cofractal nearly to the degree
shown by the LGN recordings, the cofractal compo-
nent must be imparted at the LGN itself. This sug-
gests that the LGN discharges may experience a
common fractal modulation, perhaps provided from
the parabrachial nucleus in the brain stem, which
engenders cofractal behavior in the LGN spike
trains. Although similar data for the dark discharge
are not available, the tight linkage between RGC
and LGN firing patterns in that case (Fig. 3) sug-
gests that overall fractal modulation may not be
present in the absence of a stimulus and, therefore,
that discharges from nearby LGN cells would in fact
not be cofractal; this remains to be experimentally
demonstrated. Correlations in the spike trains of
relatively distant pairs of cat LGN cells have been
previously observed in the short term for drifting-
grating stimuli (33); these correlations have been
ascribed to low-threshold calcium channels and
dual excitatory/inhibitory action in the corticogeni-
culate pathway (34).

In the context of information transmission, the
LGN may modulate the fractal character of the
spike trains according to the nature of the stimulus
present. Under dark conditions, with no signal to
be transmitted, the LGN appears to pass the fractal
character of the individual RGCs on to more central
stages of visual processing, which could serve to
keep them alert and responsive to all possible input
time scales. If, as appears to be the case, the re-
sponses from different RGCs do not exhibit signifi-
cant correlation with each other, then the LGN
spike trains also will not, and the ensemble aver-
age, comprising a collection of LGN spike trains,
will display only small fluctuations. In the presence
of a constant stimulus, however, the LGN spike
trains develop significant degrees of cofractal be-
havior, so that the ensemble average will exhibit
large fluctuations (20). Such correlated fractal be-
havior might serve to indicate the presence of a
stimulus at the visual input, while still maintaining
fluctuations over all time scales to ready neurons
at later stages of visual processing for any stimulus
changes that might arrive. Finally, a similar behav-
ior obtains for a drifting-grating stimulus, but with
somewhat reduced fractal fluctuations; perhaps the
stimulus itself, though fairly simple, serves to keep
more central processing stages alert.

3.1. Prevalence and Significance of Fractal and
Cofractal Behavior

Fractal behavior is present in all 50 of the RGC
and LGN neural spike-train pairs that we have ex-
amined, under dark, maintained-discharge, and
drifting-grating stimulus conditions, provided they
are of sufficient length to manifest this behavior.

Indeed, fractal behavior is ubiquitous in sensory
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systems. Its presence has been observed in cat stri-
ate-cortex neural spike trains (35) and in the spike
train of a locust visual interneuron, the descending
contralateral movement detector (36). It is present
in the auditory system (37) of a number of species;
primary auditory (VIII nerve) nerve fibers in the
cat (19, 38), chinchilla, and chicken (39) all exhibit
fractal behavior. It is exhibited at many biological
levels, from the microscopic to the macroscopic; ex-
amples include ion-channel behavior (40–43), neu-
rotransmitter exocytosis at the synapse (44), and
spike trains in rabbit somatosensory cortex neu-
rons (45) and mesencephalic reticular formation
neurons (46). In almost all cases, the upper limit
of the observed time over which fractal correlations
exist is imposed by the duration of the recording
itself.

The significance of the fractal behavior is not
fully understood. Its presence may serve as a stimu-
lus to keep more central stages of the sensory sys-
tem alert and responsive to all possible time scales,
awaiting the arrival of a time-varying stimulus
whose time scale is a priori unknown. It is also
possible that fractal activity in spike trains pro-
vides an advantage in terms of matching the detec-
tion system to the expected signal (37) since natural
scenes have fractal spatial and temporal noise
(47, 48).
4. CONCLUSION

Using a variety of statistical measures, we have
shown that fractal activity in LGN spike trains re-
mains closely correlated with that of their exciting
RGC action-potential sequences under dark condi-
tions, but not with stimuli present. The presence of
a visual stimulus serves to increase long-duration
fluctuations in LGN spike trains in a coordinated
fashion, so that pairs of LGN spike trains exhibit
cofractal behavior largely uncorrelated with activity
in their associated RGCs. Such large correlations are
not present in pairs of RGC spike trains. A drifting-
grating stimulus yields similar results, but with frac-
tal activity in both recordings somewhat suppressed.
Cofractal behavior in LGN discharges under con-
stant-luminance and drifting-grating stimulus con-
ditions suggests that a common fractal modulation
may be imparted at the LGN in the presence of a
visual stimulus.
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