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We consider second-harmonic generation (SHG) and third-harmonic generation (THG) in a nonlinear optical
crystal illuminated by a vector Gaussian beam, i.e., a Gaussian beam in which the axial component of the
excitation field is considered. This component exhibits twice the Gouy phase shift of the transverse component
and vanishes at points on the beam axis. Harmonic generation stemming from this component exhibits a
unique dependence on geometrical factors associated with the location and focusing of the beam relative to the
location of the crystal. Using the first Born approximation (undepleted fundamental beam), we derive analyti-
cal formulas for the quantities that characterize these geometrical factors for a nonlinear optical crystal de-
scribed by an arbitrary nonlinear susceptibility tensor, for both SHG and THG and for all polarization compo-
nents. We also determine the efficiencies of these processes as functions of the geometry of the experimental
arrangement for phase-matched crystals as well as for crystals of infinite length. © 2006 Optical Society of

America
OCIS codes: 190.2620, 190.4410.

1. INTRODUCTION

Calculations involving harmonic generation in second-
and third-order nonlinear optical media generally assume
that the wave at the fundamental excitation frequency is
a Gaussian beam in the TEM(0,0) mode.'® Under these
conditions, analytical expressions for the efficiencies of
second-harmonic generation (SHG) and third-harmonic
generation (THG) are well known; the optimal placement
of the beam center within the nonlinear crystal has been
determined, as has the optimal ratio of the depth of focus
to the crystal length (see, for example, Ref. 6). Since har-
monic generation is a coherent process, the on-axis phase
of the Gaussian beam (the Gouy phase’®) plays an impor-
tant role in the efficiency of harmonic generation. Indeed,
this phase can lead to a significant reduction in the effi-
ciency of THG as a result of destructive interference be-
tween third-harmonic waves generated at opposite sides
of the beam waist in the nonlinear crystal. Studies in im-
aging and microscopy systems that make use of SHG™ 1
and THG'®'7 have created renewed interest in the opti-
mization of harmonic generation, and numerical tech-
niques have been used to model this process.18’19

In previous analytical studies of harmonic generation,
the fundamental Gaussian beam has always been as-
sumed to be scalar in nature, implying that the polariza-
tion is uniform across the beam. This assumption is
clearly an approximation since it is inconsistent with the
curvature of the beam wavefront. Since the local polariza-
tion must be orthogonal to the local direction of the wave
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vector, at off-axis positions the polarization must have an
axial component, i.e., a component parallel to the beam
axis. Since the wavefront curvature is maximal at a Ray-
leigh distance from the beam center, the axial component
of the field is largest in this vicinity. Because this region
of the beam contributes strongly to harmonic generation,
the role that the axial component of the field plays in har-
monic generation is worthy of consideration. A recent nu-
merical study of SHG microscopy19 has shown that the
axial field component plays a significant role in SHG from
materials with certain susceptibility tensors, and it was
noted that this component can be responsible for the gen-
eration of radially polarized light with linearly polarized
excitation.

In this paper we consider SHG and THG when the ex-
citation is a vector Gaussian beam, i.e., a Gaussian beam
for which the axial component of the field is taken into
account.?’ The axial component exhibits twice the Gouy
shift of the orthogonal component and vanishes at points
on the beam axis. Harmonic generation stemming from
the axial component of the excitation field therefore ex-
hibits a unique dependence on geometrical factors that
characterize the location and focusing of the beam rela-
tive to the nonlinear crystal. We derive analytical formu-
las for factors that describe the dependence of the effi-
ciency of SHG and THG on the geometry for all
polarization components, for crystals characterized by an
arbitrary nonlinear susceptibility tensor.?! As a caveat,
we point out that our model for the vector Gaussian beam
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is strictly valid only in the paraxial approximation. Our
approach is therefore not applicable for highly focused
beams, but it nevertheless provides analytical results
that are qualitatively correct in that case and therefore
serve to elucidate the roles played by various geometrical
factors in harmonic generation efficiencies for different
polarization components.

2. VECTOR GAUSSIAN BEAM

The scalar Gaussian beam has a complex amplitude21:

Jzo . P2 .
G(p,z,k) = —— exp| —jk——— |exp(- jkz), (1)
2(z +Jjz¢)

zZ+jzg

where p=\x?+y? (x and y are coordinates transverse to
the beam axis), k=nw/c is the wavenumber at angular
frequency w, and n is the refractive index of the medium,;
zo= Trnt/ \ is the Rayleigh range, W, is the beam width,
and A=27c/w is the wavelength in free space. In this ex-
pression, the amplitude at the beam center (z=p=0) is
taken to be unity. The vector field associated with this
Gaussian beam has a complex amplitude

ax+ Py
z|, (2

E(w)(P,Z) = G(Paz,k) - Cl/f( - By + .
zZ+Jjzg

where « and B are complex parameters that determine
the polarization state and the careted quantities are unit
vectors. The transverse and axial components of this field
are thus related to the scalar Gaussian function G(p,z,k)
by

E;): - Q’G(P,Z,k),
E;/U= - ﬁG(p’Z’k)7

ax + By
E?=G(p,z,k) —. 3)
zZ+jzo

It is clear that the transverse components are scalar
Gaussian beams. However, the axial component, which
was ignored in prior studies of harmonic generation with
Gaussian beams, is a weighted superposition of Hermite—
Gaussian modes of order (1,0) and (0,1). If @ and B have
equal phases, then E; and E;’ constitute a linearly polar-
ized wave and E} is a Hermite—Gaussian mode of order
(1,0) with its nodal axis along the direction of the in-plane
polarization vector. In general, E has a transverse distri-
bution with odd symmetry, i.e., EY(-x,-y)=-E;(x,y), and
vanishes at points on the beam axis (x=y=0).

The ratio of the peak magnitudes of the axial and the
transverse components is proportional to the beam diver-
gence angle 6y=W,/z,. For example, for a linearly polar-
ized beam with a=1 and B8=0, the transverse component
has a peak magnitude equal to G, at x=y=0, where G,
=1/y1+(2/z0)%. The axial component has a peak magni-
tude equal to 0.436yG, at x=W(z)/\s“§ and y=0, where
W(z)=Wy\1+(z/2¢)? is the beam width at a distance z
from the beam center. This magnitude is a factor of 0.436,
smaller than the peak magnitude of the transverse com-
ponent, which was assumed to be unity.
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The axial component has a Gouy phase of 2 tan~1(z/z,),
which is twice that of the ordinary Gaussian beam.?! It is
therefore expected that the dependence of the efficiency of
SHG and THG created by the axial component will differ
from those associated with the orthogonal Gaussian com-
ponents.

3. SECOND- AND THIRD-HARMONIC
GENERATION

We now consider the propagation of the vector Gaussian
beam through a nonlinear crystal of length L with arbi-
trary second-and third-order nonlinear susceptibility ten-
sors. Two geometrical configurations are considered: In
the first, the crystal is placed at the beam center, so that
it extends between the planes z=-L/2 and z=+L/2, as il-
lustrated in Fig. 1(a). In the second configuration, the
edge of the crystal is placed at the beam center, so that
the crystal extends from z=0 to z=L, as illustrated in Fig.
1(b). The extent of the crystal in the lateral plane is as-
sumed to be much greater than the beam width so that
the crystal may be assumed to be infinite in the trans-
verse direction. In both cases, we shall see that the ratio
&=L/2z is a key geometrical parameter that governs the
efficiencies of harmonic generation.

We now use a first Born approximation (undepleted
fundamental beam) to derive expressions for the various
polarization components of the generated second- and
third-harmonic beams.??

For a crystal with second- and third-order nonlinear
tensors defined by dgk) and Xﬁfk)l, respectively, the funda-
mental Gaussian beam generates polarization densities
given by

PP =Y dRESEy, ijk=xy.z, (4a)
Jjk

PP = XS EELE?, ijkl=xyz, (4b)
Jkl

respectively, where both dgk) and ng)l tensors are invari-

ant to any permutation of their indices. These polariza-

tion densities, in turn, create sources of radiation at the

second and third harmonic:
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Fig. 1. Geometries for harmonic generation: (a) centered crys-
tal, (b) offset crystal.
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S = - oo’ dHELES, (5a)
jk
S = — p,0® D) X ECELED, (5b)

Jkl
respectively.
For the vector fundamental Gaussian beam, Egs. (5a)
and (5b) reduce to
(2) _ 2r 7(2) (2) (2) (2) (2)
Si7 = = wow [di)S s + diyySyy + diySey + di)S .. + di)S,,

xx iyy ixy 122/ ix2

+d28,.1, (6a)

1yz

3) _ 2r. (3 3) 3) 3
Sf )= - Mo® [Xixo)cxsxxx + Xﬁyyysyyy + ngyysxyy + Xfyg)cxsyxx

3 3 3 3 3
+ Xizz)'zszzz + Xﬁxz)tzsxzz + Xﬁyz)tzsyzz + Xﬁxa)czsxxz + Xﬁyj)/zs yyz

+ XS ayes (6b)
where
S.=EYE’, S, =EYE’, S..=EE’, S, =2E'E’,

S,.=2E’E?, S,.=2E°E?, (7a)
S, =EEJE}, Syyy =E;’E3‘,”E;’, S...=E;EJE?,
Syy=3EYEYEY, S, =3E°E°E®, S,..=3E°E‘E?,
Sy..=3EJECE?, S,..=3EYEYE?, S,,,=3EJEJE?,
S,y.=3EEJE. (7b)

Each of the terms of Eq. (6a) is a source of radiation at the
second harmonic. Likewise, each of the terms of Eq. (6b)
is a source of radiation at the third harmonic.

An example is provided by an isotropic nonlinear me-
dium, where there are only 21 nonzero elements, of which
only three are independent:

3) .8 .8 _ 0B _ B8 . B
X;y)zz - X;z;'y - Xzzxx - Xxxzz - Xxxyy - nyxx? (Sa)

3 3 3 3 3 3
Xobye = Xy = X = e = Xy = Xoer (8D)

3 3 3 3 3 3
Xioky = Xorye = Xiee = Xitee = Xoape = Xymey> -~ (80)

3 3 3 3 3 3
X=X = X = X+ X+ XD (8d)

In this case the third-harmonic sources given by Eq. (6b)
reduce to'?

i 1 1
SL3> =— V“sz)(;ci)xx Spx + ngyy + gsx22:| s (6¢)
(3) 2. (3) i ! !
Sy == Ho® Xyyyy Syyy + gsyxx + gsyzz , (6d)
(3) 2.(3) | ! !
Sz == MW Xzzz2 S, + gSzxx + gSzy . (6e)
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We now determine the spatial distribution of the field
radiated by each of these terms, assuming that the rel-
evant tensor coefficient is unity and ignoring the propor-
tionality factor (—u,»?). The calculated fields must there-
fore be multiplied by this factor and by the appropriate
tensor element for a given crystal. A principal goal is to
illustrate explicitly the dependence of each of these terms
on geometrical factors such as the parameter ¢=L/2z,
and the location of the beam waist (see the configurations
in Fig. 1), rather than determining actual numerical val-
ues of the radiated field.

We proceed by determining each of the radiated har-
monics for each of the sources in Eqs. (6a) and (6b) when
the fundamental field is a vector Gaussian beam. In ac-
cordance with Fresnel diffraction theory, a source S(p’,z")
at frequency mw, with m=2 and 3 for SHG and THG, re-
spectively, located in the plane z’, radiates a field

E(m“’)(x,y,z,Z’)“ho(z—Z’)JJS(x’,y’,Z')

x-x")2+@y-y)?
2(z-2")

Xexp(—jkm )d.x’dy’,

)

where h((z)=(k,,/z)exp(-jk,,2), and k,, is the wavenum-
ber at the mth harmonic. The total radiated field in the z
plane is thus

E™(x,y,z) = J E"x,y,2,2")dz’, (10)

crystal

where the limits of the integral in Eq. (10) depend on the
crystal configuration. Substituting from Egs. (3), (6a), and
(6b) into Egs. (9) and (10), and assuming |Ak|<mk, where
Ak=mk-k,,=mn(w)ky—n(mw)mk, is the wave-vector
mismatch, and n(w) is the refractive index at frequency o,
we obtain the following results for the second and third-
harmonic fields in the two configurations presented in
Fig. 1.

A. Second-Harmonic Beam

The transverse components of the second-harmonic radi-
ated field generated by the transverse components of the
fundamental vector field are Gaussian beams:

EZ o« o9 PG(p,2,ks), (11a)
E2 « B29PG(p,2,ky), (11b)
E% = 2072 G p,2,ks). (11c)

The transverse components of the second-harmonic field
generated by the axial component of the fundamental vec-
tor field are Hermite—Gaussian beams of orders (1,0) and
(0,1):

ax + By

E2 o - 2a79?G(p,2,ke) ——, (12a)
V4 +_]20
ax + By

EZ o - 2897 Glp,z,ky)—— (12b)
z +JZO
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The axial component of the second-harmonic field gen-
erated by the axial component of the fundamental vector
field is

ax + By
EX o G(P,Z,k2)|: 7/(12)<

z+jzg

JZo
(- )|
z +Jz,

where 6y=W/z, is the divergence angle of the fundamen-
tal Gaussian beam. For arbitrary values of a and B, the
first term of Eq. (12¢) may be expressed as a superposition
of Hermite—-Gaussian beams of orders (2,0), (0,2), (1,1),
and (0,0). For a linearly polarized fundamental wave, in a
rotated coordinate system with one axis parallel to the di-
rection of polarization, this term is a superposition of
Hermite—Gaussian beams of orders (2,0) and (0,0). The
second term in Eq. (12¢) is a Gaussian beam modulated
by a z-dependent factor, which includes a term with ex-
cess Gouy phase. This term vanishes when the fundamen-
tal wave is circularly polarized (i.e., 8= +ja, so that o?
+52=0).
In the above expressions, the coefficients

2(2 26(%
—01+,3)Z

(12¢)

—JAkz

_Jf dZ/
z' +JZO

; ’
e —jAkz

29
(2) _ '
=-z dz/———
7 Of (' +j20)2

(13)

are geometrical factors that determine the magnitudes of
the various SHG components, as will be discussed in Sec-

E 1
XX

(a) x

(h) Ry

¥ ¥

Fig. 2.
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tion 4. Here, the limits of the integral in Eqgs. (13) are
(z1=-L/2, z9=L/2) in the centered configuration and (z;
=0, z9=L) in the offset configuration. Note that in the far
field, i.e., 2>z, the term proportional to 77(22)
(12¢) dominates.

The spatial distributions of the optical intensity I?®
=|E2°(p,2)|? for each of the components of the SHG field
are illustrated in Fig. 2(a) for a beam linearly polarized in
the x direction, i.e., =1 and B=0. In this case, the peak
magnitudes of the various components, all occurring at
y=0, are as follows:

in relation

(i) The peak magnitude of E
727G,
(i) The peak magnitude of Ei;"
and equals 0.866, n(lz)Go.
(iii) The peak magnitude of E2 occurs at x=0 and
equals 0.25627G, in the far field (z>z).

occurs at x=0 and equals

occurs at x=W(z)/+2

Since 6,<1 for a paraxial beam, and since the factors
(2) and 7](2) are of the same order of magnitude, as is
shown in Section 4, the peak magnitudes of E2® Ez"’ nd

xx
E?z‘" are of the relative orders of 1, ), and &2, respectlvely.

B. Third-Harmonic Beam

There are ten components of the third-harmonic field. The
transverse third-harmonic components generated by the
transverse components of the fundamental vector field
are Gaussian beams:

3w
Exxx &

- a37](13)G(P,Z;k3): (143)

IE 1
Xz

¥ ¥

(a) Optical intensities of second-harmonic components at z=10z, for an offset crystal with L=2z, i.e., £&=1. The fundamental

wave is assumed to be linearly polarized in the x direction, so that «=1 and B=0. The angle of divergence of the fundamental beam is
6,=67 mrad=3.8°. The xx component is Gaussian, the xz component is Hermite—Gaussian of order (1,0), and the zz component is a su-
perposition of Hermite—Gaussian functions of orders (0,0) and (2,0). (b) Optical intensities of third-harmonic components at z=10z, for an
offset crystal with L=2z, i.e., £&=1. The fundamental wave is assumed to be linearly polarized in the x direction, so that a=1 and B
=0. The angle of divergence of the fundamental beam is 6,=67 mrad=3.8°. The xxx component is Gaussian, the xxz component is
Hermite—Gaussian of order (1,0), and the xzz component is a superposition of Hermite—Gaussian functions of order (0,0) and (2,0). The
zzz component is a sum of Hermite—Gaussian functions of order (1,0) and (3,0).
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E o« - B7YG(p,z,ks), (14b)
B2, o - 3aB*1G(p,2,k3), (14c)
E3 o« - 30*B70'G(p,z,k3). (14d)

The transverse third-harmonic components generated
by combinations of transverse and axial components of
the fundamental vector field are Hermite—Gaussian
beams of order (1,0) and (0,1):

X + By
B3 o 32 D Glp,z,es) , (14e)
z+jzg
ax +
E3 = 382 77'G(p,z,ks) (14f)
z+Jjzo
ax + By
EZ o 3aBnGp,2,ks) (14g)
zZ+]Jjzg

The transverse third-harmonic components generated
by the axial component of the fundamental vector field
are

\ 6%
E2® o« —3aG(p,z,ks)| 7 —(a2+ﬂ )E
% ( 77(23) (3) :| (14h)
z+j2g

yzz

A
R

Jzo .
X < 7 - g —— ) 1 . (14i)
z +.]ZO

The first terms of Eqs. (14h) and (14i) are superpositions
of Hermite—Gaussian beams of orders (2,0), (0,2), (1,1),
and (0,0). The second terms are Gaussian beams modu-
lated by a z-dependent factor.

Finally, the axial third-harmonic component generated
by the axial component of the fundamental vector field is

o &

Ej2, = - 36Glp.z, k3)|: i

+By\° &%
E%2 « G(p,2,ks) 77(13)< . )—(a2+ﬁ2)—
zZ+J2o 2

><<n<23> - nﬁ?’)ﬁ) ( “ +,By) . (14j)

z+jzg z+Jjzg

The first term of Eq. (14j) is a superposition of Hermite—
Gaussian beams of orders (3,0), (0,3), (2,1), (1,2), (1,0),
and (0,1). The second term is a superposition of Hermite—
Gaussian beams of orders (1,0) and (0,1), modulated by a
z-dependent factor.

The magnitudes of these components are determined
by the geometrical factors
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2z e—jAkz’ 29 e—jAkz'
3 ’ 3 -2 ’
77(1)=_20f dz ( ’ . )2’ 77(2)__‘]‘2()[ dz ( ’ . )3'
2 Z2 +]Jjzg 2 Z2 +Jjzg

(15)

Note that in the far field, i.e., 2>z, the terms propor-
tional to 7;(3) in Eqgs. (14h)—(14j) dominate. It is also inter-
esting to note that the THG coefficient 7;( ) is equal to the
SHG coefficient 77 ) so that the axial component of SHG is
governed by the same geometrical factor as that of the
transverse component of THG.

The spatial distributions of the optical intensity I3
=|E3“(p,z)|? for some of the components of the THG field
are illustrated in Fig. 2(b) for a beam linearly polarized in
the x direction, i.e., a=1 and B=0. In this case, the peak
magnitudes of the various components, all occurring at
y=0, are as follows:

(1) The peak magnitude of E>° occurs at x=0 and
equals 77 GO

(ii) The peak magnitude of E3? occurs at x=W(z)/\2,
y=0, and equals 1.296,7 3)G0

(iii) The peak magnitude of Eiz“; occurs at x=0 and
equals 0.5037;(23)G0 in the far field (z>z).

(iv) The component ESZ“; has its peak at x=W(z)/ \5 and

equals 0.23937;(23)G0 in the far field (z>z).

X

The peak magnitudes of E22, E3 E3¢ and E32 ar
therefore of the relative orders of 1, 6, 6%, and 6(3), respec-
tively.

The preceding result may be generalized to the mth
harmonic process. An mth harmonic generation process
involving ¢ axial components and m-{ transverse compo-
nents of the fundamental field generates a field with a
magnitude proportional to 0(1), so that the effect is smaller,
the greater the number ¢. If 6,=0.1, for example, the ef-
fect is reduced by an order of magnitude as ¢ increases by
one. Note, however, that the contributions of each of these
nonlinear processes is also dependent on the nonlinear
optical coefficients associated with the radiation process,
as described by Eqs. (6a) and (6b) for the second- and
third-harmonic generation processes, respectively. Since
the magnitudes of nonlinear coefficients of an anisotropic
crystal may differ by many orders of magnitude, contribu-
tions from terms of greater £ may end up having greater
contributions to the overall process.

4. EFFICIENCY OF HARMONIC
GENERATION

In general, the geometrical factors 7/(1’") and 7](’”) in Egs.
(13) and (15) are

29 - —jAkz'
(m) (]Z ) f dZ, Je
21

@ +jzo)™

29 je—jAkz’
7" = (jzo)™ 1f de' —. (16)
21

(&' +jzo)"

We now evaluate the dependence of these geometrical fac-

tors 7;('") and 77(2'") for SHG (m=2) and THG (m=3) on the
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ratio ¢é=L/2z,. These factors govern the magnitudes of the
various components of SHG and THG. We consider two
special cases: (1) perfect phase matching (i.e., Ak=0) and
(2) a crystal of infinite length.

A. Second-Harmonic Generation

1. Phase-Matched Case
When Ak=0, the integrals in Eqs. (13) may be readily
evaluated. For the centered crystal,

7' =2tan” ¢ gy =

1+& (17

where £=L/2zy. Asymptotic values of these factors in the

limit é>1 are 17(12)=7-r and 1;(22)=2/ ¢, respectively.

For the offset crystal (z;=0, z9=L),

7P =jIn(1-j28, 7= (18)

1-j2¢

and the asymptotic values of these factors in the limit ¢
>1 are 77(12)=j In(1-;2¢) and 7/(22)=j. The dependence of
these efficiencies on ¢ is shown in Fig. 3 for centered and
offset crystals.

2. Effect of Phase Mismatch
The effect of phase mismatch on the different SHG effi-

ciencies may be determined by numerical evaluation of
Eqgs. (13). Figure 4 illustrates the dependence of these ef-
ficiencies on the parameter y=Akz, in the limit of an in-
finite crystal. The following analytical expressions are ob-
tained in this limit in the centered configuration:

7 =21 V(y), 75 =2mxe Uy, (19)
where
m=2 m=3
4 1 =
, -] 4
= ="
2 // 0.5
1
0
0 5 10 % 5 10
1 = 0.8
i/
£ 05
°
0 5 10
4 13

Fig. 3. Dependence of the magnitudes of the efficiency factors
7™ and 7™ on the geometrical factor é=L/2z, for SHG (m=2)
and THG (m=3) in the phase-matched case with a centered crys-
tal (solid curves) and with an offset crystal (dashed curves).
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m= m=3
8 3
- 2
=
1 "~
,/ \\\
0
0 2 4
3 2
— 2
£
1 / \\
L~ I
0
0 2 4
x=Akz, 1=k,

Fig. 4. Dependence of the magnitudes of the efficiency factors
77(1’") and 77(2"” on the phase mismatch factor y=Akz, for SHG (m
=2) and THG (m=3) assuming a long crystal (¢=L/2z,=10%) that
is centered (solid curves) or offset (dashed curves).

0, x<0O

, x=0 1
U(X)={1’ o VW=\% x=0
1, x>0

These expressions are consistent with Eqs. (17) in the
case of y=0 in the limiting case £—o°.

B. Third-Harmonic Generation

1. Phase-Matched Case

In the phase-matched case, Ak=0, and for the centered
crystal,

2¢ 2¢
(3) — (G — 20
7 1+ 62, 72 (1 + 52)2 ( )
In the limit £>1, 7¥=2/¢, 75 =2/&.
For the offset crystal (L;=0, Ly=L),

79 = 2¢ @ _ 2179 21)

1 B > 7]2 . 2"

1-j2¢ (1-72¢)

In the limit £>1, 72 =j, ¥=j/2.

2. Effect of Phase Mismatch
The effect of phase mismatch on the different THG effi-
ciencies may be determined by numerical evaluation of
Eqgs. (15). Figure 4 illustrates the dependence of these ef-
ficiencies on the parameter y=Akz, in the limit of an in-
finite crystal. The following analytical expressions are ob-
tained in this limit in the centered configuration:

7 =2mxe U, 7' =mie VY.  (22)
These expressions are consistent with Egs. (20) in the
case y=0 in the limiting case £— .
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C. Dependence of Efficiency Factors on Geometry and
Phase Mismatch

Figure 3 illustrates the dependence of 77(1'") and 77<2m) on the
ratio £&=L/2z; in the centered and offset configurations
shown in Fig. 1 for SHG (m=2) and THG (m=3). Expres-
sions for the factors 77(1'"), which govern the transverse
components, have been previously established and their
dependences on the ratio ¢ have been set forth in the lit-
erature (see, for example, Ref. 6). The factor 77(12) increases
steadily with increasing ¢ in SHG for both configurations.
The decrease of 77(13) with increasing £ in the THG centered
configuration is a result of the phase mismatch induced
by the Gouy phase shift that causes destructive interfer-
ence of the THG radiation from the various parts of the
sample.

The factors 77(2’”), which govern the axial components,
particularly in the far field, behave differently. In SHG,
77(22) (which equals 77(13)) declines with increasing ¢ in the
centered case. This is a result of the doubled Gouy phase
exhibited in the axially polarized components. An even
sharper decline is exhibited in the THG factor 77(23). In all
cases, the use of an offset crystal alleviates such a decline,
in which case the efficiencies of all harmonic components
increase with increasing ¢ before eventually saturating.

The different efficiencies of SHG and THG are plotted
in Fig. 4 as functions of the phase mismatch factor y
=Akz for a long crystal (é=L/2z¢>1) in the centered and
offset configurations. These efficiencies are not symmetric
functions of Ak and their peak values do not necessarily
occur at Ak=0, as is the case when the fundamental wave
is a plane wave. SHG and THG diminish sharply for
negative values of Ak, but are more tolerant to positive
Ak.

5. CONCLUSION

The Gouy phase associated with the wavefront curvature
of a focused optical beam plays an important role in har-
monic generation; indeed, it is well known that it is re-
sponsible for the diminution of THG for a centered crys-
tal. However, wavefront curvature is also accompanied by
an axially polarized component in a focused beam. For a
Gaussian beam, this component takes the form of
Hermite—Gaussian (1,0) and (0,1) modes, which have
twice the Gouy phase of the transversely polarized com-
ponents. Harmonic generation contributed by the axially
polarized component creates SHG and THG beams that
are superpositions of low-order Hermite—Gaussian modes.
The efficiency of an mth harmonic generation process in-
volving ¢ axial and m-¢ transverse components is propor-
tional to the beam divergence angle raised to the ¢th
power, and is therefore smaller when a large number of
axial components are involved. The harmonic generation
efficiency is also proportional to geometrical factors that
diminish with crystal size in the centered case, for both
SHG and THG; the effect is more pronounced for THG
than for SHG. On the other hand, the behavior of these
geometrical factors with phase mismatch for the axially
polarized component is not unlike that for the trans-
versely polarized components.
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Although our analytical model was based on a vector
Gaussian beam excitation, conclusions regarding the spa-
tial distributions and the geometrical factors associated
with the polarization components of the harmonic beams
are expected to apply to a more tightly focused excitation
beam, since the Gaussian model captures the basic geom-
etry of a focused vector beam. However, the results are ex-
pected to be altered for apertured excitation beams with
significantly different non-Gaussian distributions since
the aperture transverse distribution controls the polariza-
tion state in the focal region.?®
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