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Entangled-photon Fourier optics
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Entangled photons, generated by spontaneous parametric downconversion from a second-order nonlinear crys-
tal, present a rich potential for imaging and image-processing applications. Since this source is an example of
a three-wave mixing process, there is more flexibility in the choices of illumination and detection wavelengths
and in the placement of object(s) to be imaged. Moreover, this source is entangled, a fact that allows for im-
aging configurations and capabilities that cannot be achieved by use of classical sources of light. We examine
a number of imaging and image-processing configurations that can be realized with this source. The formal-
ism that we utilize facilitates the determination of the dependence of imaging resolution on the physical pa-
rameters of the optical arrangement. © 2002 Optical Society of America
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1. INTRODUCTION
The process of optical parametric three-wave mixing in a
second-order nonlinear medium1–10 involves the coherent
interaction between three optical fields with, generally,
different wavelengths: pump, signal, and idler. Be-
cause of the phase-matching requirements,6,7,10 the wave
vectors are related, and the spatial distributions of the
fields are therefore highly coupled. This process may
therefore be utilized in distributed multiwavelength im-
aging or image processing, where objects are placed in the
path of one or more of these fields of different wave-
lengths and the intensities or cross correlations are mea-
sured. Two examples of phenomena based on three-wave
mixing, optical parametric oscillation and optical para-
metric amplification, have been studied extensively, and
many interesting phenomena of spatial correlation,11 pat-
tern formation,12,13 and reduced-noise image
amplification14,15 have been reported.

A third example is the process of spontaneous paramet-
ric downconversion16 (SPDC), a phenomenon that exhib-
its quantum entanglement.17 The signal and idler
waves, created when the nonlinear medium is illuminated
by an intense laser beam (pump), are produced in the
form of photon pairs in an entangled quantum state (bi-
photons). Spatial and spectral entanglement are a con-
sequence of the multiple possibilities for satisfying con-
servation of energy and momentum for each photon pair.
Interest in the SPDC process has spurred many studies of
its spatial and spatio-temporal photon correlation
properties,18–28 and some imaging applications based on
the measurement of photon-pair coincidence have been
proposed29,30 and tested.31,32

In this paper we develop a general Fourier-optics
theory of image formation based on the SPDC process.
In Section 2 we explore new configurations for multiwave-
length distributed imaging and image-processing applica-
tions. We follow an approach introduced in a previous
paper,33 in which we established a duality between par-
tial quantum entanglement and classical partial coher-
0740-3224/2002/051174-11$15.00 ©
ence theory. We use the formalism developed in Ref. 33
and apply it to the image-formation process in distributed
multiwavelength imaging configurations made possible
by the nature of this SPDC source. In Section 3 we study
the imaging resolution of these configurations and the ef-
fect on it of the various physical parameters of the sys-
tem. In Appendix A we provide a brief review of classical
imaging theory in the framework of the optical bilinear
transformation.

2. CONFIGURATIONS FOR SPONTANEOUS-
PARAMETRIC-DOWNCONVERSION
BIPHOTON IMAGING AND IMAGE
PROCESSING
The principal function of an optical imaging system is to
transfer the spatial distribution of some physical property
of an object (transmittance, reflectance, or absorbance),
by means of an optical wave, to a remote location where it
is measured with a photodetector.9,34 An image-
processing system transforms one image into another
with enhanced features or obtains a new image from more
than one image, such as the correlation of two
images.35–37 We examine here various configurations for
imaging and image processing based on biphoton beams
generated by SPDC. As mentioned above, the existence
of three optical beams (pump, signal, and idler) allows us
to construct imaging configurations that are not achiev-
able with other single-beam optical sources. We may
place an object that is to be imaged in either of the three
beams. We may alternatively place more than one object
in these beams and obtain the correlation of their images.

All these configurations include two features. The
first is that they are examples of distributed
imaging.29,30,38 In analogy to distributed computing,
where the computation resources are distributed over a
network, distributed imaging allows us to reallocate the
imaging components from the particular path connecting
the source to the object to be imaged. The second is that
they allow the possibility of multiwavelength imaging:
2002 Optical Society of America
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The object may be illuminated with one wavelength,
whereas detection takes place at another.

The use of other nonclassical sources of light in imag-
ing has been shown to lead to noise reduction.14,15,39,40

In this paper we direct our attention to various imaging
configurations. The quantum nature of the SPDC source
offers the additional advantage of noise reduction, but
this is immaterial to the task at hand.

In the process of SPDC, an intense laser beam (pump)
illuminates a nonlinear crystal (NLC) with quadratic non-
linear susceptibility.7,16 Some of the pump photons dis-
integrate into pairs of photons (known traditionally as
signal and idler), which conserve the energy and momen-
tum of the parent pump photon. Consider the situation
depicted in Fig. 1. The pump beam illuminates the NLC,
and the signal and idler beams are measured by the
single-photon detectors D1 and D2 , respectively. We as-
sume throughout a planar source and a one-dimensional
geometry in the transverse plane for the sake of simplic-
ity but without loss of generality. Optical systems, con-
taining objects to be imaged and any optical components,
may be placed in any of the three available beams.

The signal and idler photons can be emitted from the
NLC in a variety of configurations. The two photons may
be emitted in two different and distinct directions, in
which case each photon will pass through a different (and
possibly remote) optical system; this configuration is de-
noted noncollinear. The two photons may be emitted in
the same spatial wave packet, the collinear case, but have
some distinguishing characteristic, such as frequency or
polarization, whereupon they effectively pass through dif-
ferent optical systems if the components are dispersive or
polarization dependent. The two photons are detected in
the same output plane in this case. Finally, the two pho-
tons may be emitted in the same spatial wave packet and
have no distinguishing characteristic, the collinear degen-
erate case, and thus they pass through the same optical
system and are detected in the same output plane.

The coincidence rate of photon pairs at the two detec-
tors, D1 and D2 located at positions x1 and x2 , respec-
tively, is proportional to the fourth-order correlation func-
tion of the fields, G (2)(x1 ,x2),33,41 the biphoton rate. The
signal and idler beams traverse optical systems described

Fig. 1. Biphoton imaging using photon pairs generated by spon-
taneous parametric downconversion. NLC stands for nonlinear
crystal; D1 and D2 are single-photon detectors at locations x1 and
x2 , respectively; G (2)(x1 , x2) is the biphoton rate; hp(x, x8),
hs(x1 , x), and hi(x2 , x) are the impulse response functions of
the optical systems placed in the paths of the pump, signal, and
idler beams, respectively.
by their impulse-response functions hs(x1 , x) and
hi(x2 , x), respectively. It has been shown that the bi-
photon rate is given by33

G ~2 !~x1 , x2! 5 u c~x1 , x2!u2, (1)

where the biphoton amplitude c (x1 , x2) is

c ~x1 , x2! 5 E dxEp~x !hs~x1 , x !hi~x2 , x !; (2)

here Ep(x) is the spatial distribution of the pump field at
the entrance to the NLC. The result in Eq. (2) was de-
rived assuming a thin NLC and the presence of narrow-
band spectral filters in the optical system. These two as-
sumptions simplify the analysis considerably without
overshadowing the physics of the imaging processes dis-
cussed. They will be relaxed in Section 3.

An interpretation of Eq. (2) that is useful in under-
standing the behavior of such a system was advocated by
Klyshko18,20,23,29 under the name ‘‘advanced wave inter-
pretation.’’ In this picture, the biphoton amplitude in Eq.
(2) can be viewed as the impulse-response function of an
optical system represented by the cascade of three sys-
tems: propagation from D1 at x1 back through a system
with impulse-response function hs

r(x, x1) 5 hs(x1 , x),
modulation by the pump field Ep , and subsequent trans-
mission through a system with impulse-response function
hi(x2 , x). An intuitive advantage can be gained by un-
folding the system in this way, as will become clear
shortly.

Two special correlation functions deriving from
G (2)(x1 , x2) in Eq. (1) are of interest: the marginal coin-
cidence rate, I (2)(x2), and the conditional coincidence
rate, I0

(2)(x2), defined by

I ~2 !~x2! 5 E dx1G ~2 !~x1 , x2!, (3)

I0
~2 !~x2! 5 G ~2 !~0, x2!. (4)

The marginal coincidence rate I (2)(x2) is proportional to
the probability of detecting a photon at x2 by D2 when de-
tector D1 detects a photon at any location 2` , x1 , `.
The conditional coincidence rate I0

(2)(x2) is proportional to
the probability of detecting a photon at x2 by D2 when D1
detects a photon at x1 5 0.

We proceed to examine the five configurations that are
possible with this optical source and explore their imag-
ing and image-processing potential.

A. Object in the Signal (or Idler) Beam
The generalized biphoton optical system described by Eq.
(2) permits the object to be placed in either the signal or
the idler beams such that its transmittance (or reflec-
tance) modifies either of the impulse-response functions
hs or hi . Without loss of generality, we assume that the
object is placed in the signal beam. However, the choice
of either beam might be dictated by wavelength consider-
ations.

Consider the situation depicted in Fig. 2. The reverse-
signal system hs

r(x, x1) 5 hs(x1 , x) is regarded as a cas-
cade of two linear systems of impulse-response functions
h1 and h2 with the object t sandwiched in between. The
biphoton amplitude can thus be written as
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c ~x1 , x2! 5 E dx8t~x8!h1~x1 , x8!h3~x2 , x8!, (5)

where h3 is the impulse-response function of a system
composed of a cascade of the reverse of system h2 , an ap-
erture Ep , and the system hi , and is given by

h3~x2 , x8! 5 E dxEp~x !hi~x2 , x !h2~x8, x !. (6)

Equation (5) states that the overall system is composed of
an illumination system h1 illuminating the object t, fol-
lowed by an imaging system h3 , which is dependent on
h2 , hi , and Ep , in accordance with Eq. (6). The unifor-
mity of the illumination system h1 and the resolution of
the system h3 determine the quality of the overall imag-
ing system.

In this configuration, then, the conditional coincidence
rate, obtained by use of Eqs. (1), (4), and (5), is

I0
~2 !~x2! 5 U E dx8t~x8!h1~0, x8!h3~x2 , x8!U2

. (7)

This system is mathematically equivalent to a coherent
optical system where the object is modulated by the illu-
mination distribution h1(0, x8) and transformed by a lin-
ear system of point-spread function h3(x2 , x8), followed
by a squarer, viz. the bilinear transformation of Eq. (A2).

On the other hand, by use of Eqs. (1), (3), and (5), the
marginal coincidence rate, measured when D1 collects
photons from all points in its plane (i.e., acts as a bucket
detector), is given by

I ~2 !~x2! 5 E dx1U E dx8t~x8!h1~x1 , x8!h3~x2 , x8!U2

5 EE dx8dx9t* ~x8!t~x9!g~x8, x9!

3 h3* ~x2 , x8!h3~x2 , x9!. (8)

The quadratic transformation of the object t(x) in Eq. (8)
is clearly the mathematical equivalent of the bilinear
transformation in Eq. (A1), representing a partially co-
herent imaging system. The function g(x8, x9) is given
by

g~x8, x9! 5 E dx1h1* ~x1 , x8!h1~x1 , x9! (9)

and plays the role of the coherence function of the field.

Fig. 2. Object in the signal-beam configuration. Ep is the
pump field at the entrance to the NLC; h1(x1 , x8) and h2(x8, x)
are the impulse-response functions of the optical systems placed
in the signal beam; hi(x2 , x) is the impulse-response function of
the optical system placed in the idler beam; t(x8) is the object to
be imaged, placed in the signal beam.
Two limiting forms of g(x8, x9) are of interest. The
first is g(x8, x9) 5 d (x8 2 x9), which leads to

I ~2 !~x2! 5 E dx8ut~x8!u2uh3~x2 , x8!u2, (10)

which is the equivalent of an incoherent imaging system
[Eq. (A3)]. The other limit is g(x8, x9) 5 f* (x8)f(x9), in
which case

I ~2 !~x2! 5 U E dx8t~x8!f~x8!h3~x2 , x8!U2

, (11)

which is the equivalent of a coherent imaging system [Eq.
(A2)]. We can achieve the first limit by using a 22f (Fou-
rier transform) system or a 42f (imaging) system for h1
followed by a bucket detector. Moving the bucket detec-
tor in the 22f system away from the back focal plane or
changing the area of the detector would lead to a gradual
transition from coherent to incoherent imaging. This
was performed experimentally in Ref. 21, where the
change from coherent to incoherent imaging, achieved by
changing the detector aperture size in one beam, was ob-
served by monitoring the loss of the fringe visibility of a
double-slit placed in the other beam.

We now examine a few examples based on this configu-
ration that manifest its usefulness.

1. Example: Fourier-Transform Imaging
Consider the system illustrated in Fig. 3. The signal and
idler systems are unfolded for sake of clarity. We assume
for simplicity in this and in the following examples, ex-
cept if indicated otherwise, that the pump and the NLC
are of infinite transverse extent. The signal arm in-
cludes the object, t, and the system h2 is nothing but free-
space propagation at the signal wavelength ls for a dis-
tance ds . The idler system comprises a lens of focal
length f at a distance di from the NLC and a distance d2
from the detection plane, as shown in Fig. 3. Free-space
propagation for the distance ds at ls and for the distance
di at l i may be substituted by free-space propagation for
an equivalent distance d1 at wavelength l i , where

d1 5 di 1 ds

ls

l i
. (12)

If we take d2 to be equal to focal length of the lens f, and
also choose di and ds such that d1 5 f according to Eq.

Fig. 3. Object in the signal-beam configuration of examples 1
and 2 displayed in an unfolded picture. Ep , h1(x1 , x8), and
t(x8) are the same as in Fig. 2; f is the focal length of a lens
placed in the idler beam. See text for details.
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(12), then the system becomes a Fourier-transform sys-
tem with impulse-response function

h3~x2 , x8! 5 expF j2pS ds

ls
1

di 1 f

l i
D GexpS 2j

2p

l if
x2x8D .

(13)
If we now take the illumination system h1 to be uni-

form, so that h1(0, x8) 5 1, then the overall system is a
Fourier-transform system when the conditional coinci-
dence rate is considered. Equations (7) and (13) then
yield

I0
2~x2! 5 UTS 2p

l if
x2DU2

, (14)

where T(q) is the Fourier transform of t(x). The system
simply generates the diffraction pattern of the object dis-
tribution.

2. Example: Ideal Single-Lens Imaging
In the same configuration depicted in Fig. 3, we may
choose the distance d1 , calculated according to Eq. (12),
and the distance d2 to satisfy

1

d1
1

1

d2
5

1

f
, (15)

which is the geometrical-optics imaging equation of a thin
lens of focal length f. In this case the impulse-response
function of the system h3 becomes

h3~x2 , x8! 5 expF j2pS ds

ls
1

di 1 d2

l i
D G

3 expF j
px2

2

l id2
S 1 2

1

M D Gd ~x2 2 Mx8!,

(16)

where M 5 2d2 /d1 is the magnification of the imaging
system. If the illumination system h1 is uniform, then
the conditional coincidence rate I0

(2)(x2) is proportional to
the magnified object intensity transmittance, ut(x2 /M)u2.
The marginal coincidence rate I (2)(x2), however, is
I (2)(x2) 5 g(x2 /M, x2 /M)ut(x2 /M)u2, where g(x8, x9) is
given by Eq. (9). If g(x8, x8) is uniform over an area
larger than that of the image, I (2)(x2) becomes propor-
tional to the magnified object intensity transmittance as
is the case for I0

(2)(x2).

Fig. 4. Object in the signal-beam configuration of example 3 dis-
played in an unfolded mode. h1(x1 , x8) and t(x8) are the same
as in Fig. 2; a lens is placed in the pump beam and is represented
here by the dotted lens of focal length f. See text for details.
Note that the lens may equivalently be put in the sig-
nal beam and the distances readjusted so as to satisfy a
condition similar to Eq. (15). The system developed by
Pittman et al.31 is an example of this case in which the ob-
ject is placed directly in the plane of D1 so that
h1(x1 , x8) 5 d (x1 2 x8).

3. Example: Lens in the Pump
We now study another example where we manipulate the
pump beam and place the object in either the signal or
idler paths. An example of this configuration is the sys-
tem proposed by Belinsky and Klyshko29 and demon-
strated experimentally by Pittman et al.32

The configuration is shown schematically in Fig. 4. A
plane-wave pump beam is focused by a lens of focal length
f, located at a distance d , f from the NLC. The pump
wave front now has a radius of curvature R 5 f 2 d at
the NLC entrance and consequently acts as a lens or
spherical mirror in the advanced wave interpretation.
The signal system is composed of free-space propagation
for a distance d1 at ls , followed by the object t and an op-
tical system h1 . The idler system is simply free-space
propagation for a distance d2 at l i .

If the following relationship is satisfied by the various
distances and wavelengths,

1

lsd1
1

1

l id2
5

1

lpR
, (17)

then h3(x2 , x8), from Eq. (6), is

h3~x2 , x8! 5 expF j2pS d1

ls
1

d2

l i
D G

3 expF j
px2

2

l id2
S 1 2

1

M D Gd ~x2 2 Mx8!. (18)

This is the impulse-response function of an imaging sys-
tem of magnification M 5 2d2l i /d1ls , and Eq. (17) is
the corresponding imaging equation. Note the similari-
ties between Eqs. (15) and (17), despite the fact that the
lens is in the signal beam for the former and in the pump
beam for the latter.

In the degenerate case where the signal and idler fre-
quencies are equal, ls 5 l i 5 2lp , this imaging equation
[Eq. (17)] becomes

1

d1
1

1

d2
5

2

R
. (19)

This is the imaging equation of a spherical mirror of ra-
dius of curvature R, or is the geometrical-optics imaging
equation of a thin lens of focal length R/2. Both I0

(2)(x2)
and I (2)(x2) are proportional to the magnified object in-
tensity transmittance ut(x2 /M)u2 if h1 is uniform.

B. Object in Both Signal and Idler Beams
If the signal and idler systems are identical and the object
t is placed at the same location in each, as shown in Fig. 5,
then we may substitute hs(x1 , x) 5 hi(x1 , x)
5 *dx8h1(x1 , x8)t(x8)h2(x8, x) in Eq. (2) to obtain
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c ~x1 , x2! 5 EE dx8dx9t~x8!t~x9!cc~x8, x9!

3 h1~x1 , x8!h1~x2 , x9!, (20)

where

cc~x8, x9! 5 E dxEp~x !h2~x8, x !h2~x9, x !. (21)

Comparing Eq. (20) with Eq. (A1) shows that c (x1 , x2) is
analogous to a partially coherent imaging system, where
cc(x8, x9) plays the role of the correlation function of the
field. In this case, though, in accordance with Eq. (1) the
biphoton rate G (2)(x1 , x2) is a fourth-order nonlinear
transformation of t.

This system has been used42 to test the complementar-
ity of coherence and entanglement with the change of
transverse size of the pump beam, where t was taken to
be a double slit. From Eqs. (20) and (21) it is clear that
for a small source the biphoton amplitude factorizes into a
function of x1 and another function of x2 (coherence),
whereas it is not factorizable (i.e., entangled) for a large
pump-beam size (entanglement).33

C. Object in the Pump Beam
In another imaging configuration, the object is placed in
the pump beam as illustrated in Fig. 6. Equations (1)
and (2) give

G ~2 !~x1 , x2! 5 U E dxt~x !hs~x1 , x !hi~x2 , x !U2

, (22)

provided that Ep(x) is uniform over the object. Many
possibilities for imaging based on Eq. (22) can be envi-
sioned. For example, if both hs and hi are 22f systems,
the result is proportional to the squared magnitude of the
Fourier transform of t. In another example, if hs(0, x)
5 1, then

I0
~2 !~x2! 5 U E dxt~x !hi~x2 , x !U2

, (23)

and the behavior is that of a coherent imaging system.
The object is illuminated at the pump wavelength, while
the measurement is made at the much longer signal and
idler wavelengths.

In a third example in which the signal and idler sys-
tems are identical, and the coincidence is measured at the
same position, by use of a detector sensitive to the arrival
of photon pairs (a two-photon absorber, for example), then

G ~2 !~x1 , x1! 5 U E dxt~x !hs
2~x1 , x !U2

. (24)

Fig. 5. Object in both signal- and idler-beam configuration.
h1(x1 , x8), h2(x8, x) are the impulse-response functions of the
optical systems placed in the path of both the signal and idler
beams, and t(x8) is the object to be imaged.
Again, the mathematical structure is that of a coherent
imaging system.

An interesting modification to this configuration would
be to add a 22f system between the object and the crystal.
In this case, Ep(x) 5 T@2p(x/lpfo)#, where fo is the focal
length of the lens before the crystal. If the object is not
symmetric in x, then its Fourier transform is a complex
function. Yet the phase distribution of the object’s spa-
tial spectrum is not lost, since the three-wave interaction
process in the NLC is coherent. If, in addition, we take
both the signal and idler configurations to be 22f sys-
tems, the biphoton rate becomes

G ~2 !~x1 , x2! 5 UtF S x1

lsfs
1

x2

l if i
D folpGU2

, (25)

where fs and fi are the focal lengths of the 22f systems in
the signal and idler beams, respectively. In this case, in
accordance with Eq. (4), I0

(2) provides a magnified image of
the object t with a magnification factor of l if i /lpfo .

D. Object is the Detector
In yet another imaging modality, illustrated in Fig. 7, the
object is a two-photon absorber; it is thus a detector with
quantum efficiency proportional to its absorbance t2 .
The biphoton rate, in this case G (2)(x1 , x1), is registered
by some response of the object, such as emitted photoelec-
trons or fluorescence.43 The signal/idler optical system
may, for example, be a single-lens imaging system or a
scanning system, as in scanning confocal microscopy.44

From Eqs. (1) and (2),

G ~2 !~x1 , x1! 5 t2~x1!S~x1!, (26)

where S(x1) is an object illumination function. One
choice for S would be a very narrow function, which would
serve to sample the object in the transverse plane. This
could be achieved, for example, by taking a pump of large
transverse width and 22f signal and idler systems. The
size of the pump and the aperture of the lens limit the
transverse resolution.

Fig. 6. Object in the pump-beam configuration. hs(x1 , x),
hi(x2 , x) are as in Fig. 1, and t(x) is the object to be imaged
placed in the pump beam.

Fig. 7. Object is the detector configuration. h1(x1 , x) is the
impulse response of the optical system placed in the signal and
idler paths, and D is a two-photon detector at location x1 .
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There are other sensible choices for the illumination
function S. These can be implemented through either
the pump profile or the system impulse-response function,
or both. The object t2 would then be extracted by divid-
ing the observed biphoton rate by S. The object can also
be uniformly illuminated by use of a large pump and a
42f imaging system, in which case S becomes almost con-
stant over a large portion of the object. We have studied
this system elsewhere and compared the longitudinal and
transverse resolutions to those of other schemes of mi-
croscopy that utilize classical light.45

E. Objects in Signal, Idler, and Pump Beams: Image
Triple Correlation
Because the biphoton optical system is based on three-
wave mixing, it inherently depends on three image distri-
butions and therefore offers a number of unique options
for optical image processing. For example, if 42f sys-
tems with aperture functions ts and ti are placed in the
signal and idler beams, respectively, and a third object is
placed in the pump beam such that the field at the en-
trance to the NLC is tp , as shown in Fig. 8, then Eqs. (1)
and (2) yield

G ~2 !~x1 , x2! 5 U E dxtp~x !TsF 2p

lsfs
~x 2 x1!G

3 TiF 2p

l if i
~x 2 x2!GU2

, (27)

where Ts(q) and Ti(q) are the Fourier transforms of ts(x)
and ti(x); and fs and fi are the focal lengths of the signal
and idler 42f systems, respectively. This equation repre-
sents the magnitude of the triple correlation of the three
functions tp , Ts , and Ti . Triple correlation is useful in a
number of signal-processing applications. Of course, if
one of these three functions is uniform, the operation be-
comes ordinary correlation.

One application for this configuration could be system
identification and coded-aperture imaging. In this appli-
cation, a linear, shift-invariant optical system is to be
identified, i.e., its impulse-response function measured.
The system may be placed in one of the two downcon-
verted beams (say the signal), and a set of N known ref-
erence systems are placed, one at a time, in the other
beam (the idler) as the coincidence rate is measured.

Fig. 8. Configuration for triple correlation. h2s(x8, x) and
h1s(x1 , x8) are the impulse-response functions of the optical sys-
tems placed in the signal beam; h2i(x9, x) and h1i(x2 , x9) are
the impulse-response functions of the optical systems placed in
the idler beam; tp(x), ts(x8), and ti(x9) are the three objects to be
correlated.
The set of idler systems are also assumed to be linear and
shift invariant with impulse-response functions

hi~x2 , x ! 5 hn~x 2 x2!, n 5 1, 2, ...N. (28)

Such systems may be generated by the use of a bank of
apertures (filters). Since the unknown system is shift in-
variant, its impulse-response function is hs(x1 , x)
5 hs(x1 2 x), so that by virtue of Eqs. (1) and (2) the bi-
photon rate measured at x1 5 x2 5 0 is given by

Cn 5 G ~2 !~0, 0 ! 5 U E dxhs~2x !hn~x !U2

, (29)

assuming the pump distribution to be uniform.
If $hn(x)% form a complete set of orthonormal functions,

then the measured coefficients $Cn% are simply the
squared magnitudes of the coefficients of an expansion of
the unknown function hs(2x) in this basis. Under spe-
cial conditions, the phases can be retrieved, and the func-
tion hs(x) completely reconstructed.46

In the special case for which hn(x) 5 d (x 1 xn), so
that the idler field is sampled at positions xn , Eq. (29)
yields

Cn 5 uhs~xn!u2, (30)

in which case the measured coincidence rates provide
samples of the magnitude of the impulse response func-
tion. A scanning system can therefore be used to deter-
mine uhs(x)u.

3. RESOLUTION OF BIPHOTON IMAGING
In all of the configurations studied in the previous section
we assumed a thin NLC and a narrow biphoton spectral
bandwidth. Under these assumptions the imaging reso-
lution of all the configurations is determined by the aper-
tures placed in the system (including those placed in the
pump beam). When these apertures are not accounted
for, we obtain results reminiscent of classical geometric
optics, such as the imaging formulas in Eqs. (15) and (17).
These geometric-optics results are typical of the work
that has been carried out to date in entangled-photon
imaging.31,32

One of the advantages of our formalism is to facilitate
deriving the analog of wave-optics results for such sys-
tems when all the physical parameters of the optical ar-
rangement are accounted for, by use of straightforward
calculations similar to those of classical wave optics.9,34

In this section we examine the effect of the various pa-
rameters of entangled-photon imaging systems on the im-
aging resolution.

We take the width of the image formed by a point object
t(x) 5 d (x) in the marginal coincidence rate [Eq. (3)] as a
measure of the resolution of the entangled-photon imag-
ing system. Another definition of resolution may be
based on the conditional coincidence rate [Eq. (4)].

We begin by modifying the principal imaging equations
[Eqs. (1) and (2)] by taking into consideration the thick-
ness of the NLC and the biphoton spectral bandwidth.
We assume a monochromatic pump beam of angular fre-
quency vp and transverse distribution Ep(x) at the en-
trance to a NLC of thickness l. The coincidence rate



1180 J. Opt. Soc. Am. B/Vol. 19, No. 5 /May 2002 Abouraddy et al.
G (2)(x1 , t1 ; x2 , t2), with the detection times of D1 and
D2 now made explicit, is given by

G ~2 !~x1 , t1 ; x2 , t2! 5 u c~x1 , t1 ; x2 , t2!u2. (31)

Here c (x1 , t1 ; x2 , t2) may be written in terms of a bi-
photon spectral amplitude c̃(x1 , x2 ;vs) through

c ~x1 , t1 ; x2 , t2! 5 exp~2ivpt1!

3 E
V

dvsexp@2ivs~t1 2 t2!#c̃~x1 , x2 ;vs!, (32)

where V is the biphoton spectral bandwidth and
c̃(x1 , x2 ; vs) is given by33

c̃~x1 , x2 ; vs! 5 EE dqsdqiL~qs , qi ; vs!

3 Hs~x1 , qs ; vs!Hi~x2 , qi ; vp 2 vs!,

(33)

and the dispersion of the optical systems has been made
explicit in the signal and idler transfer functions Hs and
Hi , which are Fourier transforms of the impulse-
response functions hs and hi (with respect to the second
argument), respectively. The quantity L(qs , qi ; vs) in
Eq. (33) is given by

L~qs , qi ; vs! 5 Ẽp~qs 1 qi!j̃~qs , qi ; vs!; (34)

here q is proportional to the transverse component of the
momentum vector (it is the spatial frequency in the trans-
verse plane), Ẽp(q) is the Fourier transform of Ep(x), and
j̃(qs , qi ; vs) is a phase-matching function given by

j̃~qs , qi ; vs! 5 l sincS l

2p
Dr D expS 2j

l

2
Dr D ; (35)

and Dr 5 rp(qs 1 qi , vp) 2 rs(qs , vs) 2 ri(qi , vp 2 vs);
rj(q, v) 5 (nj

2v2/c2 2 q2)1/2, j 5 p, s, and i, where nj is
the NLC index of refraction for the polarization and fre-
quency of the jth field.

In most cases the detectors may be considered to be
slow (i.e., their response time is large with respect to the
inverse of the bandwidth of the system, which is a reason-
able assumption for available photodetectors), and thus
they measure a coincidence rate that is averaged over a
long time interval. The resulting time-averaged coinci-
dence rate is33

C~x1 , x2! 5 E
V

dvsuc̃~x1 , x2 ; vs!u2, (36)

showing that the time-averaged coincidence rate for a
show detector is an incoherent sum of the biphoton spec-
tral amplitudes over the bandwidth of the system. The
spectrum of the downconverted biphotons can be quite
large, and the dispersion of the optical components must
be considered carefully just as dispersion must be in ul-
trafast pulsed optics.

We also define conditional and marginal time-averaged
coincidence rates as
C~x2! 5 E dx1C~x1 , x2!, (37)

C0~x2! 5 C~0, x2!, (38)

respectively. It is obvious that when only a narrow spec-
tral bandwidth is considered, C(x2) and C0(x2) coincide
with I(x2) and I0(x2), respectively.

We now proceed to study the resolution of a represen-
tative configuration considered in Section 2: object in the
signal (or idler) beam. The biphoton spectral amplitude
of this system, illustrated in Fig. 2, now taking into con-
sideration the thickness of the crystal and spectral band-
width of the system, is given by

c̃~x1 , x2 ; vs! 5 E dx8t~x8!h1~x1 , x8; vs!h3~x2 , x8; vs!,

(39)

where

h3~x2 , x8; vs! 5 EE dqsdqiL~qs , qi ; vs!

3 H2~x8, qs ; vs!Hi~x2 , qi ; vp 2 vs!.

(40)

We assume throughout that the object is thin and nondis-
persive. To determine the resolution of this imaging con-
figuration we take t(x) 5 d (x), whereupon Eq. (39) be-
comes c̃(x1 , x2 ; vs) 5 h1(x1 , 0; vs)h3(x2 , 0; vs), and
consequently

C~x2! 5 E
V

dvsuh3~x2 , 0; vs!u2g~vs!, (41)

C0~x2! 5 E
V

dvsuh3~x2 , 0; vs!u2g0~vs!, (42)

where g(v) 5 *dxuh1(x, 0; v)u2 and g0(v)
5 uh1(0, 0; v)u2. Note that the system h1 affects the
imaging resolution only through introducing an effective
spectral bandwidth that may be ignored if it is larger
than that of h3 .

As a concrete example, we consider the system exam-
ined in Subsection 2.A.2, which is the second example of
object in the signal-beam configuration, namely, ideal
single-lens imaging, illustrated in Fig. 3. We assume, at
first, a plane-wave pump, so that h3(x2 , 0; vs) simplifies
to

h3~x2 , 0; vs! 5 E dqsj̃~qs , 2qs ; vs!

3 H2~0, qs ; vs!Hi~x2 , 2qs ; vp 2 vs!. (43)

In this example, the transfer functions of the systems h2
and hi are given by

H2~0, qs ; vs! 5 exp~ jksds!expS 2j
dsqs

2

2ks
D , (44)



Abouraddy et al. Vol. 19, No. 5 /May 2002/J. Opt. Soc. Am. B 1181
Hi~x2 , 2qs ; vp 2 vs!

5 exp@ jki~d1 1 d2!#

3 expS j
kix2

2

2d2
D expS 2j

diqs
2

2ki
D PgS qs 1

kix2

d2
D , (45)

where Pg(q) is the Fourier transform of

p~x !expF j
kix

2

2 S 1

d2
2

1

f D G
with respect to x, and p(x) is the lens aperture. Substi-
tuting Eqs. (35), (44), and (45) into Eq. (43), we obtain
h3(x2 , 0; vs), which we then use in Eqs. (41) and (42) to
estimate the resolution.

There are two techniques to implement this system in
an actual setup. In one technique the NLC is adjusted
for noncollinear SPDC, and one beam (usually chosen by
a pinhole) is directed into the system hs and the other
into hi . Another technique is to adjust the NLC for col-
linear SPDC and then separate the two photons compris-
ing the biphoton. In type II SPDC (where the signal and
idler photons have orthogonal polarizations) one can use a
polarizing beam splitter to separate the biphoton. On
the other hand, in type I SPDC (where the signal and
idler photons have the same polarization) the use of a
nonpolarizing beam splitter will separate the pair into the
two output ports of the beam splitter in 50% of the trials,
and send the pair together into one output port in the rest
of the trials. In the latter case, the trials do not contrib-
ute to the coincidence measurements carried out by the
detectors D1 and D2 together with the coincidence detec-
tion circuit and thus may be ignored.

Assuming a thin NLC, narrow spectral bandwidth, a
plane-wave pump, and degenerate collinear downconver-
sion (where the signal and idler photons are separated
with the method outlined above), one obtains the familiar
diffraction pattern of a diffraction-limited imaging sys-
tem. For a rectangular lens aperture of width D and fo-
cal length f the result is C(x2) } usinc(x2/2l0F#)u2, where
F# 5 f/D is the F-number of the lens and l0 5 2lp is the
wavelength of the degenerate downconverted photons.
This is the best one can obtain; we demonstrate in the fol-
lowing that relaxing any of the restrictions indicated
above will degrade the resolution.

Our calculations have been carried out with a b-barium
borate NLC that is illuminated with a pump of wave-
length lp 5 325 nm (which corresponds to the ultraviolet
line of a He–Cd laser), with a cut-angle of 36.44° that cor-
responds to degenerate collinear type I SPDC. Increas-
ing the cut angle beyond 36.44° yields noncollinear degen-
erate SPDC, and decreasing the cut angle below this
value yields collinear nondegenerate SPDC.28

We first consider the effect of the finite thickness of the
NLC. One effect is that the distance d1 , used in the im-
aging formula presented in Eq. (15), is modified to become

d1 5 di 1 ds

ls

l i
1 leq , (46)

in contrast to that given in Eq. (12). The quantity leq is
an equivalent length for the NLC that is related to the
physical length l by
leq 5
l

2l i
S ls

ns
1

l i

ni
D . (47)

For the degenerate case (ls 5 l i 5 l0) this expression
simplifies to leq 5 l/n0 , where n0 is the index of refrac-
tion of the NLC at the degenerate wavelength. In other
words, the thickness of the NLC must be accounted for in
calculating the distances in the experimental arrange-
ment in order to satisfy the imaging formula of Eq. (15).

Figure 9 shows C(x2) for several values of l, assuming
degenerate collinear downconversion and narrow spectral
bandwidth. The distances in the configuration are cho-
sen such that d1 5 d2 5 2 f [taking into account the ef-
fect of l on d1 according to Eq. (46)], which corresponds
to an imaging system of unity magnification. For
l 5 0.1 mm one obtains the diffraction-limited distribu-
tion corresponding to the thin NLC case. When l
increases, the distribution widens, signifying a loss of
imaging resolution, as is evident for the l 5 1-mm and
l 5 10-mm curves. This result may be easily understood
when one considers the fact that the NLC acts as a spatial
filter through the phase-matching function j̃(qs , qi ; vs),
defined in Eq. (35). The collinear SPDC case corresponds
to a low-pass spatial filter with a cut-off frequency that is
inversely proportional to l, and hence the resolution de-
grades as the NLC thickness increases.

The spectral bandwidth of the system has a similar ef-
fect on the imaging resolution, which decreases with in-
creased bandwidth. Figure 10 shows C(x2) for several
values of r 5 V/vp . These plots were obtained for a
NLC of thickness l 5 1 mm, collinear SPDC, and a plane-
wave pump. According to Eq. (46), d1 is a function of
wavelength [and so is leq through Eq. (47)], so that only
one pair of signal/idler wavelengths satisfy the imaging
formula in Eq. (15). All biphotons with other signal/idler
pair wavelengths are defocused, and hence their contribu-
tion to C(x2) leads to a reduction in resolution. The plots
in Fig. 10 were obtained assuming that Eq. (15) is satis-
fied by the degenerate signal/idler wavelengths and that
at these wavelengths d1 5 d2 5 2 f.

Fig. 9. Effect of NLC thickness l on the imaging resolution of
object in the signal-beam configuration. Plots of normalized
time-averaged marginal coincidence rate C(x2) versus detector
D2 location x2 normalized with respect to xc 5 2l0F# , for
l 5 0.1, 1, and 10 mm; l0 5 650 nm, F# 5 5.



1182 J. Opt. Soc. Am. B/Vol. 19, No. 5 /May 2002 Abouraddy et al.
Finally, the finite transverse width of the pump field
also degrades the resolution. This can be understood by
noting that smaller pump size reduces entanglement of
the signal and idler photons.33 As a result, the quantum
state of the light emitted by the NLC becomes separable,
and thus C(x2) and C0(x2) simply become the intensity of
the idler beam (which depends on hi) but are independent
of the signal beam.38 No information about the system
hs , which includes the object to be imaged in this case,
may be extracted from the measurements carried out in
the idler beam.

Figure 11 shows plots of C(x2) for various values of the
transverse width of the pump, denoted B. The calcula-
tions were performed taking l 5 1 mm, assuming collin-
ear degenerate SPDC, and the presence of narrow-band
spectral filters in the system. Distances were chosen
such that d1 5 d2 5 2 f.

Fig. 10. Effect of the biphoton bandwidth V on the imaging
resolution of object in the signal-beam configuration. Plots of
normalized C(x2) versus x2 normalized with respect to xc
5 2l0F# are shown for r 5 V/vp 5 0.001, 0.01, and 0.02; l0
5 650 nm, F# 5 5. The NLC is adjusted for collinear SPDC
and is of thickness 1 mm.

Fig. 11. Effect of the transverse width of the pump B on the im-
aging resolution of object in the signal-beam configura-
tion. Plots of normalized C(x2) versus x2 normalized with re-
spect to xc 5 2l0F# are shown for B 5 2, 1, 0.5, and 0.1 mm;
l0 5 650 nm, F# 5 5.
4. CONCLUSION
We have presented a Fourier-optics analysis of various
imaging configurations using the unique features of spon-
taneous parametric downconversion (SPDC) as a two-
photon source. SPDC is a three-wave mixing process;
the pump, signal, and idler are coupled through the
phase-matching conditions. We investigated several im-
aging and image-processing configurations that utilize
the quantum correlations among these three fields. Our
formalism was also used to study the resolution of these
entangled-photon imaging configurations.

APPENDIX A: OPTICAL BILINEAR
TRANSFORMATION
We present a brief overview of the theory of classical im-
aging in the framework of the bilinear optical transforma-
tion. The equations are formulated in such a way so as
to facilitate convenient comparisons with the two-photon
and biphoton cases presented in the text.

Because of the quadratic relation between the optical
field and the optical intensity, imaging systems are typi-
cally described by a bilinear transformation.47 A general
bilinear transformation is expressed as

g~x1! 5 EE dx8d9f* ~x8!f~x9!q~x1 ; x8, x9!, (A1)

where f(x) is the input function, q(x1 ; x8, x9) is the
double impulse-response function (DIR), and g(x) is the
output function. In general, f(x) is complex, but g(x) is
guaranteed to be real when the symmetry condition
q(x1 ; x8, x9) 5 q* (x1 ; x9, x8) is satisfied. The DIR
completely characterizes the bilinear system. This
transformation represents, in general, the imaging sys-
tem depicted in Fig. 12. The input function f(x) repre-
sents the transparency t(x); the DIR is a combination of
the second-order correlation function of the illumination
G (1)(x8, x9) and the impulse-response function h(x1 , x)
of the linear optical system; and the output g(x) repre-
sents the intensity measured by the optical detector.

In the ideal case q(x1 ; x8, x9) 5 d (x1 2 x8)d (x1
2 x9), whereupon g(x1) 5 ut(x1)u2, so that the system is
a squarer with zero spread. When the DIR factorizes in
the form q(x1 ; x8, x9) 5 h* (x1 , x8)h(x1 , x9), the output
of the system is given by

g~x1! 5 U E dx8f~x8!h~x1 , x8!U2

. (A2)

Fig. 12. Classical partially coherent imaging. The quantity
G (1)(x8, x9) is the second-order correlation function of the optical
field; t is the object to be imaged; h(x1 , x) is the impulse re-
sponse function of the imaging system; D is a detector placed at
position x1 that records the intensity I(x1).
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Equation (A2) is easily recognized as the output intensity
of a coherent imaging system with impulse-response
function h(x1 , x8) and an input complex field f(x8).
When the DIR takes the form q(x1 ; x8, x9)
5 h* (x1 , x8)h(x1 , x9)d (x8 2 x9), we obtain

g~x1! 5 E dx8u f~x8!u2uh~x1 , x8!u2, (A3)

which is the output of an incoherent system with point-
spread function uh(x1 , x8)u2 and input intensity u f(x8)u2.
In general, partially coherent imaging can be represented
by a bilinear system with a DIR given by q(x1 ; x8, x9)
5 g (x8, x9)h* (x1 , x8)h(x1 , x9), where g (x8, x9) repre-
sents the correlation function of the input light, and
h(x1 , x8) is the coherent impulse-response function.
When g (x8, x9) 5 1, we recover coherent imaging,
whereas when g (x8, x9) 5 d (x8 2 x9), we recover inco-
herent imaging.

Entangled-photon imaging, like partially coherent im-
aging, is described by a bilinear system, with partial en-
tanglement assuming the role of partial coherence.33
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