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Role of primary excitation statistics in the generation of
antibunched and sub-Poisson light
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We examine the coherence properties of stationary light obtained by the superposition of nonstationary indepen-dent emissions occurring at random space-time points. The positions of the points are independent and uniformlydistributed over the volume of the source. The emission times fluctuate in accordance with a stationary renewalpoint process. This process admits of super-Poisson, sub-Poisson, or Poisson behavior. The individual emissionsare assumed to be in a coherent, chaotic, or n state. The statistical nature of the random-emission space-timepoints plays an important role in determining the coherence properties and photon statistics of the total field.This is manifested in the normalized second-order correlation function, which turns out to have the usual form forchaotic light with two additional terms. The first of these is determined by the statistical nature of the individualemissions (it is positive for coherent or chaotic, but zero for single-photon, emissions). The second term is gov-erned by the statistics of the primary excitations (it is positive for super-Poisson, zero for Poisson, and negative forsub-Poisson excitations). Both additional terms become small for light with a high degeneracy parameter (manytotal photons per emission lifetime). The behavior of the light is then asymptotically chaotic. In the oppositelimit, when the degeneracy parameter is small (or the emissions are instantaneous), the correlation properties ofthe primary excitations are directly transferred to the correlation properties of the photons. The first-order spa-tial-coherence properties of the field turn out to be identical with those of chaotic light (i.e., the van Cittert-Zernike
theorem is obeyed), although the second-order properties differ. The photon-counting distribution reflects thecharacter of the correlation function. Thus sub-Poisson primary excitations, together with n-state emissions, canlead to sub-Poisson photon counts under certain conditions. Such nonclassical light may be made arbitrarily in-tense if interference effects are eliminated by detecting many spatial modes. As an example of our theory, we citea Franck-Hertz experiment excited by a space-charge-limited electron beam. If the electron excitations are repre-sented as a sub-Poisson renewal point process, and the photon emissions as one-photon states, the light generatedshould be antibunched and sub-Poisson.

1. INTRODUCTION

It is well known that under most circumstances, the statistical
behavior of photon registrations can be described in terms of
the doubly stochastic Poisson point process (DSPP).' For
such light, the ratio of photon-count variance Var(n) to pho-
ton-count mean (n), designated as the Fano factor Fn (T), is
21 for all choices of the counting-time interval [0, T]. For
pure Poisson light, F(T) = 1, independent of T. DSPP light
is sometimes also called super-Poisson or bunched, since the
photons tend to be emitted in bunches rather than strictly at
random. 2

It has long been recognized that under special circum-
stances, it is possible to generate so-called antibunched light,
for which successive photon emissions are less likely than for
Poisson light.3 4 When the condition 0 < F(T) < 1 is obeyed,
the light is called sub-Poisson. We have recently elucidated
the relationship between antibunched and sub-Poisson light,
demonstrating that these two attributes of nonclassical light
need not necessarily accompany each other. 5 In addition, a
source may or may not exhibit squeezing.6 The measure
F& (T) is useful because it succinctly describes the noisiness
of a light source (in terms of noise-to-signal ratio) relative to
that of an ideal amplitude-stabilized laser (coherent source),
for which F, (T) = 1 for all T. Although ideal laser light has
the useful property of exhibiting coherence to all orders,7
sub-Poisson light is less noisy in a photon-counting paradigm.
Such quiet light may therefore find use in applications such

as optical signal processing and optical communications. It
could also serve as an improved source for investigating many
physical and biological processes, such as the behavior of the
human visual system at the threshold of seeing.8

In recent years, a number of optical processes have been
proposed for generating antibunched light, including degen-
erate parametric amplifications 9 and many other effects in
which light interacts with a nonlinear medium. Mechanisms
that have been considered include two-photon and multi-
photon absorption, Raman and hyper-Raman scattering, the
use of interference in parametric processes, and optical bi-
stability and multistability.10 Viewed in an elementary way,
these nonlinear optical processes operate by removing pairs
(or clusters) of photons from the (Poisson) beam of exciting
light, leaving behind an antibunched residue. The optical
process of resonance fluorescence is, so far, the only phe-
nomenon in which the antibunching effect has actually been
observed. 1 Kimble et al. "1 argued that the observation of
this process is a reflection of the fact that the atom makes a
quantum jump to its ground state at the time a photon is
emitted. The inability of the atom to radiate in the ground
state may be viewed as an enforced dead time12 following
photon emission, during which further emissions are pro-
hibited. This regularizes the photon emissions from a single
atom in resonance fluorescence, leading to antibunching and
sub-Poisson behavior.'34 5 For resonance fluorescence to
operate in this way, however, there must be only a single atom
in the field of view at any given time, because fluctuations in
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Fig. 1. Schematic representation of a two-step process for the generation of light, il-
lustrating stochastic excitations (first line) with either instantaneous single-photon
emission (second line) or Poisson multiple-photon emissions (third line). Interference
effects are ignored in this simple representation. (a) Poisson excitations. (b) Anti-
bunched, sub-Poisson excitations (gamma-2). (c) Pulse-train excitations (random
phase).

the number of active radiators work against the desired ef-
fect.11,15-17

For light generated by a two-step process of excitation and
emission, there are two key effects that regulate its anti-
bunching and sub-Poisson possibilities: (1) the statistical
properties of the excitations themselves and (2) the statistical
properties of the individual emissions. This is most simply
illustrated in terms of the schematic representation provided
in Fig. 1. In Fig. 1(a), we show an excitation process that is
Poisson. Consider each excitation as generating photons
independently. Now if each excitation instantaneously
produces a single photon, and if we ignore the effects of in-
terference, the outcome is a Poisson stream of photons, which
is neither antibunched nor, obviously, sub-Poisson. This is
the least random situation that we could hope to produce,
given the Poisson excitation statistics. Interference will
redistribute the photon occurrences, leading us to the results
for chaotic light (which is both bunched and super-Poisson).17
On the other hand, the individual nonstationary emissions
may consist of multiple photons or random numbers of pho-
tons., In this case, we encounter two sources of randomness,

one associated with the excitations and another associated
with the emissions, so that the outcome will be both bunched
and super-Poisson. In particular, if the emissions are also
described by Poisson statistics, and the counting time is suf-
ficiently long, we recover the Neyman Type-A counting dis-
tribution, as we have discussed in detail elsewhere.18 Even
if the individual emissions are composed of deterministic
numbers of photons, the end result is the fixed-multiplicative
Poisson distribution,' 8 which is super-Poisson. Related re-
sults have been obtained when interference is permitted.' 7 It
is quite clear, therefore, that if the excitations themselves are
Poisson (or super-Poisson), there is little hope of generating
antibunched or sub-Poisson light by such a two-step pro-
cess.

In Fig. 1(b) we consider a situation in which the excitations
are more regular than those for the Poisson. For illustration
and concreteness, we choose the excitation process to be
produced by deleting every other event of a Poisson pulse
train. The outcome is the gamma-2 (or Erlang-2) renewal
process, whose analytical properties are well understood.' 9

Single-photon emissions, in the absence of interference, result

(a)

(c)
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Fig. 2. Schematic representation of an experiment for generating
antibunched and sub-Poisson Franck-Hertz light from the 6eP -
61So atomic transition in Hg. The wavelength of the radiation is 2537
A (hv = 4.88 eV) in the near ultraviolet (see Ref. 5).

in antibunched, sub-Poisson photon statistics. Poisson
emissions, on the other hand, result in super-Poisson light
statistics. Of course, the presence of interference introduces
additional bunching. Clearly, a broad variety of excitation
processes can be invoked for generating many different kinds
of light. A process that is similar to the gamma-2, and for
which many analytical results are available, is the nonpara-
lyzable dead-time-modified Poisson process.' 2 "19 Resonance
fluorescence radiation from a single atom will be described by
a process of this type since, after emitting a single photon, the
atom decays to the ground state where it cannot radiate.
However, the superposition of light from a number of such
atoms will wash out the sub-Poisson behavior.

Finally, in Fig. 1(c), we consider the case of pulse-train ex-
citations (with random phase). This is the limiting result
both for the gamma family of processes and for the dead-
time-modified Poisson process. In the absence of interfer-
ence, single-photon emissions in this case yield antibunched,
ideally sub-Poisson photon statistics. Interference causes the
antibunching to disappear, but the sub-Poisson nature re-
mains in the long-counting-time limit. Poisson emissions give
rise to Poisson photon statistics.

The illustration in Fig. 1 is intended to emphasize the im-
portance of the excitation statistics as a determinant of the
character of the generated light. To produce antibunched
and/or sub-Poisson photons, both sub-Poisson excitations and
sub-Poisson emissions are required. The production of
sub-Poisson light by means of the nonlinear optical processes
discussed above has been difficult because all these processes
involve a struggle, in one way or another, to reduce the Poisson
fluctuations of the exciting optical beam (which is usually
derived from a laser).

This discussion provides the rationale underlying our recent
suggestion5 for producing antibunched and sub-Poisson light
by using the Franck-Hertz effect. Space charge is used to
produce sub-Poisson electron excitations. Since the indi-
vidual emissions are single photons, the generated light can
be antibunched and sub-Poisson (see Fig. 2 for a schematic
representation). This light can be strong if interference ef-
fects are minimized.2 0

Of course, once such light is produced by whatever means,
there are obstacles to maintaining its character. These in-
clude optical absorption (random deletion) and the addition
of spontaneous emission, both of which dilute (but fortunately
do not destroy) the antibunching and sub-Poisson properties
of the light.21'22

Teich et al.

In this paper, we study the effect of primary excitation
statistics on the coherence and photon statistics of light. We
account for the effects of temporal and spatial interference.
Our results will have application in understanding the
mechanisms associated with the generation of nonclassical
light. Other areas in which our model may be useful are in the
production of light from a random number of radiators2 3 24

and in understanding non-Gaussian scattered light.17 25 In
Section 2, we present the mathematical model. The coher-
ence properties and photon statistics of the generated light
are discussed in Sections 3 and 4, respectively. The conclu-
sion is presented in Section 5.

2. MODEL

Consider an optical field generated by a sequence of inde-
pendent emissions at random times tk from radiators located
at random positions {r in a light source of volume V. This
is illustrated schematically in Figs. 3 and 4.

The positive-frequency part of the field at position r and
time t may be written as a sum of independent compo-
nents:

PI(r, t) = v(r, t)dk,
h

(2.1)

where k is the photon-annihilation operator for the kth
emission. Each emission is assumed to be describable by a
single nonmonochromatic mode,7 whose space-time depen-
dence is characterized by the function Vk (r, t). Furthermore,
we assume that the functions Vk (r, t)) are identical in shape
but centered about different space-time points {ra, tk}, i.e.,

vk(r, t) = (r - r, t - tk). (2.2)

The vector r represents the location at which the kth emis-
sion is generated, and the time tk is the time at which it starts
(see Figs. 3 and 4). These space-time points are assumed to
be random points in a four-dimensional space. The times itkl
constitute a stationary random point process.

For simplicity we assume that (r, t) is separable into a
product of time-space functions:

c(r, t) = s(r)t(t). (2.3)

tI t2 t3 tk

Fig. 3. Optical field emissions at the random times ltk}.

SOURCE DETECTOR

V

Fig. 4. Optical field emissions from radiators located at the random
positions r.

-- Tp 
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The function t(t) is taken to be a nonstationary function of
time, but because the emission times tkI are stationary, the
total field is stationary.

We wish to determine the first- and second-order correla-
tion functions of the field,3 denoted G(1) and G(2), respectively.
We first calculate these functions conditioned on a realization
of the emission times tk}, and the locations 1r1, of the radi-
ators. To do this, we use the definitions

G()(rj, t; r2 , t + rI{r, tk) Tr[AP (ri, t)P+(r2 , t + r)],
(2.4)

G(2)(r1 , t; r2 , t + T- rk, tk) = TrlbE (ri, t)
X P(r 2, t + r)E+(r2, t + r)A+(r, t)], (2.5)

where p is the density operator of the field, E- is the nega-
tive-frequency part of the field, and r represents the time
difference. We shall subsequently average Eqs. (2.4) and (2.5)
over the fluctuations of ltkj and rkj, finally to obtain the
correlation functions

G)(ri, r2 , r) = (G(i)(rl, t; r2, t + TIrk, tk})), j = 1, 2.
(2.6)

Here (-) represents a classical ensemble average over the
fluctuations of r4, tk).

A. Statistics of the Emission Times
We assume that the emission times tkI arise as a realization
of a stationary renewal point process of rate it (emissions per
second). A renewal process is characterized by statistically
independent, identically distributed interevent times. If T
is the interevent time (time between two successive emissions),
then the probability density function f(T) completely defines
a renewal process. In Appendix A, we review a number of
important properties of renewal processes that we use in our
development.

(iii) n-state emissions for which

bk = In) (n , (2.10)

where I n) is the number state (Fock state) and the number
of photons per emission is no = n.

All the states considered above share the property that

(2.11)

Furthermore, the expectation values of all odd-order combi-
nations of akt and ak vanish.

3. CORRELATION FUNCTIONS

A. Conditional First- and Second-Order Correlation
Functions
The first- and second-order correlation functions defined in
Eqs. (2.4) and (2.5) may be determined by substitution from
Eq. (2.1), with the help of Eq. (2.11). This leads to

GM')(r 1 , t; r2 , t + 711rIr, tkl) = no Z vk*(rl, t)vk(r2, t + -),
k

(3.1)

G( 2)(r1 , t; r2 , t + -r Ilr, thj) = n02

X {E Ivk(rl, t)v2 E lvi(r2, t + 7)12
k 2

+ E; Vk*(r1 , t)vk(r2, t + T)

-(2- ) >z |vk*(r1, t)vk(r2, t + 20 }2x (3.2)

where

B. Statistics of the Radiators' Positions
We take the positions rkj of the radiators to be independent
of the emission times itk }. The emissions are assumed to be
statistically independent and uniformly distributed within
the volume of the source V.

C. States of the Individual Emissions
The individual emissions are assumed to be statistically in-
dependent and statistically identical. Their state is defined
by the density operator3

P = 171 Pk. (2.7)
k

We consider three important cases:

(i) Quasi-coherent (random phase) emissions for which

Pk = 2 ala)ak a1 - IaoI)d2 a, (2.8)

where a a) is the coherent state and no = o 2 is the average
number of photons per emission;

(ii) Thermal emissions for which

Pk X (1/iriio)exp(- I a I2 /-no) I a) (a I d2 a, (2.9)

with an average of no photons per emission; and

= (ktdktikdk )/(dktk ) 2 (3.3)

The value of $ is easily shown to depend on the state of the
emissions as follows:

(i) Quasi-coherent:

(ii) Thermal:

(iii) n-state:

in particular, for the 1-state:

= 1, (3.4a)

= 2, (3.4b)

0 = 1 - , (3.4c)
no

= O. (3.4d)

We note that these values for / are those usually given for the
normalized second-order correlation function g (2)(0) for sta-
tionary light of each type. In our case, however, : is associ-
ated with individual nonstationary emissions. These emis-
sions have yet to be averaged over the excitation statistics.

The parameters 1 and i-o determine the variance of the
number of photons per emission in accordance with the rela-
tion

Var(no) = no + ( n-l)no2 . (3.5)

It is evident that, for quasi-coherent and thermal emissions,
this variance turns out to be nio and no + 7yo2 , respectively, as
expected. For n-state emissions, on the other hand, Var(no)
= 0.

Teich et al.
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B. Averaging over Emission Times and Positions
By using the properties of stationary filtered marked renewal
processes presented in Appendix A, Eqs. (3.1) and (3.2) can
be averaged over the fluctuations of tra, tk}. This gives rise
to [see Eqs. (A16) and (A17)]

G (1)(r, r2 , T) = 7TOM f r(r 1 , t; r2, t + r)dt, (3.6)

G(2) (r r2, T) = no 2 II2 3 F(r, t; r, t)dt

x | r1 (r2 , t; r2 , t)dt

+ 2 J r(r 1 , t; r2, t + T)dt|

+ p J' r 2 (rl, t; r2 , t + T)dt

+ IL2 pY(T)

(o) r(r 1 , t; r, t)P1 (r2 , t + ; r2, t + r)dt

+ 2p dty(t) : rF(r 1 , t'; r2, t' + r)

X rP(r 1 , t + t'; r2, t + t' + )dt', (3.7)

where

ri(ri, t; r2 , t2 ) (e*(r - r, ti)E(r 2 - r t 2)),

(3.8a)
r 2 (r1 , t; r 2, t2) (I e(r - r tl)12 1e(r 2 - r, t 2)1

2 ).
(3.8b)

By use of Eq. (2.3) and averaging over r, we have

rP(r 1 , t; r2 , t 2 ) = *(ti).(t 2 )D(l)(ri, r2 ), (3.9a)

Teich et al.

g(2)(ri, r2 , T) = [1 + |g(l)(r1 , r2 , T)12] + 0i (r)d(2 )(rj, r2)]

+ P[f11(r) + l2(r)jd()(ri, r2 )i2j- (3.13)

The spatial behavior of G(1), g(l), and g(2) is determined by the
functions

D(1)(r1 , r2) = .5 s(r 1 - r')s(r 2 - r')dr',

D(2)(r1 , r2 ) = V' s(r - r')j2 js(r 2 - r')j2dr',

(3.14a)

(3.14b)

with the normalizations

d(l)(r, r 2) = D(l)(r, r2)/[D(l)(r, r2)D(l)(r 2 , r 2)]l/2 ,

(3.15a)
d(2)(r1 , r2) = D( 2)(r1 , r2)/[D(1)(r, r)D(')(r2 , r2)].

(3.15b)

The temporal characteristics, on the other hand, are governed
by the functions

c(r) = 51 h,(t)dt,

n(r) = ho(r)/ .51: h0
2 (t)dt,

n (T) = ( T) G h 0(T),

n2(T) = . y(t)h,(t)dt,

where h7 (t) and h!(t) are related to t(t) by

hT(t) = *(t)(t + ), ho(t) = (t)12I

(3.16)

(3.17)

(3.18)

(3.19)

F2 (r1 , t; r2 , t2 ) = [t(tO)12 IL(t 2 )I2D(2)(ri, r2 ), (3.9b)

where D(1) and D(2) are related to the spatial function s(r) by
Eqs. (3.14a) and (3.14b).

We next substitute these equations into Eqs. (3.6) and (3.7)
and use the normalizations

(1) (r , r2, ) = G(')(r 1 , r2, T)/

X [G(')(r1 , r,0)G(1)(r2 , r2 , 0)]1/2, (3.10a)

g(2) (r, r27-) = G( 2)(r1 , r2 , )/

X [G(l)(ri, r, )G(1)(r2 , r2 , 0)] (3.10b)

to arrive at the results, which we present in the next subsec-
tion.

C. First- and Second-Order Correlation Functions

1. General Results
When spatial and temporal effects are separable, in
dance with Eq. (2.3), the first- and second-order corrc
functions turn out to be

G(1)(r, r, 0) = ipnoD(I)(r, r),

g(l)(ri r 2, T) = c(r)d(l)(r, r2 ),

h, (t) = J h,*(t')h(t' + t)dt',

ho(t) = f. ho(t')ho(t' + t)dt'. (3.21)

We assume, without loss of generality, that [see Eqs. (3.1) and
(3.2)]

| ho(t)dt = 1. (3.22)

The parameter 6, which appears within the second set of
brackets of g(2) in Eq. (3.13), is given by

6 = A
T

p, (3.23)
where

Tp = I/f h0
2 (t)dt (3.24)

accor- represents the width of the function ho(t), or the emission
elation lifetime. Therefore represents the average number of

emissions per emission lifetime and acts as a degeneracy pa-
(3.11) rameter. Large means that emission wave packets overlap

strongly and interfere with one another. The quantity f3,
(3.12) which also appears within the second set of brackets of g(2),

(3.20)
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is given in Eqs. (3.3) and (3.4). Equation (3.13) is in accord
with our earlier results for Poisson excitations (p = 0),17 when
d = 0,1,2.

2. Physical Interpretation
We are now in a position to ascribe a physical interpretation
to the three clusters of terms comprising g(2)(r1 , r2, r), as given
in Eq. (3.13). The clusters are separated by square brackets.
The first, [1 + gM (rl, r2 , r) 12], is identical with that obtained
for chaotic light.21 7 The second cluster is proportional to 3/(;
it is always nonnegative and represents excess bunching
arising from multiple photons per emission [see Eq. (3.5)]. It
vanishes under two conditions: when : = 0 and/or when 6 >>
1. = 0 corresponds to the case when each emission contains
one and only one photon. 6 >> 1 corresponds to significant
overlap of the emissions, indicating that this excess particle-
like noise is washed away by substantial interference effects.
The third cluster is proportional to p, which is a characteristic
of the statistics of the primary excitations. For Poisson ex-
citations, p = 0. For super-Poisson excitations p is positive,
thereby adding to the bunching, whereas for sub-Poisson
excitations it is negative, leading to a decrease in the
bunching.

In the case of Poisson excitations, only the first two square
brackets in Eq. (3.13) remain. This result is identical with
that which we obtained earlier1 7 (although here we have also
included spatial effects). It is interesting to observe that for
Poisson primary excitations, and for emissions that each
produce a single photon (/3 = 0), g(

2
) = 1 + Ig(l) 12, as for chaotic

light. Furthermore, as we have already pointed out,17 in the
limit of dense emissions at random times, interference causes
the disappearance, in the second-order correlation function,
of the character of the individual emissions (arbitrary /). The
shot-noise fluctuations are such that chaotic behavior is ap-
proached in this limit. This again points up the fundamental
difficulty in attempting to generate antibunched light by
Poisson excitations, as pointed out in Section 1 [see Fig. 1(a)].
On the other hand, if the excitations are sub-Poisson, then p
< 0 and the situation shown in Fig. 1(b) can prevail. To in-
vestigate the behavior of g(

2
) in this regime, we have to make

some simplifying assumptions, such as those considered
below.

3. Exponentially Decaying Wave Packets
The temporal characteristics of the light arise from an inter-
play between the properties of the individuals emissions
[through t(t)) and the properties of the renewal excitations
[through -y(t)]. It is difficult to gain further insight into the
behavior of g(

2 ) in the general case without additional as-
sumptions. Substantial progress can be made, it turns out,
if we consider the individual nonstationary emissions t(t) to
be modeled as exponentially decaying sinusoids. Since this
is a reasonable assumption for individual atomic emissions,
we explore its consequences.

We therefore proceed to obtain the functions in Eqs.
(3.16)-(3.24) in the special case when

(t) =(2/TP)1/
2 exp(-t/Tp)exp(iw0t), t > 0

(3.25)

This leads to

ho(t) = J(2/ r)exp(-2t/rp), t > 0 7 (3.26)

h)(t) = (1/Tp)exp(-21rt/Tp)exp(-21tl/Tp), (3.27a)

ho(t) = (1/rp)exp(-2I t /Tp),

C(r) = exp(-T|/rp)exp(icoor)

(3.27b)

(3.28)

-q(r) = exp(-2 r|/rp). (3.29)
These results immediately prove useful in the next subsec-
tion.

D. Bunching/Antibunching
To assess the bunching/antibunching of the optical field, we
consider the function g(2)(0) = g(2)(r, r, 0). We define
bunching as g(2)(0) > 1 and antibunching as g(2)(0) < 1. From
Eqs. (3.13)-(3.19),

g(2 )(0) = 2 + - + 2p71(0)

since, by using Eqs. (3.18) and (3.19),

nl(°) = 72(0) = E y(t)ho(t)dt.

(3.30)

(3.31)

Now, for exponentially decaying emissions, ho(t) is given
by Eq. (3.27b), and therefore

nii(O) = f y(t)exp(-2t/-r)dt. (3.32)

Thus nj(O) may be computed from the Laplace transform of
(t). We are able to obtain explicit expressions forg(2)(0) for

the special renewal processes considered in Part E of Ap-
pendix A. These are provided below.

1. g(2)(0) for Excitations with Gamma-Distributed Interevent
Times
Using Eqs. (3.30), (3.32), and (A23) gives rise to

771(0) 1 - 2/33.3
= 1 - (1 + 2/Vb)/V - 1'

and therefore

g2() + 41(3334
( (1 + 2/,Ne)W - 1

The behavior of this function is displayed in Fig. 5 for = 0,
with N as a parameter. For / > 1, g(2)(0) increases gradually
from 0 as 6 increases, approaching a fixed value of 2 when ( 3
c. Furthermore, g(2)(0) decreases with increasing JV for any
fixed value of (. JV = 1 corresponds to Poisson primary ex-
citations, which yields g( 2)(0) = 2, independent of 6 = AUTp, in
accordance with Eq. (75) of Ref. 17. Note that N/ can be be-
tween zero and unity, corresponding to bunched excitations.
The result for jV = 0.5 is shown in the figure. In this case,
increasing interference reduces the bunching; again g(2)(0)
2 asb( -.

The condition most favorable to antibunching is JV -
in which case

g(
2
)(0) = + 2/ (3.35)

(3e2 / -1

For / = 0, antibunching [g(2)(0) S 1] is then attained for 6 S
1.6.
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Fig. 5. Bunching parameter g(2)(Q) versus degeneracy parameter 6 = Wlrp on a
semilog scale. The excitation is assumed to be a gamma-N renewal process, and
the emissions are taken to be exponentially decaying. It is further assumed that
# = 0 (single-photon emissions). In the limiting case of ideal antibunching of the
excitations ( - ), the photons will also be antibunched [g(2)(0) < 1], provided
that 6 < 1.6.

2. g 2l(0) for Excitations with Dead-Time-Modified
Poisson Renewal Process
With the help of Eqs. (3.30), (3.32), and (A29), we obtain

71(0) = 1 -

g(
2
)(0) = +

6

2/6

2/6 1 (2 / 
(1 + + D) exp - 1

4/6

(1 + 2/6 ( 2D/) 11+ D I exp I-1+ D \ + D /
for the nonparalyzable dead-time-modified Poisson process.
Here

D = 921d/(l - Mid) = AXrd, (3.38)
where Tq is the dead time. Equation (3.37) is presented (on
a linear scale) in Fig.6. g(2)(o) displays the same kind of de-
pendence on 6 as seen in Fig. 5, with D now playing the role
of Jo. The Poisson is recovered when D = 0. When D - ,
results identical with those in Eq. (3.35) are obtained.

3. g(2)O0) for Random-Phase Pulse-Train Excitations
Substituting Eq. (A.34) into Eq. (3.32), we obtain

1(°= 1 - 2/6 (3.39)

which leads to

g(2)(0) = + 4/6 (3.40)6 e2 1 -I

Equation (3.40) is the same as Eq. (3.35). This is a result of
the fact that the gamma interevent-time process with N -
X and the nonparalyzable dead-time-modified Poisson pro-
cess with D - approach the ideal pulse train with random
phase. In Fig. 7 we show g(2)(0) versus 6, this time with as

- E. Temporal Coherence
The temporal-coherence properties of the radiated field are
described by the functions g)(-r) _ g(')(r, r, -) and g(2)(-) 

(3.37) g(2)(r, r, r). From Eqs. (3.12)-(3.19),

a parameter. Again, g(2)(0) - 2 for 6 >> 1, independent of f3.
It is quite interesting to note that, even with perfectly anti-
bunched excitations, it is impossible to achieve photon anti-
bunching for 2 0.45.

g(')(T) = C(r) (3.41)
and

g(2b77(0= [1 + IC()12] + [ n(r)1 + P[nl(T) + )2(T)I-

(3.42)
It is evident from Eqs. (3.16), (3.20), and (3.41) that first-order
temporal coherence is ultimately determined by the function
t(t), which describes the decay of individual emissions. This
quantity is independent of the statistics of the emission times,
which are characterized by the function y(r).

The second-order correlation function, on the other hand,
represents the two-photon counting rate and depends on both
t(t) and y(-). Equation (3.42) shows that it is composed of
three clusters of terms (in square brackets). Again the first
is the part that is associated with chaotic light.2 17 The second
results from multiple photons in each emission. It depends
on the state of the individual emissions. If the field is in a
one-photon Fock state (n = 1; = 0), each emission contains
a single photon, and the term within the second set of square
brackets vanishes. The terms within the third set of square
brackets are determined by the deviation of the excitation
statistics from a Poisson process. They depend on both (t)
and y(T) in an intertwined manner, as is apparent from Eqs.
(3.18) and (3.19). It is difficult to assess that dependence in

-, (3.316)
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Fig. 6. Bunching parameter g(2)(0) versus degeneracy parameter 6 = bt-rp on a linear
scale. The excitation is assumed to be a nonparalyzable dead-time-modified Poisson
renewal process, and the emissions are taken to be exponentially decaying. It is further
assumed that f = 0 (single-photon emissions). Ideal antibunching of the excitations
occurs in the limit as D = Xrd -' ; this limiting curve is identical with that in Fig. 5 for
sV - Wc.

v

Fig. 7. Bunching parameter g(2)(Q) versus degeneracy parameter ( = -rp on a semilog
scale. The excitation is assumed to be a random-phase pulse train, and the emissions
are taken to be exponentially decaying. The curve for if = 0 is identical with that dis-
played in Fig. 5 (JN = a) and Fig. 6 (D = ), demonstrating that the photons will be
antibunched for 5 • 1.6. It is clear from the figure that it is impossible to achieve anti-
bunching for coherent-state individual emissions (fI = 1) or even for two-photon indi-
vidual emissions. It turns out that g(2)(0) can be made <1 only forf < 0.45.

general. In the following, therefore, we evaluate g(2)(T) in
some interesting special cases and in some useful limits.

1. g2)(T) for Gamma-2 Excitations and Exponentially
Decaying Emissions
When the emission times follow a gamma-2 renewal process,
Y(T) is exponential, as in Eq. (A22). If, furthermore, the time

decay of each emission is governed by an exponentially
decaying function t(t), as in Eq. (3.25), the quantities in Eq.
(3.42) may be evaluated. The final result is

g(2)(r) = [1 + exp(-2r/rp)] + 6 exp(-2r/rp)]

- (1 - 462)'1[exp(-463r/rp) + (1 - 46)exp(-2T/Tp)].
(3.43)
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Fig. 8. Temporal coherence illustrated by the second-order normalized correlation
function g(2)(r) versus r on a linear scale. Curves are shown for various values of the
degeneracy parameter 6 = AlT,. The excitations are assumed to be drawn from a
gamma-2 renewal process, and the emissions are taken to be exponentially decaying.
It is further assumed that /0 = 0 (single-photon emissions), although as 6 the results
are independent of /.

(E)
9 ()L 1 

GAMMA-2 EXCITATIONS:
EXPONENTIALLY DECAYING EMISSIONS;
6=0. 1

10

5=:2

0.1 l l l0 2 3 4

Fig. 9. Temporal coherence illustrated by the second-order normalized correlation
function g(2)(r) versus on a semilog scale. Curves are shown for various values,
of : n = 1 Fock state emissions ( = 0); quasi-coherent emissions ( = 1); chaotic
emissions ( = 2). The degeneracy parameter (6 = 0.1) is chosen to be low. The
excitations are assumed to be drawn from a gamma-2 renewal process, and the
emissions are taken to be exponentially decaying.

This function is shown in Fig. 8 for = 0 with 6 as a pa-
rameter and in Fig. 9 for 6 = 0.1 with 3 as a parameter. Figure
8 demonstrates that the character of g(2)(r) changes dra-
matically with 6. For small 6, g(

2
)(-r) is a nonmonotonic

function of r whose value always remains below unity. The
light is antibunched [g(2)(0) < 1]. For large , g(2)(r) is an
exponentially decreasing function of whose value always

remains above unity. The light is bunched. For much larger
6, the ensuing interference is so pervasive that the results for
chaotic light are recovered, independent of . To point up
the dependence of g(2)Tr) on , we must therefore go to a low
value of 6, as illustrated in Fig. 9, where is chosen to be 0.1.
Increasing is seen to increase the bunching because of
multiple emissions that increase the coincidence rate. But

Teich et al.
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note that all curves approach one another (at a value below
unity) for T/Tp > 3, which corresponds to ,UT 3 or to YTr >
0.3 in this example. It is important to observe thatg(2)(r) can
dip below unity, even for highly clustered chaotic emissions.
The key issue is the relative time scales of the excitations and
the emissions.

2. g2)(r) for Pulse-Train Excitations and Exponentially
Decaying Emissions
When the excitation is a pulse train of random phase, the
function y(t) is given by Eq. (A34). Therefore, using Eqs.
(3.18) and (3.19), we obtain (for the case of arbitrary emis-
sions)

71(T) = 1 - To E ho(r - TO), (3.44)
10

112(T) = IC(r)1 2- To h(T - TO). (3.45)
1 0

The quantity To = 11A is the periodicity of the pulse train.
Substituting these results in Eq. (3.42), and noting that p =

-1, we obtain

(2) (T) 7 X(r) + To E ho(r - TO) + To Z (-r - To).
1X0 10

(3.46)

For the particular case of exponentially decaying emissions,
we use Eqs. (3.25)-(3.29) to arrive at

g(2 )() = exp(-2r/Pr) + [1 + exp(-2r/Tp)]

x E_ exp(-21 -r- 1To|/IT). (3.47)
1,60

Equation (3.47) may be rewritten in the form

g(2)(r) = - exp(-2T/TP) + [1 + exp(-2T/TP)]

exP(-20/6) + exP[-2(1 -)1(] - exp(O2T/NP)j,

(3.48)

where 0 = 0(r) is a periodic triangular function of period To,

O(r) = TITo,
O(r + TO) = O(r),

0 < r < To,
1 = 1,2_ .. (3.49)

For the special region < To, 0 = rTa, 0/6 = -r/rp, and

g(2)(r) = 0 exp(-2r/rP) + 2//;

x [1 + exp(-2r/rp)]cosh(2T/rp), r ' To.
(3.50)

For T = 0, Eq. (3.35) is recovered.
In the limit of small 6, Eq. (3.48) gives rise to

g(2)(,) = 3To6(r) + To [1 + exp(-21/6)]5(3r - ITO).
160

This is a train of 6 functions spaced at multiples of To along

the axis. For 3 = 0, g(2)(0) = 0, confirming that the two-
photon coincidence rate is zero. We also consider the limit
of large ; Eq. (3.50) gives the (special-region) result that

g(2)(r) = [1 + exp(-2r/rp)]cosh(2r/pr),
( >> 1, r < To, (3.52)

independent of /3. This function has a value of 2 at T = 0; Eq.
(3.48) shows that g(2)(T) settles at unity as r - for large

In Fig. 10 we display the dependence of g(2 )(r) on riTo for
/ = 0, with 6 as a parameter. For pulse-train excitations, t

1/TO, so that = iTp = Tp/TO. Thus low means that
single photons are emitted at well-spaced regular intervals,
with little chance of interference between the wave packets.
The two-photon counting rate g(2)(r) is 0 at r = 0 but becomes
large at separations that are in the vicinity of integer multiples
of To. As becomes large, interference becomes increasingly
important and there is a gradual shift toward the classical
behavior of g(2)(r). For ( >> 1, g(2)(0) begins at 2 and decays
exponentially to unity as T - -. The behavior of g(2 )(r) in
this region would be more familiar in a graphical representa-
tion in which the abscissa is T/Tp rather than -rTo.

3. g -2 r(r) for Instantaneous Emissions (p << T or << 1)
We have been able to obtain a number of results for g(2)(T)
under the assumption of exponentially decaying emissions.
We now take a different approach in which we examine some
limiting results for g( 2)(r) without making specific assump-
tions about the form of ha(t) and y(r).

If -rp, the width of the functions t(t), ho(t), and ho(t), is
much smaller than Ter, the width of the function yy(r), then
Eqs. (3.18) and (3.19) may be approximated by

771(r) y(r) f ho(t)dt = y(r)

PULSE-TRAIN EXCITATIONS;
EXPONENTIALLY DECAYING EMISSIONS;

(3.53)

-C/%
Fig. 10. Temporal coherence illustrated by the second-order nor-
malized correlation function g(2 )(r) versus TTO on a linear scale.
Curves are shown for various values of the degeneracy parameter (
= Arp = Tp/TO. Pulse-train excitations are assumed, and the emis-
sions are taken to be exponentially decaying. It is assumed that /
= 0 (single-photon emissions), although as 6 - - the results are in-
dependent of /.
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1. 2

(2)

9 ()

(a)

(b) j'
Fig. 11. Second-order normalized correlation function g(2)(r) versus Ar. These
results apply for instantaneous single-photon emissions, i.e., when Tp <<re (or 6 <<
1) and = 0. (a) Gamma-2 and gamma-4 excitations; (b) dead-time-modified Poisson
excitations.

72(T) f h,(t)dt = IC(T)12. (3.54)

In this limiting case, the emission lifetime is much shorter than
the time over which the primary excitations are correlated,
i.e., the emissions are instantaneous. We may convert this
condition (rp << te) to a condition on the degeneracy pa-
rameter in a rather rough manner. For gamma-N excitations,
r - /t, whereas for dead-time-modified Poisson excitations,

/.LTe tTd(2 -t Trd)-UTd 1 (seeAppendixA). Thisleads
us to the equivalent condition lurp = 6 << 1. The assumption
of instantaneous emissions is essentially equivalent to the
assumption of the absence of interference between emissions,
as is intuitively plausible. Equation (3.42) then becomes

(2) (r) [1 + I(r)121 + 0 7(r)j + p[y(T) + IC(T)12].

(3.55)

In all the renewal-process examples considered in Appendix
A, p -1 (except for the Poisson, where p = 0). The second
terms within the first and third sets of brackets therefore
cancel, resulting in the simplified formula

g( 2
)(r) 1- y(r) + X(T)

'3
Since this expression is valid only for << 1, multiple-photon
emissions will contribute substantially to g(2)(r).

(3.56)

Teich et al.



Vol. 1, No. 3/June 1984/J. Opt. Soc. Am. B 377

Considering the special case of one-photon emissions, for
which 3 = 0, we obtain

g(2)IT) - (Tr). (3.57)

The quantities g(2 )(-r) and y(T) differ by a constant since the
former is a correlation function whereas the latter is a covar-
iance function. Under these conditions, the second-order
temporal correlation function for the light is determined en-
tirely by the correlation function of the primary excitations.
This is an important result. It tells us that the correlation
properties of the excitations are directly transferred to the
correlation properties of the photons. In particular, if the
excitations are antibunched [e.g., if py(0) =-1, y(0) = 1], then
the photons will also be antibunched [g( 2)(0) = 0]. The im-
portant issue in producing antibunching is to avoid interfer-
ence, which destroys it.

This behavior is illustrated graphically in Fig. 11, where we
present g(2 )(6) versus /IT, calculated from expression (3.57).
This expression is applicable when T

p << Te (or 6 << 1) and 3
= 0. In Fig. 11(a) we show the result for gamma-2 and
gamma-4 primary excitations. In Fig. 11(b) we show the re-
sult for dead-time-modified Poisson primary excitations, for
several values of the parameter I-rd. At a value ofUTd =0.75,
the correlation function begins to show features that resemble
the correlation function shown in Fig. 10 (for = 0.1). In the
limit IIL

T
d - 1, the dead-time-modified Poisson correlation

function should become identical with the pulse-train corre-
lation function with - 0.

The results for Poisson excitations require a special word.
The covariance function in this case is a 6 function, so that the
condition of validity for this section, namely, that the width
of functions such as ho(t) be less than the width of -y(r), can-
not be satisfied. Thus formulas (3.56) and (3.57) are not ap-
plicable for Poisson excitations.

4. g(2](jr) for Dense Emissions (T » or ( > 1)
We now consider the opposite limit in which T > Te. For
gamma-V excitations -Te 1/it, whereas for dead-time-
modified Poisson excitations uTe M

Td ' 1. Thus ,P >>
it T

e is essentially equivalent to ( >> 1. Interference therefore
plays an important role. Returning to Eqs. (3.18) and (3.19),
we may approximate them as

ni((T) Teho(T), (3.58)

(3.59)n2(T) Tehr(0) = Teho(T)

in this limit. From Eqs. (3.17) and (3.24),

77(T) 2(T) (Te/Tp)1(T),

so that Eq. (3.42) becomes

g(2)(r) [1 + IC(r)1 2] + 77(T) + 2P(Te/Tp)1(T). (3.61)

Because Tp > Te, and ij(r) is normalized such that its value
is always less than unity, the last term in expression (3.61) may
be neglected, leaving

g(2)(T) 1 + IC(T)12 + 7(T).
5

(3.62)

A further simplification occurs since ( >> 1, whereupon we
obtain the final result that

g(2)T 1 + I () 12. (3.63)

Expression (3.63) is identically the second-order correlation
function for chaotic light, independently of p and y(r) (the
excitation statistics) and of 3 (the state of the individual
emissions).

This is understood in terms of the following. In the limit
of dense emissions at random times, many emissions add to-
gether randomly, producing a stationary circularly complex
Gaussian process for the optical field, in accordance with the
central-limit theorem. This, in turn, leads to the result for
chaotic light represented in expression (3.63). The outcome
is the same whatever the nature of the excitations and the
individual emissions. Only one characteristic of the latter
survives; it is the spectrum of the emissions.

This behavior has already been seen earlier: In Figs. 5-7,
g(2)(0) has been shown to approach the value 2 as - -; in Fig.
8, g(2)(T) approaches expression (3.63) for 6 = 5; and in Fig.
10, g(2)(r) approaches expression (3.63) for 6 = 100.

With regard to Poisson excitations, the -function covar-
iance causes expression (3.62) to be obeyed for arbitrary de-
generacy parameter, as we know from our earlier work.17 Of
course when >> 1, we recover expression (3.63).

F. Spatial Coherence
The spatial-coherence properties of the radiated field, in the
first and second order, are expressed by the functions g(1)(rl,
r2 , 0) and g(2)(r1 , r2, 0) in Eqs. (3.12) and (3.13). These rela-
tions, in turn, are determined by the functions s (r) and d(1)(r,
r2), d( 2)(ri, r2 ) in Eqs. (3.14) and (3.15). s(r) describes the
radiation from a point in the source to the detector. In the
quasi-monochromatic approximation,26 this function is the
spherical wave

s(r) = e-ikr/r, (3.64)

where k and r represent the magnitudes of the wave vector of
the light and the distance between a point in the detector and
a point in the source, respectively. Using Eq. (3.64), we ob-
tain

D(1 )(r1 , r2) = I exp[-ik(lr 2 - r'I - r, - r'l)]dr'
V iV I r 2 -r'i Jr,- r'I

(3.65)

and, in the paraxial approximation,2 6

d(
2
)(r, r2 ) = 1. (3.66)

(3.60) Substituting these results into Eqs. (3.12) and (3.13), we ob-
tain expressions for g(l)(r 1 , r2) - g(l)(rl, r2, 0) and g( 2)(r1, r2)
_ g(2)(ri, r2 , 0):

g(1 )(r1 , r2 ) = d(l)(rj, r2 ), (3.67)

g(2)(r1 , r2 ) = [1 + pni(0)][1 + g(1)(r, r2)12] + 0/. (3.68)

By using Eq. (3.30), this may be written in the form

g( 2)(ri, r2) = I [g(2)(0) - fl/6][1 + Ig(l)(r 1 , r2 )12 ] + 3/6,
2

(3.69)

thereby relating the second-order spatial-coherence properties
to the bunching/antibunching properties of the light.
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Equations (3.15a), (3.65), and (3.67) give rise to a first-order
spatial-coherence function that is identical with that for a
completely incoherent source of uniform intensity, as obtained
from the van Cittert-Zernike theorem.2 6 Our source is
therefore totally equivalent, in its first-order spatial behavior,
to the classical result.

In the second order, however, our source exhibits properties
that are, in general, different from those of an ordinary chaotic
source.26 27 In certain circumstances, however, the distinction
vanishes and we recover the classical result for chaotic light,
viz.,

g(2 )(rl, r2 ) 1 + g(l)(r1 , r2)12 . (3.70)

It is easy to see that expression (3.70) arises from Eq. (3.68)
under the following conditions:

(1) If = 0 (each emission consists of a single photon) and
p = 0 (the emission times follow a Poisson point process),
expression (3.70) follows from Eq. (3.68).

(2) If the degeneracy parameter = AUrp is sufficiently
large, then /6 << 1 and nl(0) << 1, whereupon expression
(3.70) again follows from Eq. (3.68).

If, on the other hand, the only condition that we impose is
that 1 0, then from Eq. (3.69) we find that

g(2)(r, r2 ) = Ig( 2)(0)[1 + g(1)(r, r2)12]. (3.71)
2

The bunching parameter g(2)(0) has been studied in de
Section 3. For sub-Poisson primary excitations with
g(2)(0) generally increases monotonically from 0 to 2 a
creases (see Figs. 5, 6, 8, and 10). The two-photon cot
rate is therefore seen to exhibit precisely the same s
dependence as it does for chaotic light, but with a magi
that can be substantially reduced. In particular, when,
= 0, the photon emissions are spaced apart in time so th
two-photon counting rate is zero for all points on the rec
plane, as is evident from Eq. (3.71).

As an example, we consider Young's experiment. Ir
a source composed of two incremental volumes (poir
positions (x' = 0, y' = a/2, z' = 0) and (x' = 0, y' =-a/.
0). The observation points r1 and r2 are located in a
perpendicular to the z axis, a distance z away. Assumin
z is sufficiently large for the Fraunhofer approximatior
applicable,2 6 it can be shown from Eqs. (3.15a), (3.65),
and (3.68) that

g(l)(r, r2) = cos (Y1 - Y2)]

g(2)(r1 , r2 ) = 2 [g(2)(0) - /6] [1 + cos 2 (Y - Y2)] + I
2 L

= [g(2)(0) - l/] + cos (Y - Y2)j

Here L = z/a, where \ is the wavelength of the light.
joint probability of finding one photon at y] and one p
at Y2 depends on (Yi - Y2) in a sinusoidal fashion.

The two-photon fringe pattern has a visibility cy( 2)
by

Ig(2)(0) - 1/ I
3g(2 )(0) + 1/3I (3.74)

For : = 0 and/or 6 - , (2) = 1/3 (as for chaotic light 26 27),
independent of the primary excitation statistics. As in-
creases, however, cV(2) decreases. Our model (and our result)
differs somewhat from that recently dealt with by Mandel.2 7

He considered the spatial-coherence properties for Young's
experiment in which each source point is composed of a fixed
(or random) number of atomic emitters, in the absence of time
dependence.

4. PHOTON-COUNT STATISTICS

Having studied the coherence properties (correlation func-
tions) of the light generated by our model, we turn now to an
investigation of the photon-count statistics. Let n be the
number of photons that cross an area A of the detector during
the time interval [t, t + T]. Because of stationarity, the
statistics of n are independent of t. We first determine the
mean and the variance of n, and then we discuss the counting
probability distribution under some limiting conditions.

A. Count Mean and Variance
These quantities are determined from the first- and second-
order correlation functions, respectively. The mean number
of counts (n) is given by the integral of the one-photon-
counting rate, i.e.,2,3,28

(4.1)(n ) = fA f GM(1(r, r, t)dtdr.

Using Eq. (3.11), we obtain

(n) =MT(x),

where

(x) = -0 f D(1)(r, r)dr.

(4.2)

(4.3)

Here zT is the average number of emissions in the counting-
lagine time interval T, T1o is the average number of photons per
its) at emission, and (x) is the average number of photons per

Z = emission registered by the detector. The integral in Eq. (4.3)
plane represents the collection efficiency of a detector of area A; also
g that included in this quantity is the internal efficiency of the de-
ito be tector itself.
(3.67), The variance of the count number, Var(n), is related to the

second-order correlation function g(2)(r1 , r2 , t) by2 3 29

(3.72) Var(n) = (n) + (n)2 2 i2 ffJ'J

3/6 x [g(2 )(r1 , r2 , t 2 - t) - 1]dr 1dr2 dt1dt2 .

Using Eqs. (3.12), (3.13), and (3.66), we obtain
+ /. 1 2 T (

Var(n) = (n) + (n) 2 - I -J j 1
(3.73) AT OffA ~

The X {Ic()d(1)(ri, r 2)12 + 77(T)
hoton

+ p[mr() + 72 (T)Id(1)(ri, r2 ) 12] dridr2 dT,
given

(4.4)

(4.5)

where we have taken d(2)(r1 , r2) = 1. This then leads to
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Var(n) = [(n) + + [(X) (n)l + p [(f)2+ MMJ
mmdJ A FLM-, M2MsJI 

(4.6)

where

from Eq. (4.6) that

Var(n) = (n) + M-1 + [ X (n)j+ [ M + MM2]
s mm, JAtR I M ~WM14)

(4.14)

Ms -1 = J f A Id ()(r,, r2)12 drldr2 ,

M1=2f £ (1 -,TIc )12,
T (1

MJ1 = T (1 - /T)kl()dT,T Jo

M2_ = 2 T (1- /T)72(,)d,
T o

.l= 2 fT ( - T,(d.

The second and fifth terms, representing wavelike fluctu-
(4.7) ations, cancel when p = -1 and/or M, -O . In either case,

Var(n) = (n) + (n) + p (n) -
44 ~Ml'(4.8) (4.15)

We now demonstrate that, in this approximation, the photon
(4.9) counts may be viewed as a renewal excitation point process,

cascaded with randomly deleted photon emissions (governed
by the parameters 3 and (x )).

(4.10) The Burgess variance formula21'2 2 may be written as

Var(n) = (m)Var(x) + (x) 2 Var(m),(4.11)

The parameter Ms represents the spatial degrees of free-
dom, 28 29 whereas the quantities M, Ml, M2, and 44 represent
temporal degrees of freedom associated with the functions
IC(T)12, nl,(T), 2(T), and 77(r), respectively.

The expression for the count variance is composed of three
distinct contributions, indicated by the square brackets in Eq.
(4.6). These are obviously directly associated with the three
contributions comprising the second-order correlation func-
tion in Eq. (3.13). The first cluster is identically the variance
for chaotic light; the parameters Ms and M are the usual
spatial and temporal degrees of freedom that are well known
in the photon-statistics literature. 28 2 9 The second set of
brackets represents multiplicative noise associated with
multiple emissions; 44 is the associated degrees-of-freedom
parameter.' 7' 18 Note that (x) multiplies ,B in this term so that
it becomes less important as (x) decreases.21 When each
emission is identically a single photon (n = 1 Fock state), 
= 0, and this contribution vanishes. The third set of square
brackets in Eq. (4.6) reflects the fluctuations in the primary
excitations. Terms within it disappear when the excitations
are Poisson, since then p = 0. The parameters Ml and M2
represent the degrees-of-freedom parameters associated with
the relative widths of the counting time T and combinations
of the excitation function y(t) and the emission function (t).
Again, it is this contribution that is of essential interest to us
here, since we are principally exploring the role of primary
excitation statistics in the generation of antibunched and
sub-Poisson light. In the following we study the behavior of
Ml and M2 for a number of special cases and in certain special
limits.

1. Limiting Case of Instantaneous Emissions (Tp << r or
<< 1)
When rp << Te [see Eqs. (3.24) and (A9)], 71(T) and n2(r) are
approximated by Eqs. (3.53) and (3.54), respectively. The
expressions for Ml and M2 in Eqs. (4.9) and (4.10) then sim-
plify considerably and are given by

= s (1 - /T)y(,)d, = M '-, (4.12)

(4.16)

where x is the number of photons arising from a single emis-
sion that are collected by the detector. The mean of x given
by Eq. (4.3), and from Eq. (3.5), its variance is

Var(x) = (x) + (- 1)(x)2, (4.17)

in the limit of large counting time T, where A = 1. If m is the
number of excitations in the time T, then, from Eqs. (A6) and
(A7),

(m) = T,

Var(m) = (m) + p ( 2
Me

(4.18)

(4.19)

where Me is given by Eq. (A8). Combining Eqs. (4.16)-(4.19)
leads to Eq. (4.15), so that, for instantaneous emissions (i.e.,
in the absence of interference) and for a long counting time
T, the photon counts do indeed behave as classical particles,
as indicated in the previous paragraph.

2. Example: Instantaneous Emissions with Gamma-2
Excitations
If the interemission times are described by a gamma distri-
bution of order JV = 2, then p, Te, and y(r) are given in Eq.
(A22). Used in conjunction with Eq. (A8), this leads to

Me = 202/(e 20 + 20 - 1), (4.20)

where

0 = TITe = 2T = 2(n)/(x). (4.21)

If we make use of Eq. (4.15), the ratio between the count
variance and the mean (which is known as the index of dis-
persion or Fano factor F) is then

Var(n) /3 (n)
Fn = ()= 1 + (x)-

(n) 44 Me

which, with the help of Eq. (4.20), becomes

Fn = 1 + (x) - (x) 2[exp(-4(n)/(x))

+ 4(n)/(x) - 1/8(n). (4.22)

M2 = M, (4.13)

where Me is the degrees-of-freedom parameter associated with
the primary excitation process [see Eq. (A8)]. It then follows

In Fig. 12, we plot Fn versus (n) for several values of (x),
under the restriction that = 0. In this case, each emission
contains only a single photon, so that the parameter (x)
represents the collection efficiency of the detector and the
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102 10-' 100 10' 102
(n)

Fig. 12. Fano factor (count variance-to-mean ratio) versus average count (n) for
gamma-2 excitations with instantaneous emissions (Tp << Te - 3 << 1). Single-photon
emissions ( = 0) are assumed. The mean number of detected photons per emission
(x) is shown as a parameter. The results demonstrate the loss of sub-Poisson behavior
introduced by small counting times and random deletion. For (n) >> 1 and (x) =
1, Fn - 0.5, whereas for (x) = 0.1, Fn 0.95.

results are independent of At. The maximum sub-Poisson
behavior is captured for large T/Te, whereupon Fn = 1 -
(x )/2. Note that Fn is then independent of (n ), so that the
photons behave in a particlelike way. Indeed, we could have
formulated our approach in terms of a quantity Ate, in analogy
with Eq. (4.11) for A, rather than in terms of the quantity Me
defined by Eq. (A8).

For (x) = 1, Fn varies from a value of 1.0 for small (n) to
0.5 for large (n), where the particlelike anticlusters are all
captured. The light is sub-Poisson. As the collection/de-
tection efficiency (x) decreases, Fn increases. This of course
arises from the additional fluctuations imparted by the in-
dependent random deletions associated with the collection
and detection processes. The light is Poisson for small (n)
and sub-Poisson for large (n). Note that the condition of
validity of Eq. (4.22) is that Tp << 'e, i.e., -p << 1/2bt or = MTp

<< 0.5. Therefore, for a given value of rp, A is upper bounded.
Large (n) may be attained by using a large counting time T.
Again, this behavior is identical with that associated with
classical particles.

3. Long-Counting-Time Limit with Many Spatial Modes
Detected (T >> i-p, T i'e, M >> 1)
If the counting time T is much larger than both Tp and 'Fe (or,
equivalently, if (n) >> (x) and (n) >> (x)), Eqs. (4.8)-(4.11)
lead to

Az 1, (4.23)

M T/-r, rp = 2 f Ic()12d, (4.24)

Ml-l 2 J' nl(-r)dT

=- X y(T)d- = M- = e1T, (4.25)

M2-1 ':Z- 2 S 2 (-)d,

= 2 - (t) 3X ht (t')dt' 2dt, (4.26)

where rTp is the width of I c()j2. For an exponentially
decaying filter, -rp = P. Note that Sf ilj(-r)dr = Jo y(-r)dr,
independent of the relation between -rp and i-e. If, further-
more, the area of the detector is sufficiently large that M >>
1, the interference terms containing M- 1 in Eq. (4.6) may be
neglected. This then leads to

Var(n) = (n) + (x) n) + p (n 
Me

= (m)Var(x) + (x)2 Var(m), (4.27a)

where Var(x) and Var(m) are given by Eqs. (4.17) and (4.19),
respectively. Equation (4.27a) is identical with Eq. (4.15) in
the limit At = 1. The Burgess variance formula is again sat-
isfied under these conditions, and the photons behave like
classical particles.

If, in addition, = 0 and p = -1,

Fn = 1 - -e(x), (4.27b)

where of course ltTe < 1 and (x) < 1. This is a simple and
useful result, which bespeaks essentially optimal sub-Poisson
behavior. We may associate an overall effective efficiency -qeff
with the quantity iUe (x), and an effective number of trials
N with TITe, whereupon Eq. (4.2) indicates that (n) = N,
Eq. (4.27a) shows that Var(n) = (n) (1 - neff), and Eq. (4.27b)
provides that Fn = ( -eff). These statistics are presented
in the usual form for a binomial distribution. For gamma-V
excitations, Eq. (4.27b) becomes Fn = 1 - (x) + ((x)/N).
When (x) = 1, the result is Fn = 1/N, whereas when N - ,
the outcome is Fn = 1 - (x). This latter result is the most
usual form for the binomial and is in accord with Eq. (10) of
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Ref. 5. For pulse-train excitations, Eq. (4.27a) shows that
sub-Poisson behavior can be achieved only for < 1.

4. Long-Counting-Time Limit with Exponentially
Decaying Emissions T >> T, Tp'; T >> Te)
When T >> rp, Trp and T» Te, the degrees-of-freedom pa-
rameters may be approximated by expressions (4.23)-(4.25).
We now fold in the additional restriction that t(t) be expo-
nential, as in Eq. (3.25), but relax the condition that M, = .
Substituting Eqs. (3.25)-(3.29) in expression (4.26) yields

M2=1 y(t)exp(-2t/rp)dt = 1/2 nji(0),
T So T

(4.28)

where Eq. (3.31) has been used. fi(O) is given by Eq. (3.32),
and by Eqs. (3.33), (3.36), and (3.39) for the special primary
excitation processes considered earlier. The count variance
in Eq. (4.6) is then given by

Var(n) = (n) + ( 2 + (x)(n)
M T/-r

+ p[(n)2+ (n)2 01(0)1
[Tile 2M, T/r I

(4.29)

which corresponds to a Fano factor

Fn = [1 + ( + PIeTi)(X)] + X + pii(O)b] (4.30)

where 3' = A-r'
As an example, we consider gamma-V excitations. If we

use Eq. (A22) and p = -1 together with Eq. (3.33), Eq. (4.30)
reduces to

F = + +:( W) () s ( + /V o2I

(4.31)

Assuming further that: = 0 and (x) = 1 leads. to the result
that

Fn = + M + 2 )- 25 (4.32)

Furthermore, if a large number of spatial modes are detected,
M- Xo, and we recover the simple result that

Fn = 1/V, (4.33)

in accord with the expression for the gamma-N primary re-
newal excitation process [see Eq. (A24)]. This is again a sit-
uation in which the classical behavior of the primary excita-
tions is transferred directly to the photons.

The dependence of the Fano factor Fn on the degeneracy
parameter 6 [Eq. (4.32)] is shown in Fig. 13(a) with N as a
parameter, when M, = 1 (solid curves) and M, = (dashed

GAMMA-X EXCITATIONS
EXPONENTIALLY DECAYING EMISSIONS
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1 2 30
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Fig. 13. Fano factor F versus degeneracy parameter ( for gamma-N excitations in the long-counting-time limit (T >> Tr, Te). The emissions
are assumed to be exponentially decaying. The mean number of detected photons per emission (x) = 1. Solid curves represent the detection
of a single spatial mode (M, = 1), whereas dashed curves represent the detection of a large number of spatial modes (M, = -). (a) Single-photon
emissions (O = 0). Note that the photon-counting distribution will be sub-Poisson (Fn < 1) for all , provided that JN > 1 and M. = a. (b)
Poisson photon emissions ( = 1) with an average of one photon per emission ((x) = 1). Note that the photon-counting distribution will be
super-Poisson (Fn > 1) for NV < O.
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curves). In all cases : = 0 and (x) = 1. For M = 1, the light
is seen to be sub-Poisson only when 6 is small. For the V =
- curve, it is clear that F < 1 for 6 < 1.4, whereas from Fig.

5 we see thatg(2)(0) <1 for 6 < 1.6. Thus, when 1.4 5 6 5 1.6,
the light is antibunched but super-Poisson. This is not pro-
hibited, as we pointed out previously,5 since g(2)(7) is non-
monotonic, as is seen from Fig. 10. For jV = 2, F <1 for 6 5
0.6, whereas g(2)(0) < 1 for 6 < 0.5. When 6 is large, wave
fluctuation noise drives the light toward super-Poisson be-
havior, in spite of the primary sub-Poisson excitations (for N
> 1). For V = 1, F = 1 + , as expected. It is important to
note that the wave fluctuations are suppressed as M, in-
creases; indeed, as M -> C, the light remains sub-Poisson for
arbitrarily large values of the degeneracy parameter. This
means that an intense source of sub-Poisson light (op >> 1)
can be realized if many spatial modes are detected.

The result for Poisson emissions, with an average of one
photon per emission ( = 1, (x ) = 1) is shown in Fig. 13(b) for
comparison. As is evident from Eq. (4.31), sub-Poisson be-
havior is no longer possible under any conditions (F. 2 1).
The Poisson nature of the individual emissions contributes
an irreducible randomness, as displayed schematically in Fig.
1. For JV = 1 (Poisson excitations) F& = 2 + , in accord with
the proper result for this special case of the Neyman Type-A
distribution.18

5. Short-Counting-Time Limit with One Spatial Mode
Detected (T << 7 p, T << Te, MS - 1)
In the opposite limit of short counting time and small detector
area, Eqs. (4.8)-(4.11) yield

M 1, Ml-' 1(°),

M2-1 ~~ n2(0) nl(°),

At - plT, (4.34)

and, by assumption,

Ml- = 1 - 2 To T (1- nT) E ho(r - To)dr,

(4.38)

-1 = M-1 - 2T 3' (1 -TT) E h7 (lTo)dn
T o 1,0

(4.39)
When t(t) is exponential, Eq. (3.27) yields

Ml-' = 1 + 2M1 - 2/6 1 X (1 - T/T)
6 I/ - e-2 T . T/T)

X (exp[-20(nr)/b] + expl-2[l - (nr)]/1)dnr, (4.40)

M2-1 = 1- 2/6 -, (4.41)

where a(t) is the periodic triangular function defined by Eq.
(3.49).

In the limit 6 >> 1, Eq. (4.41) provides that Ml-' 0, M 2 -1
- 0, so that when = 0, Eq. (4.6) becomes

Var(n) = (n) + (n ) 2,
MMs

(4.42)

as for ordinary chaotic light. In the limit 6 << 1, on the other
hand,

Ml-l ~T(T ol°)bt 1 O~-o( -o.),

M2 M, (4.43)
where 0o = (T) is given by Eq. (A36). Taking A = 0, we
have

Var(n) = (n) - [(x) (n) - (x) 20o(1 -
0o)]

= T(x) (1 - (x)) + (x) 20o(1 - o). (4.44)

For (x) = 1, this is simply

Var(n) = 0(l -00),

Ms 1. (4.

This leads to a count variance from Eq. (4.6) given by

T
Var(n) = (n) + (n) + (X) - (n) + 2p(O)(n)2

np

=~~~ ()+()|++2 ni(0)J. (4.

By using Eq. (3.30), this can be written as

Var(n) = (n) + n) 2 [g( 2 )(o) - 1]; (4:

Eq. (4.37) is of course consistent with Eq. (4.4) for short T and
small A. In this case, the behavior of Var(n) is determined
directly by the behavior of g(2)(0), so that bunching/anti-
bunching corresponds to super-/sub-Poisson behavior, as il-
lustrated previously for time behavior alone.5

6. Pulse-Train Excitations with Exponentially Decaying
Emissions
When the excitation is a train of periodic pulses with random
phase, Eq. (A34) can be used in Eqs. (3.18), (3.19), (4.9), and
(4.10) to determine Ml and M2. The result is that

(4.45)

35) reproducing Eq. (A35). In this limit (6 << 1, , = 0, (x) = 1),
the primary excitation statistics are transferred directly to the
photons. Choosing a value (x) < 1 introduces random dele-
tion of the photons through spatial and efficiency loss. Thus
Eq. (4.44) represents the count variance for a randomly de-
leted periodic pulse train of random phase.

36) B. Counting Probability Distribution
The probability distribution of the number of photons n
crossing a given area A in the time interval [0, T] is related to
the field operators by29

Pn(n) (:lWne-1/n!:), (4.46)

where

= J f fTBk(r, t)p+(r, t)drdt. (4.47)

The symbols:: represent (time and) normal ordering of the
operators. In our case, E+(r, t) is given by Eqs. (2.1), (2.2),
and (2.3). The operation of averaging in Eq. (4.46) represents
a quantum-mechanical expectation as well as a classical av-
erage over the random excitation times tk and locations {rk}-
It is apparent that the problem of evaluating Eq. (4.46) is
formidable.

Teicb et al.
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Under certain special conditions, however, p(n) may be
determined from simple arguments. If the counting time T
is long in comparison with the emission lifetime 7-p, (T >> rp),
and if the total mean number of emissions in the interval T
is large (T >> pL 1), almost all emissions occurring in the time
interval [0, T] produce photons in the same interval, provided
also that the detector area is sufficiently large. These are
essentially the conditions of Section 4. A.3. The number of
collected photons n is then determined from the number of
emissions m by first assigning to each emission a random
number of photons no. The outcome is then randomly de-
leted by a Bernoulli process of success probability =
SA D (')(r, r)dr, which is the collection/registration efficiency
in accordance with Eq. (4.3). The statistics of the number of
emissions m is, of course, obtained from renewal theory (see
Appendix A). Excitations may not always result in emissions,
but a randomly deleted renewal process remains a renewal
process, 30 so we have lost no generality by assuming that all
excitations result in emissions.

If Gm(z), GnO(z), and Gn(z) are the probability-generating
functions of m, no, and n, respectively [G(z) = (X)i,
then2 1

,
2 2

Gn(z) = Gm[Gno(l - 77 + 77Z)].

p (n)
n

0.2

(4.48)

The probability distribution pn (n) may be obtained from
Gn (z) by using the standard rule2 8 :

= I n Gn |

In the following we consider two simple cases.

0.1

(4.49)

1. pn) for Long Counting Time and Single-Photon
Emissions (T - , = 0)
If nO = 1, i.e., emissions are in the n = 1 Fock state, 3 = 0 and
GnO(z) = z. In that case Eq. (4.48) gives

Gn(z) = Gm(1 - q + z). (4.50)

The photon-counting distribution pn (n) is then a randomly
deleted version of the distribution of the number of primary
excitations, pm (m), so that Eq. (4.50) is equivalent to22

Pn(n) = E- () 77(1 -)kflpm(k) (4.51)
k=n n

In the simplest situation in which the primary excitations arise
from a periodic pulse train [i.e., pm(k) = k,mO or k = O
deterministically],

pn(n) = (MO) n(1 - q)mo-n, (4.52)

which is the binomial distribution 5,31
If the primary excitations are instead described by the more

general gamma-N renewal process, p (m) is given by Eq.
(A26). This distribution is shown graphically in Fig. 14(a) for
a fixed mean count (m) = 10, with /N as a parameter. Curves
are shown for V = 1 (solid curve, Fn = 1.0); N = 2 (dashed-
dotted curve, Fm = 0.52), and N = 4 (dashed curve, Fm =
0.27). The curve for N = 1 is the Poisson. The gamma-N
counting distribution is always sub-Poisson for V > 1, nar-
rowing as N increases in accordance with the approximate
variance-to-mean ratio Fm 1/JV given in Eq. (A24). In the
limit N -X , pm (m) becomes a delta-function counting dis-
tribution.

0.0

m

(a)

30

n
(b)

Fig. 14. (a) Excitation-counting probability distribution pm(m)
versus count number m for the gamma-N counting process in the
limit of long counting times. The mean excitation count (m) = 10,
and J is a parameter. JV = 1 (solid curve; Poisson distribution); JV
= 2 (dashed-dotted curve); .N = 4 (dashed curve). All these distri-
butions are sub-Poisson for N> 1. As J , pm(m) approaches
a 6 function. (b) Photon-counting probability distribution pn(n)
versus count number n for the randomly deleted gamma-4 counting
process in the limit of long counting times. This result is appropriate
for single-photon emissions ( = 0). All these distributions are always
sub-Poisson. The mean photon count (n) = (m) = 10, and 1 is the
deletion parameter. ij << 1 (solid curve; Poisson distribution); 7

0.7 (dashed-dotted curve); ij = 1 (dashed curve; gamma-4 distribu-
tion).

The deleted distribution Pn (n) can be obtained in numer-
ical form from Eqs. (4.51) and (A26). The outcome will re-
main a renewal-process counting distribution.3 0 The result
is illustrated in Fig. 14(b) for N = 4 and (n) = (m) = 10.
The deletion parameter 77 takes on three values: 1 << 1 (solid
curve, Fn = 1.0); = 0.7 (dashed-dotted curve, Fn = 0.50); and
X = 1 (dashed curve, Fn = 0.27). In the limit - 0, all such
distributions approach the Poisson, so the solid curve is
identical with the solid curve in Fig. 14(a). In the limit 1 =
1, all emitted photons are collected and counted, so that the
distributions of n and m become identical. Thus the dashed
curve in Fig. 14(b) is the same as the dashed curve in Fig. 14(a),
viz., the gamma-4 counting distribution. For intermediate
values of 7, Fn lies between the two extremes, i.e., 1/N Fn
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< 1, as is evident from the dashed-dotted curve. These dis-
tributions will always be sub-Poisson.2 1 Increasing NV, with
n and (n) held fixed, narrows the distribution.

IP(n)

2. pn(f) for Long Counting Time and Quasi-Coherent
Emissions (T - , = 1)
If each emission is in a coherent state, nO has a Poisson dis-
tribution and 3 = 1. In this case

GnO(z) = exp[(z - 1)nO], (4.53)

so that the result for the probability-generating function is

Gn(z) = Gmlexp[(z -1)nO]J. (4.54)

Using the rule for conditional probability distributions,' 8 we
obtain

Pn(fl)= E Pm(m). (4.55)
m=0 n 

It is clear that the photon-counting distribution Pn (n) can be
computed for an arbitrary excitation-counting distribution
Pm(i). If the excitations m are themselves Poisson, the
photon-counting distribution Pn (n) is the Neyman Type-A
distribution that we have discussed extensively elsewhere.' 8

If the excitations follow the binomal distribution, the pho-
ton-counting distribution becomes the binomial/Poisson
distribution.

If the excitations are characterized by a gamma-J renewal
process, then the distribution Pm (m) represented in Eq. (A26)
can be used in Eq. (4.55) to compute the photon-counting
distributions. The character of the family of gamma-
.N/Poisson distributions is illustrated graphically in Fig. 15
for various values of N and (x) = ino. In Fig. 15(a), we
present the gamma-JV/Poisson distribution with (x) = 7TnO
= 5.0 and with (m) = 2, to provide a final mean count fixed
at (n) = 10. N takes on the values 1 (solid curve), 4
(dashed-dotted curve), and 10 (dashed curve). The Fano
factor Fn for the three curves is 6.0, 2.7, and 1.8, respectively.
The result for V = 1 corresponds to the Neyman Type-A
distribution,' 8 for which F = 1 + (x). As N -> X, the pri-
mary process increasingly resembles a random-phase pulse
train, so that pn (n) approaches the Poisson limit. In Fig.
15(b), V is fixed at 2, and (x) and (m) are varied, subject to
the constraint that the product (n) = (x) (m) = 10. The
solid curve corresponds to (x) = 10, (m) = lO,Fm = 1.5; the
dashed-dotted curve to (x) = 5, (m) = 2, Fn = 4.0; and the
dashed curve to (x) = 1, (m) = Fn = 7.7. The Fano factor
increases as (x ) increases but always remains below the cor-
responding value for the Neyman Type-A distribution. This
is because the gamma-2 primary distribution is narrower than
the Poisson of identical mean.

All these distributions are always super-Poisson, as is ap-
parent from Fig. 1 and Eq. (4.31). An expression for the
gamma-J/Poisson Fano factor Fn can be obtained by using
the asymptotic approximation for Fm in Eq. (A24), together
with the Burgess variance theorem. 2", 22 The result is that

Fn 1 + -iFto/N. (4.56)

F, approaches unity for i7T - 0 and/or N -> X, corre-
sponding to heavy random deletion and/or pulse-train exci-
tations, respectively. Expression (4.56) behaves similarly to
the Fano factor for the shot-noise-driven doubly stochastic

P (n)

n

(a)

n
(b)

Fig. 15. Photon-counting probabilitydistributionpn(n) versus count
number n for the gamma-J/Poisson counting process in the limit of
long counting times. This result is appropriate for quasi-coherent
individual emissions ( = 1). All these distributions are always
super-Poisson. (a)-(x) = qFTO= 5, (m) = 2, (n) = 10, withJVasa
parameter. N = 1 (solid curve; Neyman Type-A distribution); N =
4 (dashed-dotted curve); N = 10 (dashed curve). As JV pa, (n)
approaches the Poisson. (b) JV = 2, (n) = (x)(m) = 10, with (x)
and (m) as parameters. (x) = 1, (m) = 10 (solid curve); (x) = 5,
(i) = 2 (dashed-dotted curve); (x) = 10, (m) = 1 (dashed curve).

Poisson process (SNDP),21 where N plays the role of the de-
grees-of-freedom parameter A; however, here large NV is as-
sociated with a narrow counting distribution for the primary
process, whereas large St in the SNDP is associated with the
cutting apart of particlelike clusters in the final point pro-
cess.

5. CONCLUSION

There are three distinct measures that have been used in
modern optics for characterizing the statistical nature of a
source of light. These are defined by the terms (1)
bunched/antibunched, (2) super-Poisson/sub-Poisson, and
(3) nonsqueezed/squeezed. Each corresponds to a different
experimental paradigm, viz., (1) coincidence detection, (2)
photo-counting detection, and (3) heterodyne detection, re-
spectively.' These manifestations of nonclassical behavior can
exist in various combinations, depending on the particular
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nature of the radiation.5 Classical light is bunched, super-
Poisson, and nonsqueezed. If one or more of the comple-
mentary conditions are obeyed, the light is defined as non-
classical. Ideal laser light lies just at the bottom edge of the
classical boundary: It is neither bunched nor antibunched
[g(

2
)(T) = 1 for all fJ, it is precisely Poisson [F (T) = 1 for all

-T], and it is not squeezed.
We have studied the antibunching and sub-Poisson prop-

erties of nonclassical light generated by the two-step process
of excitation followed by emission. Antibunching is defined
in terms of the normalized second-order correlation function
of the light and represents the two-photon coincidence
probability. It was one of the earliest parameters to be in-
vestigated in connection with the coherence properties of
classical light, 2 and it continues to find use in applications such
as photon-correlation spectroscopy and the determination of
the diameters of stars (for which the light is assumed to be
thermal). Our principal focus in the following is on the be-
havior and applications of sub-Poisson light. The individual
emissions in our examples are all nonsqueezed, leading us to
expect that the stationary light generated by the superposition
of these emissions will also be nonsqueezed.

Sub-Poisson (or quiet) light appears to have several po-
tential areas of usefulness. Two of these are (1) as an im-
proved source for investigating physical and biological pro-
cesses, such as the behavior of the mammalian and non-
mammalian visual system at threshold,8 and (2) as an im-
proved source for use in signal processing and direct-detection
fiber-optic communication systems. Its allure stems from the
low value of the count variance-to-mean ratio F,(T). This
measure succinctly describes the noisiness of a light source (in
terms of noise-to-signal ratio) relative to that of the ideal
amplitude-stabilized laser, for which it is unity for all T. It
follows that the probability of error, which characterizes the
performance of a communication system, will be reduced by
the use of sub-Poisson light. Potential applications, such as
those cited above, provide added motivation for studying the
mechanisms involved in generating such radiation.

We have discussed the conditions required to produce
strong sub-Poisson light by means of a two-step process.
These are (1) the use of sub-Poisson (classical) excitation
statistics, (2) the generation of independent one-photon
(quantum-mechanical) emissions, and (3) the avoidance (or
averaging) of interference effects. Under these circumstances,
the classical primary excitation statistics will be directly
transferred to the photons. This is true both for the sec-
ond-order correlation function and for the photon counts.
The process may be viewed as the inverse of photodetection,
in which the statistical character of photons is transferred to
photoelectron counts.

A way of achieving these conditions is provided by the
Franck-Hertz experiment, as we have recently reported. 5 If
space charge is used to regularize the spacing of the electrons
in their travels through the passive atomic medium, the ex-
citation statistics are rendered sub-Poisson. Emissions then
occur in the form of one-photon states as the excited atoms
spontaneously decay from their first excited state to the
ground state (63P,-63So in Hg). Finally, the light is collected
from a large solid angle. This provides the spatial integration
that averages the interference, thereby allowing the degen-
eracy parameter to be large and the source to be intense. An
elementary treatment of this process has already been pro-

vided5 ; the results of the more complete model considered here
reduce to those obtained in Ref. 5 if it is assumed that the
emissions occur instantaneously (p << Te).

If any of the three conditions cited above is violated, the
nonclassical nature of the light is compromised. Indeed,
super-Poisson (or even Poisson) excitations, and/or classical
emissions (coherent or thermal), always result in bunched and
super-Poisson light. If the excitations are ideally sub-Poisson
and single-photon emissions ensue, but interference effects
are not averaged, sub-Poisson behavior is possible only for
weak sources (low values of the degeneracy parameter). Of
course, if the number of steps in the process is increased be-
yond two (as it is in an optical amplifier, for example), the
initial sub-Poisson behavior will be diminished. 3 2 3 3

There are many methods for generating light, and it is in-
teresting to see how our analysis may relate to them. The
laser, which is a highly nonlinear device, links the photon
emissions together by means of stimulated emission. These
emissions are therefore not independent, so that our model
will not apply. It would be interesting to study the effect of
excitation statistics on the coherence properties of light gen-
erated in the presence of stimulated emission and satura-
tion.

The generation of antibunched and sub-Poisson light by
means of nonlinear optical processes also does not fit the
model of our analysis. As an example, we consider single-
atom resonance fluorescence because it is the only effect that
has thus far successfully been used to generate nonclassical
light.1 1"15 In this case, the (laser-photon) excitations are
Poisson; it is the nonindependence of the one-photon emis-
sions that allows the effect to occur. This is because the atom
returns to its ground state when a photon is emitted and
cannot immediately reradiate. For resonance fluorescence
radiation to behave in this manner, however, there must be
only a single atom in the field of view at any one time. Fluc-
tuations in the number of active radiators work against the
effect.1 5-7 So too does the Poisson convergence theo-
rem,3034-37 which holds that the superposition of a large
number of independent, stationary, orderly processes
asymptotically approaches the Poisson process under suitable
conditions of sparseness.

There are a number of extensions of our model that could
prove useful. For simplicity, we have chosen renewal-process
excitation times and (separable) uniformly distributed radi-
ator positions. Other processes that take on sub-Poisson
behavior could be used to model the excitations. For the same
reasons (viz., simplicity of analysis), we have assumed that the
individual emissions are statistically independent, identical,
and single mode (though not necessarily monochromatic).
The state of the emissions was chosen to be coherent, chaotic,
or n-state. These assumptions may be relaxed, leading to a
study of light whose emissions may be correlated, multimode,
and/or in states other than those cited above.

There are various limiting conditions on the calculations
that we have carried out. Correlation functions higher than
second order could be computed, providing expressions for
higher-order multiple-photon-coincidence counting rates.
These would be interesting for some of the more unusual
sources of light that we have examined. Finally, our mathe-
matical investigation of the photon-counting distributions has
been sketchy. Only some rough characterizations have been
provided, and these are based on heuristic reasoning. An
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attempt should be made to derive proper distributions ana-
lytically for arbitrary values of the counting time T.

APPENDIX A: SOME SALIENT PROPERTIES
OF RENEWAL PROCESSES

A renewal process is a point process with independent in-
terevent times. If the process is stationary, the interevent
times are identically distributed and the process is charac-
terized completely by the probability density function f(T) of
the interevent timeT. In this appendix we review some of the
properties of stationary renewal processes.' 9

F m q ( ) d A i ( l 2 t a

From Eqs. (A8) and (A9), it follows that

Me 1, T << Te,

Me T/Te, T >> Te-

C. Filtered Renewal Processes
Let

X(t) = E h(t - tk)
k

A. Density and Covariance Function
The density and the covariance function of a point process are
defined by

= lim (NAt(t))/At,
At No+

o(r) = lim [(NAt(t)NAt(t + r))-(NAt(t))2 ]/(At)2 ,
At-O+

(Al)

respectively, where NT(t) is the number of events in the in-
terval (t, t + T).

For a renewal process,

= 1/(T7),

be a filtered renewal process, where the tk) are realizations
of a renewal point process and h(t) is an arbitrary impulse-
response function. The mean and the autocorrelation func-
tion of X(t) are then easily shown to be

(X(t)) = A f h(t)dt (A13)

and

(X*(t)X(t + T))

= (X*(t)) (X(t + T)) + y)h(T) + y2py(T) ® h(T), (A14)

respectively. The symbol 0 represents the convolution,
and

h(r) 3- h*(t)h(t + T)dt. (A15)

O(Tr) = gb(r) + A2p'y(r),
where

py(T) = q(T) - 1,
A1

P = - q(O) - 1,

and q(-) is a symmetric function [q(-r) = q(r)I satisfying

q(T) = (r), r > O.

The function q (r) is the inverse Laplace transform of

(A4)

Q(s) = Q(s)/[l - Q(s)], (A5)

where Q(s) is the Laplace transform of f(T).

B. Counting Statistics
The mean and the variance of the number of events m in an
interval of duration T, m = NT(t), are

(m) = T

and

Var(m) = () + p(m)2/Me, (A7)

respectively. This expression is cast in a familiar form with
Me behaving like a degrees-of-freedom parameter, given by

(A2)

D. Filtered Marked Renewal Processes
Let Xj(t) = k h(ak, t - tk), with j = 1, 2, be two filtered
renewal processes, where the tkI are described by a renewal
point process and where ak are independent and identically
distributed random variables. Then

(Xj(t)) = f (hj(a, t))adt, j = 1, 2 (A16)

and

(Xl*(t)X2 (t + T))

= (X*(t)) (X2 (t)) + ,U (hl*(a, t)h2 (a, t + T))adt

+ 2p-y(-r) 3r (hj*(a,t))a(h2(a,t+ T))adt, (A17)

in analogy with Eqs. (A13) and (A14) above.

E. Examples

1. Exponentially Distributed Interevent Times
This is the simplest of all renewal processes. The interevent-
time probability density is

The quantity

Te = 2 '7(T)dT

Furthermore,

p =O

represents the width of the function y(T). It can be shown
that

(A19)

and

Var(m) = (i). (A20)

(A10)

(All)

(A12)

(A8)

(A9)

f(T) = e yrU(T), U(T) = (A18)
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The results are, of course, familiar since the process is Poisson.
A correlation time cannot be defined for this process because
it has zero memory (the covariance is a 5 function); the
characteristic time between events is simply the inverse of its
rate, i.e., 11A.

2. Gamma-Distributed Interevent Times
In this case

X = /(1 - TA (A28)

The quantity rd is a parameter (dead time), and D = XTd. It
can be shown that

p = -1,

1 + Xd [(T rd)]11
Y(r) = 1 Z

X 1=1 ( -)!

(A21)(Mj )N;TX-1 f(CT) = (N)X1! e- "tl)

where /N is a parameter representing the order of the distri-
bution. We shall refer to this as the gamma-N/ renewal pro-
cess. As is well known, it may be generated from a Poisson
point process by the selection of every Nth event.19 There
does not appear to be a formula available for y(r) in the case
of arbitrary jV. However, we have proved the following re-
sults:

p = -1,

y(r) = exp(-4|ttrj), N = 2,

y(T) = [exp(-8/|tj) + exp-4yjrj)sin(4jTrj)], N = 4,

Te = (-;)/M. (A22)

The Laplace transform of y(r), on the other hand, is available
for arbitrary N. It is given by

T(s) = - Q (s) , '
s 1

Q(s) = [(1 + s/J N - 1]-1. (A23)

X exp[-X(-r - Td)]U(T -Td), r 0 (A29)

and

Te = Td(
2

- Td)

For T» Ter,

Var(m) (m)/(l + Xrd) 2
= (m)(1 - rd)

2
,

Fm (1 - Td)
2
,

whereas for T << Te,

Var(m) (i).

Fm 1.

(A30)

(A31)

(A32)

This process is always sub-Poisson. Of course, in the limit
as Td - 0, it approaches the Poisson point process. The
counting distribution has been discussed in detail else-
where.12

4. Pulse Train of Random Phase
Finally, we consider the deterministic interevent time den-
sity

(A33)

For T >> Te, the asymptotic count variance
factor become19

Var(m) (I)/N,

Fm 1/N,

and the Fano

(A24)

which corresponds to a periodic pulse train. We assume that
the pulse train has random phase to ensure the stationarity
of the process. This process has the following properties:

p = -1,

whereas for T << T
e

Var(m) (i),

Fm 1.

7(7) = 1 - To 6T- ITO).
lo0

(A34)

Furthermore,

(A25)

Thus, for N > 1, the counting distribution for the process is
sub-Poisson. If the process is turned on at t = 0, the proba-
bility distribution of m is given by

NA=m+ N -1 (VT)k -
p(mn) = E y e (A26)

k=.AVm k!

The gamma-distributed interevent-time process may be
generalized by allowing V to take on continuous, rather than
integer, values. This is accomplished by using the continuous
extension (n - 1)! - P(n). In this case 0 < JN < 1 corre-
sponds to a super-Poisson gamma-JV renewal process.

3. Dead-Time-Modified Poisson Process
For a nonparalyzable dead-time-modified Poisson point
process12,19

f(T) = X exp-X(?-T - d)]U(T - Td), (A27)

Var(m) = Oo(1 -O), (A35)

with

Oo = T/To-L, (A36)

where L is the largest integer that is smaller than T/To. As
T/To increases, it is clear that (m) increases, while Var(m)
is constrained to be <0.25. Thus the index of dispersion,
Var(m)/(m), decreases toward 0 as (m) increases. The
counting distribution approaches a delta function in this limit.
The periodic pulse train with random phase is the limit of
many renewal processes, such as the gamma-N as N -- and
the nonparalyzable dead-time-modified Poisson process as
Xrd - '-
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