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Fractal character of the neural spike train
in the visual system of the cat
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We used a variety of statistical measures to identify the point process that describes the maintained discharge
of retinal ganglion cells (RGC’s) and neurons in the lateral geniculate nucleus (LGN) of the cat. These mea-
sures are based on both interevent intervals and event counts and include the interevent-interval histogram,
rescaled range analysis, the event-number histogram, the Fano factor, the Allan factor, and the periodogram.
In addition, we applied these measures to surrogate versions of the data, generated by random shuffling of the
order of interevent intervals. The counting statistics reveal 1/f-type fluctuations in the data (long-duration
power-law correlation), which are not present in the shuffled data. Estimates of the fractal exponents mea-
sured for RGC- and their target LGN-spike trains are similar in value, indicating that the fractal behavior
either is transmitted from one cell to the other or has a common origin. The gamma-r renewal process model,
often used in the analysis of visual-neuron interevent intervals, describes certain short-term features of the
RGC and LGN data reasonably well but fails to account for the long-duration correlation. We present a new
model for visual-system nerve-spike firings: a gamma-r renewal process whose mean is modulated by fractal
binomial noise. This fractal, doubly stochastic point process characterizes the statistical behavior of both
RGC and LGN data sets remarkably well. © 1997 Optical Society of America [S0740-3232(97)00202-0]
1. INTRODUCTION
The sequence of action potentials recorded from cat reti-
nal ganglion cells1–16 (RGC’s) and lateral-geniculate-
nucleus (LGN) cells17–21 remains irregular even when the
retina is thoroughly adapted to a steady stimulus of fixed
luminance. The statistical properties of these spike
trains has generally been investigated from the point of
view of the interevent-interval histogram (IIH), which
provides a measure of the relative frequency of intervals
of different durations. The mathematical model most
widely used to describe the IIH is the gamma renewal
process (GRP), though point processes incorporating
refractoriness1,4,8,10,11,14 have also been investigated.
However, there are properties of a sequence of action

potentials, such as long-duration correlation or memory,
that cannot generally be inferred from measures that re-
set at short times, like the IIH.22 The ability to distin-
guish features such as these demands the use of mea-
sures such as the event-number histogram (ENH) or the
periodogram (PG), which can extend over time (or fre-
0740-3232/97/030529-18$10.00 ©
quency) scales corresponding to many events. In this pa-
per we examine the variability and correlation properties
of the maintained discharge from RGC and LGN neurons
over a broad range of time scales. The analysis of these
discharges reveals that the spikes behave as fractal se-
quences.
Fractals are objects that possess a form of self-

similarity: Parts of the whole can be made to fit to the
whole by shifting and stretching. In the context of a one-
dimensional stochastic point process, a fractal data set ex-
hibits clustering, with smaller clusters of events forming
part of larger clusters of clusters and so forth, over a
range of cluster sizes. The hallmark of fractal behavior
is power-law dependence in one or more statistical mea-
sures, over a substantial range of the time or frequency
scale at which the measurement is conducted.23 Fractal
signals are also said to be self-similar or self-affine.
Perhaps the simplest example of a measure that re-

veals fractal behavior in the spike train is provided by the
estimated rate of neural firing, which is displayed in
1997 Optical Society of America
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Fig. 1(a) for the maintained discharge of a cat LGN cell.
The rate estimate is formed by dividing the number of
spikes in successive counting windows of duration T by
the counting time T. The rate estimate of the randomly
shuffled version of the data is presented in Fig. 1(b).
From a comparison of Figs. 1(a) and 1(b) it is apparent

that the magnitude of the rate-estimate fluctuations de-
creases more slowly with increasing counting time for the
original data than for the shuffled version. Fractal pro-
cesses exhibit slow power-law convergence: The stan-
dard deviation of the rate decreases more slowly than
1/AT as the averaging time increases.24 Nonfractal sig-
nals, such as the shuffled LGN spike train, on the other
hand, exhibit fluctuations that decrease precisely as
1/AT. The shuffling process removes the fractal charac-
ter of the spike train by destroying the long-term correla-
tion among the interevent intervals. Since both the data
and its shuffled surrogate possess the same IIH, it is quite
clear that the IIH does not reveal the long-duration cor-
relation present in the data at hand.
Fractal behavior is ubiquitous in sensory systems. Its

presence has been observed in cat striate-cortex neural
spike trains,25 and in the spike train of a locust visual
interneuron, the descending contralateral movement
detector.26 It is present in the auditory system of a num-
ber of species; primary auditory (VIII-nerve) nerve fibers

Fig. 1. Rate estimates formed by dividing the number of events
in successive counting windows by the counting time T. (a)
Rate estimate for a cat lateral-geniculate-nucleus (LGN) cell (file
name MD2-LGN) generated with the use of four different count-
ing times (T 5 1, 5, 10, and 50 s). The fluctuations in the rate
estimate converge relatively slowly as the counting time is in-
creased. This is characteristic of fractal processes. The conver-
gence properties are quantified by event-number measures such
as the rate standard deviation (RSD), the Fano factor (FF), the
Allan factor (AF), and the periodogram (PG). (b) Rate estimates
from the same recording as that in (a) after the intervals are ran-
domly reordered (shuffled). This maintains the same relative
frequency of interval sizes but destroys long-term correlations
(and therefore the fractal behavior) arising from other sources,
such as rate fluctuations. For such nonfractal signals the rate
estimate converges more quickly as the counting time T is in-
creased. The stimulus was a uniformly illuminated screen (with
no temporal or spatial modulation) of luminance 33 cd/m2. The
data presented here are typical of the 26 data sets examined.
in the cat,27–31 the chinchilla,32 and the chicken33 all ex-
hibit fractal behavior. It is present at many biological
levels, from the microscopic to the macroscopic34,35; ex-
amples include ion-channel behavior,27,36–38 neurotrans-
mitter exocytosis at the synapse,39 spike trains in rabbit
somatosensory-cortex neurons,40 spike trains in mesen-
cephalic reticular-formation neurons,41 and even the se-
quence of human heartbeats.42,43 In almost all cases the
upper limit of the observed time over which fractal corre-
lations exist is imposed by the duration of the recording.
The GRP cannot describe the fractal behavior present

in RGC and LGN spike trains. Indeed, no nonfractal re-
newal process can do so, since memory is required. We
therefore construct a fractal, doubly stochastic point pro-
cess that incorporates multiscale fluctuations into the
gamma-r renewal process. We show that this process
provides a good description for the characteristics of the
RGC and LGN maintained discharges.
In Section 2 we briefly outline the techniques used to

acquire RGC and LGN nerve-spike trains, and in Section
3 we present the theoretical background for the statistical
measures that we utilize. The results are reported in
Section 4, and the gamma-based fractal stochastic point-
process (FSPP) model is framed in Section 5. The discus-
sion is provided in Section 6, where the relative merits of
other FSPP models are set forth.

2. MATERIALS AND METHODS
The experimental methods are similar to those used by
Kaplan and Shapley.44 Experiments were carried out on
adult cats. Anesthesia was induced by intramuscular
(IM) injection of xylazine (Rompun 2 mg/kg), followed 10
min later by IM injection of ketamine HCl (Ketaset 10
mg/kg). Anesthesia was maintained during surgery with
intravenous (IV) injections of thiamylal (Surital 2.5%) or
thiopental (Pentothal 2.5%). During recording, anesthe-
sia was maintained with Pentothal [2.5%, 2–6 (mg/kg)/h].
The local anesthetic Novocain was administered, as re-
quired, during the surgical procedures. Penicillin
(750,000 units IM) was also administered to prevent in-
fection, as was dexamethasone (Decadron, 6 mg IV) to
forestall cerebral edema. Muscular paralysis was in-
duced and maintained with gallium triethiodide
[Flaxedil, 5–15 (mg/kg)/h] or vecuronium bromide [Norcu-
ron, 0.25 (mg/kg)/h]. Infusions of Ringer’s saline with 5%
dextrose at 3–4 (ml/kg)/h were also administered.
The two femoral veins and a femoral artery were can-

nulated for IV drug infusions. Heart rate and blood pres-
sure, along with expired CO2, were continuously moni-
tored and maintained in physiological ranges. For male
cats the bladder was also cannulated to monitor fluid out-
flow. Core body temperature was maintained at 37.5 °C
throughout the experiment by wrapping the animal’s
torso in a dc heating pad controlled by feedback from a
subscapular temperature probe. The cat’s head was
fixed in a stereotaxic apparatus. The trachea was cannu-
lated to allow for artificial respiration. To minimize res-
piratory artifacts, the animal’s body was suspended from
a vertebral clamp and a pneumothorax was performed
when needed.
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Eyedrops of 10% phenylephrine hydrochloride (Neo-
synephrine) and 1% atropine were applied to dilate the
pupils and retract the nictitating membranes. Gas-
permeable hard contact lenses protected the corneas from
drying. Artificial pupils of 3-mm diameter were placed in
front of the contact lenses to maintain fixed retinal illu-
mination. The optical quality of the animal’s eyes was
regularly examined by ophthalmoscopy. The optic disks
were mapped onto a tangent screen, by backprojection, for
use as a positional reference. The animal viewed a uni-
formly illuminated CRT screen (Tektronix 608, 270
frames/s, or CONRAC, 135 frames/s) with a fixed lumi-
nance level.
A craniotomy was performed over the LGN (center lo-

cated 6.5 mm anterior to the earbars and 9 mm lateral to
the midline of the skull), and the dura mater was re-
sected. A tungsten-in-glass microelectrode (5–10-mm tip
length)45 was lowered until spikes from a single LGN
neuron were isolated. The microelectrode simulta-
neously recorded RGC activity, in the form of S poten-
tials, and LGN spikes, with a timing accuracy of 0.1 ms.
The output was amplified and monitored using conven-
tional techniques. A cell was classified as Y-type if it ex-
hibited strong frequency doubling in response to contrast-
reversing high-spatial-frequency gratings and X-type
otherwise.46,47

The experimental protocol was approved by the Animal
Care and Use Committee of Rockefeller University and
was in accord with the National Institutes of Health
guidelines for the use of higher mammals in neuroscience
experiments.

3. ANALYSIS TECHNIQUES
A. Point Processes
The statistical behavior of a nerve-spike train can be
studied by replacing the complex waveform of an indi-
vidual action potential recorded electrically by a single
number that records the time of the peak (or other desig-
nator) of the action potential. In mathematical terms the
nerve-spike train is then viewed as an unmarked point
process. This simplification greatly reduces the compu-
tational complexity of the problem and permits us to use
the substantial methodology previously developed for sto-
chastic point processes.
The occurrence of a nerve spike at time ti is therefore

simply represented by an impulse d (t 2 ti) at that time,
so that the sequence of action potentials is represented by

s~t ! 5 (
i

d ~t 2 ti!. (1)

As illustrated in Fig. 2(a), a realization of a point process
is specified by the set of occurrence times $ti% of the
events. A single realization of the data is generally all
that is available to the observer, so that the identification
of the point process, and the elucidation of the mecha-
nisms that underlie it, must be gleaned from this one re-
alization.
One way in which the information in an experimental

sequence of events can be made more digestible is to re-
duce the data into a statistic that emphasizes a particular
aspect of the data at the expense of other features. These
statistics fall into two broad classes,22,48 which have their
origins, respectively, in the sequence of interevent inter-
vals $ti% [to be distinguished from the occurrence times

Fig. 2. (a) The sequence of action-potential waveforms is re-
duced to a set of event occurrence times $ti% that form a point
process. (b) A sequence of interevent intervals $ti% is formed
from the time between successive events, resulting in a discrete-
time, positive, real-valued stochastic process. All information
contained in the original point process is preserved in this repre-
sentation, but the discrete-time axis of the sequence of interevent
intervals is randomly distorted relative to the real-time axis of
the point process. (c) The sequence of counts $Ni%, a discrete-
time, nonnegative, integer-valued stochastic process, is formed
from the point process by recording the numbers of events in suc-
cessive counting windows of duration T. Information is lost in
mapping the point process to the sequence $Ni%, but the amount
lost can be made arbitrarily small by reducing T. An advan-
tage of this representation is that no distortion of the time axis
occurs.
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$ti%], represented in Fig. 2(b), and in the sequence of
counts $Ni%, represented in Fig. 2(c). Measures based on
interval and counting statistics are discussed in Subsec-
tions 2.B and 2.C, in turn.
We first consider the homogeneous Poisson point pro-

cess (HPP), which is the simplest of all stochastic point
processes.49 It is described by a single parameter, the
rate l. The HPP is memoryless: the occurrence of an
event at any time t0 is independent of the presence (or the
absence) of events at other times t Þ t0. Because of this
property, both the intervals $ti% and the counts $Ni% form
sequences of independent, identically distributed (iid)
random variables. The HPP interval process is therefore
completely characterized by the interevent-interval dis-
tribution (which is exponential) or the event-number dis-
tribution (which is Poisson). The HPP serves as a bench-
mark against which other point processes are measured
and therefore plays the role that the white Gaussian pro-
cess plays in the realm of continuous-time stochastic
processes.50

A related point process is the nonparalyzable fixed-
dead-time-modified Poisson point process (DTMP),51 a
close cousin of the HPP that differs only by the imposition
of a dead-time (refractory) interval after the occurrence of
each event, during which other events are prohibited from
occurring. Another cousin is the gamma-r renewal
process48 (GRP) which, for integer r, is generated from a
HPP by permitting every rth event to survive while delet-
ing all other events. Both the DTMP and the GRP re-
quire two parameters for their description. Both of
these, as well as the HPP, belong to the class of renewal
point processes, which will be defined in Section 3.B.
However, nonrenewal point processes are required to

describe spike trains in the visual system. Of particular
interest are fractal stochastic point processes (FSPP’s),
in which one or more statistics exhibit power-law
behavior.23 One feature of such processes is the rela-
tively slow (power-law) convergence of the rate estimate,
as illustrated in Fig. 1(a).

B. Interevent-Interval Measures of a Point Process
We employ two statistical measures to characterize the
discrete-time stochastic process $ti%, which is a sequence
of positive real-valued random variables, as illustrated in
Fig. 2(b). These are the IIH and rescaled range analysis
(R /S).

1. Interevent-Interval Histogram
The IIH (often referred to as the interspike-interval his-
togram, or ISI, in the physiology literature) displays the
relative frequency of occurrence pt (t) of an interval of size
t ; it is an estimate of the probability-density function of
interevent-interval magnitude [see Fig. 2(b)]. It is, per-
haps, the most commonly used of all statistical measures
of point processes in the life sciences. The IIH provides
information about the underlying process over time scales
that are of the order of the interevent intervals. Its con-
struction involves the loss of interval ordering and there-
fore dependencies among intervals; a reordering of the se-
quence $ti% does not alter the IIH, since the order plays no
role in the relative frequency of occurrence.
Some point processes exhibit no dependencies among
their interevent intervals at the outset, in which case the
sequence of interevent intervals forms a sequence of iid
random variables and the point process is completely
specified by its IIH. Such a process is called a renewal
process, a definition motivated by the replacement of
failed parts (such as light bulbs), each replacement of
which forms a renewal of the point process.
The HPP, the DTMP, and the GRP are all renewal pro-

cesses. The interevent-interval probability-density func-
tion for the HPP assumes the exponential form

pt~t! 5 l exp~2lt!, (2)

where l is the mean number of events per unit time. The
interevent-interval mean and standard deviation are
readily calculated to be ^t& 5 1/l and st 5 1/l, respec-
tively, and the coefficient of variation (CV) is therefore
C [ st /^t& 5 1.
The interevent-interval probability-density function for

the DTMP exhibits the same exponential form as that for
the HPP but is truncated at short interevent intervals as
a result of the dead time:

pt~t! 5 H0l exp@2l~t 2 td!#

0 < t , td
t > td

, (3)

where td is the dead time and l is the mean rate of the
process before dead time is imposed. After the imposi-
tion of dead time the mean rate is

m 5
l

1 1 ltd
. (4)

The interevent-interval mean and standard deviation are
^t& 5 1 /m 5 td 1 1/l and st 5 1 /l, respectively, and
the CV is C 5 (1 1 ltd)

21 , 1. In the remainder of
this paper the symbol m is used to refer to the mean rate
of an arbitrary point process; the symbol l is usually re-
served for the HPP.
The interevent-interval probability-density function for

the GRP is the gamma distribution:

pt~t! 5
~mr !rt r21 exp~2mrt!

G~r !
, t > 0, (5)

where m is the mean rate, r is the order of the process,
and G(r) 5 *0

` xr21exp(2x)dx is the gamma function
evaluated at r. In general, r is not constrained to be an
integer (0 , r , `). The interevent-interval mean and
standard deviation are ^t& 5 1 /m and st 5 1 /mAr, re-
spectively, and the CV is C 5 1/Ar, which can be either
less than or greater than unity depending on the value of
r. For r , 1 (r . 1) the gamma distribution is overdis-
persed (underdispersed) with respect to the exponential,
for which C 5 1. The GRP reduces to the HPP for the
special case r 5 1.
For nonrenewal processes, dependencies exist among

the interevent intervals, and the IIH does not completely
characterize the process. In that case measures that re-
veal the nature of the dependencies provide information
that is complementary to that contained in the IIH. The
sequence of action potentials in visual-system neurons
falls in this class.
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2. Rescaled Range Analysis
R/S provides information about correlations among blocks
of interevent intervals. For a block of k interevent inter-
vals, the difference between each interval and the mean
interevent interval is obtained and successively added to
a cumulative sum. The normalized range R(k) is the dif-
ference between the maximum and minimum values that
the cumulative sum attains, divided by the standard de-
viation of the interval size. R(k) is plotted against k.
Information about the nature and the degree of correla-
tion in the process is obtained by fitting R(k) to the func-
tion kH, where H is the Hurst exponent.52 For H . 0.5
positive correlation exists among the intervals, while H
, 0.5 indicates the presence of negative correlation; H
5 0.5 obtains for intervals with no correlation. For
negatively correlated intervals, an interval that is larger
than the mean tends, on average, to be preceded or fol-
lowed by one smaller than the mean.
This widely used measure is generally assumed to be

well suited to processes that exhibit long-term correlation
or have a large variance,52–55 but it appears not to be very
robust since it exhibits large systematic errors and highly
variable estimates of the Hurst coefficient for fractal-
Gaussian-noise processes.56 In any case, it appears not
to have been used previously in visual-system spike-train
analysis.

C. Event-Number Measures of a Point Process
It is advantageous to study some characteristics of a point
process in terms of the sequence of event numbers
(counts) $Ni% rather than through the sequence of
intervals $ti%.

22,43,48,57

Figure 2(c) illustrates how the sequence is obtained.
The time axis is divided into equally spaced, contiguous
time windows, each of duration T s, and the (integer)
number of events in the ith window is counted and de-
noted Ni . This sequence $Ni% forms a discrete-time ran-
dom counting process of nonnegative integers. In gen-
eral, information is lost in the transformation from the
point process to the counting process, since the specific oc-
currence times of the events within each window are ig-
nored. Nevertheless, for regular point processes, the in-
formation loss can be rendered arbitrarily small by the
use of counting windows that are sufficiently short.
Closely related to the sequence of counts is the sequence
of rates (events/second) Ri , which is obtained by dividing
each count Ni by the counting time T (this is the measure
that is used in Fig. 1).
We employ a number of statistical measures to charac-

terize the counting process $Ni%: the event-number his-
togram (ENH), the Fano factor (FF), the Allan factor (AF),
and the event-number-based periodogram (PG). We also
include the normalized coincidence rate (NCR) because of
its important role in linking the other statistical
measures.

1. Event-Number Histogram
Just as the IIH provides an estimate of the probability-
density function of interevent-interval magnitude, the
ENH pN (N; T) provides an estimate of the probability-
mass function of the number of events N occurring in a
time window of length T. Construction of the ENH, like
the IIH, involves loss of information, in this case the or-
dering of the counts. However, whereas the time scale of
information contained in the IIH is the interevent inter-
val, which is intrinsic to the process under consideration,
the ENH reflects behavior occurring on the time scale of
the counting time T. Since this time is externally speci-
fied by the observer, the character of the process at arbi-
trary time scales, including those spanning multiple in-
terevent intervals, can be examined by the use of this
measure.22 For the HPP the probability-mass function is
the simple Poisson distribution

pN~N; T ! 5
~lT !N exp~2lT !

N!
. (6)

The event-number distribution for the DTMP51 is con-
siderably more complex than Eq. (6) because the possible
overlap of a dead-time interval across the boundary of ad-
jacent counting windows results in correlation between
the numbers of events in these intervals. As a result, the
counts $Ni% are no longer independent, though they be-
come approximately so for counting times much greater
than the dead-time interval. In this limit the
probability-mass function approaches Gaussian form.57

The exact probability-mass function for the GRP is
similarly complex, but the central limit theorem again
provides a simple approximation for large values of T:

pN~N; T ! > A r
2pmT

exp F 2r
2mT

~N 2 mT !2G . (7)

Additional information pertaining to a point process
can also be revealed by particular characteristics of the
ENH. For example, a sawtoothlike form for the ENH, re-
vealing higher probabilities for even than for odd num-
bers in a counting time T, implies that events tend to oc-
cur in pairs separated by less than T s.
The moments of the ENH, such as the event-number

variance and mean, and their ratio, provide succinct and
useful information about the process, as sketched in Sub-
section 3.C.2.

2. Fano Factor and Rate Standard Deviation
The FF, F(T), is defined as the event-number variance
divided by the event-number mean, which is a function of
the counting time T:

F~T ! 5
var@Ni~T !#

^Ni~T !&
. (8)

This quantity provides an abbreviated way of describing
correlation in a sequence of events. It indicates the de-
gree of event clustering or anticlustering in a point pro-
cess relative to the benchmark HPP, for which F(T) 5 1
for all T. This latter result is readily derived by calcu-
lating the count mean ^Ni(T)& and the count variance
var [Ni(T)], which, with the help of Eq. (6) for the Poisson
distribution, leads to

var @Ni~T !# 5 ^Ni~T !& 5 lT. (9)

Thus F(T) 5 1 for all counting times T for the HPP.
In fact, the FF must approach unity at sufficiently

small values of the counting time T for any regular point
process because only zero or one event can be registered
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in an arbitrarily short counting window for such a pro-
cess. The sequence of counts then becomes a sequence of
Bernoulli random variables, with a value of 0 or 1, and
with a mean event number equal to the probability p of
observing an event in the counting window. The vari-
ance of the Bernoulli distribution is simply p(1 2 p), so
that

lim
T→0

F~T ! 5 lim
T→0

p~1 2 p !

p
5 1, (10)

since p → 0 as T → 0.
For the DTMP the dead time imposes anticlustering

(more regularity) on the point process for all but the
shortest counting times. This anticlustering reduces the
variance relative to the mean, which suppresses F(T) so
that it lies below unity. The asymptotic result for a HPP
subject to nonparalyzable fixed dead time, valid in the
limit of large T, is58

lim
T→`

F~T ! 5 ~1 2 mtd!2 5 ~1 1 ltd!22, (11)

where m and l represent the post- and pre-dead-time
event rates, respectively. When ltd is appreciable, the
imposition of dead time produces a nearly periodic series
of events since one is always available immediately after
the termination of the dead-time interval. The process is
therefore anticlustered relative to the HPP and, as a con-
sequence, has lower count variance and FF.
The GRP may be either less clustered or more clustered

than the HPP, depending on the order r of the process.
The asymptotic result, valid in the limit of large T, is

lim
T→`

F~T ! 5
1
r
. (12)

In general, a FF less than unity indicates that a point
process is more regular than the HPP at the particular
time scale T, whereas an excess over unity indicates in-
creased clustering at the given time scale.22,23,48 This
measure is sometimes called the index of dispersion; it ap-
pears to have been first used by Fano59 in 1947 for char-
acterizing the statistical fluctuations of the number of
ions generated by individual fast charged particles.
For a FSPP, the FF assumes the power-law form Ta

(0 , a < 1) for large T. The parameter a is defined as
the fractal exponent (or the scaling exponent) of the point
process. The fractal exponent is ambiguously related to
the Hurst exponent H, since some authors have used the
quantity H to index fractal Gaussian noise (FGN)
whereas others have used the same value of H to index
the integral of FGN [which is fractional Brownian motion
(FBM)].56 The relationship between the quantities is a
5 2H 2 1 for FGN and a 5 2H 1 1 for FBM. We
avoid this ambiguity by using a rather than H.
There are several measures that are equivalent to the

FF: These include the variance–time curve,48 relative
dispersional analysis,55 and the rate standard deviation
(RSD) versus counting time.60 The connection between
the RSD and the FF is made by the use of Ri 5 Ni /T,
where Ni is the number of spikes in the ith window (of
duration T) and Ri is the local firing rate. The mean fir-
ing rate is then ^Ri (T)& 5 ^Ni (T)&/T [ m, and
var @Ri (T)# 5 var @Ni (T)#/T

2, so that

F~T ! 5
var@Ni~T !#

^Ni&
5

T var@Ri~T !#

^Ri&
5

TsR
2

^Ri&
,

where sR is the standard deviation of the rate.
For a FSPP the FF assumes the power-law form Ta

(0 , a < 1), so that

sR~T ! 5 Fm F~T !

T G1/2 }
1

T ~12a!/2
.

For a nonfractal process a 5 0, so that the standard de-
viation of the rate is proportional to 1/AT; the rate then
converges relatively quickly as the averaging time in-
creases, as illustrated in Fig. 1(b). The slower power-law
convergence, illustrated in Fig. 1(a), results from the frac-
tal nature of the neural spike-train data (a . 0).

3. Allan Factor
Though the FF can detect the presence of self-similarity
even when it cannot be discerned in a visual representa-
tion of a sequence of events, mathematical constraints
prevent it from increasing with counting time faster than
;T1. It therefore provides a suitable measure only for
fractal exponents in the range 0 , a , 1.31,61

The estimation of a fractal exponent that assumes a
value greater than unity requires the use of a measure
whose increase is not constrained in this way. In this
subsection we define a measure called the Allan factor
(AF), which is the ratio of the event-number Allan vari-
ance to twice the mean:

A~T ! 5
^@Ni11~T ! 2 Ni~T !#2&

2^Ni~T !&
. (13)

The Allan variance is defined in terms of the variability of
successive counts; it was first introduced in connection
with the stability of atomic-based clocks.62

Like the FF, the AF is also a useful measure of the de-
gree of event clustering (or anticlustering) in a point pro-
cess relative to the benchmark HPP, for which A(T)
5 1 for all T. In fact, for any point process, the AF is
simply related to the FF by 31

A~T ! 5 2F~T ! 2 F~2T !, (14)

so that, in general, both quantities vary with the counting
time T. For a FSPP, the AF exhibits a power-law depen-
dence that varies with the counting time T as A(T)
; Tg (0 , g , 3); it can rise as fast as ;T3 and can
therefore be used to estimate fractal exponents over the
expanded range 0 , g , 3.
For a FSPP with 0 , a , 1 the FF and the AF both

vary as ;Ta, with the same fractal exponent g 5 a, over
a large range of counting times T. Thus a doubly loga-
rithmic plot of the AF for such a process will yield an es-
timate g of the fractal exponent that is similar to the es-
timate a obtained from the FF.
For an arbitrary process, Eq. (14) shows that the as-

ymptotic formula for the AF, valid in the limit of large T,
is identical to that for the FF: limT→` A(T)
5 limT→` F(T). In particular, for a DTMP with non-
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paralyzable fixed dead time, we have limT→` A(T)
5 (1 1 ltd)

22. Similarly, the asymptotic AF for the
GRP for large T becomes

lim
T→`

A~T ! 5
1
r
. (15)

Wavelet-based measures can also be used for estimat-
ing the fractal exponent of a point process.61 The wave-
let Fano factor (WFF) and the wavelet Allan factor (WAF)
serve in this capacity as natural generalizations of the FF
and the AF, respectively. This has been explicitly dem-
onstrated for a LGN neural spike train.61

4. Periodogram
Fourier-transform methods provide another avenue for
quantifying correlation in a point process. The PG is an
estimate of the power spectral density (PSD) of a point
process, revealing how the power is concentrated across
frequency. The count-based PG is obtained by dividing a
data set into contiguous segments of equal length T .
Within each segment, a discrete-index sequence $Wi% is
formed by further dividing T into M equal bins and then
counting the number of events within each bin. A PG is
then formed for each of the segments according to

Ssegment~ f ! [
1
M

uW̃~ f !u2, (16)

where W̃( f ) is the discrete Fourier transform (DFT) of
the sequence $Wi%, andM is the length of the DFT.63 All
of the segment PG’s are averaged together to form the fi-
nal averaged PG, S( f ), which estimates the PSD in the
frequency range from 1/T to M/2T Hz. The count-based
PG, as opposed to the interval-based PG, provides direct
undistorted information about the time correlation of the
underlying point process because the count index in-
creases by unity every T /M s, in proportion to the real
time of the point process.43 In the special case in which
the bin width T /M is short in comparison with the mean
interevent interval ^t&, the count-based PG essentially re-
duces to the PG of the point process itself, since every bin
contains either 0 or 1 event, to good approximation. For
simplicity, we omit the dc power S(0) 5 m2 arising from
the constant term in the coincidence rate.
The PSD of a renewal process approaches m at high

frequencies and mC2 5 st
2/^t&3 at low frequencies.64 For

the HPP, the PSD of the point process simply assumes the
value of the mean firing rate l across all nonzero frequen-
cies. For the DTMP, the point-process PSD asymptoti-
cally approaches the following limits, at low and at high
frequencies, respectively64–66:

S~ f ! 5 H l

~1 1 ltd!3
for f → 0

l

1 1 ltd
for f → `

; (17)

at intermediate frequencies S( f ) exhibits oscillations of
period td that decay as the frequency increases.

67

When we use the general form for the PSD of a renewal
process,65 S( f ) 5 m Re(@1 1 f( f )#/@1 2 f( f )#), to-
gether with the interevent-interval characteristic func-
tion for the GRP,67,68 f( f ) 5 (1 1 j2p f/mr)2r, the
point-process PSD for the GRP becomes

S~ f ! 5 m ReF ~1 1 j2pf/mr !r 1 1
~1 1 j2pf/mr !r 2 1G , (18)

where Re(Z) represents the real part of the complex
quantity Z.
For a FSPP, the PSD decreases as a power-law function

of the frequency f, so that S( f ) ; f2b over some range of
low frequencies.23 The fractal exponent b estimated
from the PG assumes a value similar to that of g when
0 , b , 3 and similar to that of g and a when 0 , b
, 1. Unlike the FF and the AF, the fractal exponent ob-
tained from the PG has no upper bound.

5. Normalized Coincidence Rate
The normalized coincidence rate (NCR) plays the role of
the correlation function for point processes. Although it
is difficult to estimate this quantity reliably for finite data
segments (because of the sparseness of data in short
counting windows), we introduce it because of the under-
lying role that it plays in the theory of stochastic point
processes. Specifically, it is directly related to the FF
(and thereby the RSD), the AF, and the PSD of the point
process.
The NCR, g (2)(t), is defined as27,28,48

g ~2 !~t !

[
Pr@E ~t, t 1 dt ! and E ~t 1 t, t 1 t 1 dt !#
Pr@E ~t, t 1 dt !#Pr@E ~t 1 t, t 1 t 1 dt !#

,

(19)

where E (x, y) denotes the occurrence of an event in the
interval (x, y) and t is a delay time. The NCR is some-
times called the autocorrelogram. For a HPP, g (2)(t)
5 1 for all t.
The FF, F(T), and the NCR, g (2)(t), enjoy a unique

relation for an arbitrary stationary point process23,27,28,48:

F~T ! 5 1 1
2m

T E
0

T

~T 2 t!@g ~2 !~t ! 2 1#dt (20a)

and, conversely,

g ~2 !~t ! 5 1 1
1
2m

]2

]T2
@TF~T !#uT5t , (20b)

where again m is the mean rate of the point process. The
relationship between the AF, A(T), and g (2)(t) follows
from the use of Eq. (20a) in conjunction with Eq. (14).
The PSD of a stochastic point process is the Fourier

transform of the NCR, in the same way that the PSD and
the autocorrelation function of a continuous stochastic
process form a Fourier-transform pair. The count-based
PSD is a filtered and periodic version of the point-process-
based PSD.
For FSPP’s, a power-law dependence of the form F(T)

; Ta (0 , a , 1) in the long-counting-time limit im-
plies that the underlying point process has a power-law
NCR g (2)(t) ; utua21 and, as indicated in Subsection
3.C.4, a PSD that behaves as S( f ) ; f 2a.23,27,28,31,35 Al-
though the correlation between a single pair of events is
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typically rather small for FSPP’s, Eq. (20a) illustrates
that the values of F(T) and A(T) at a particular counting
time T can become quite large because the FF and the AF
integrate the many correlations from different pairs of
events within the counting window T. As a result, even
weak correlation in g (2)(t) can lead to dramatic departures
of the FF and the AF from unity.27,28

D. Analysis of Surrogate Data
Complementary information relating to the character and
the origin of the fractal fluctuations in visual-system
nerve-spike trains may be obtained by applying the vari-
ous statistical measures discussed above to surrogate
data sets. These are point processes constructed from
the original sequence of action potentials in ways de-
signed to preserve certain characteristics of the original
data while eliminating (or modifying) others. Surrogate
data analysis provides a way of determining whether a
given observation arises from a particular property of the
data set.
In this paper we make use of only one kind of surrogate

data set: shuffled intervals43; other kinds of surrogate
data analysis are discussed elsewhere.43 In particular,
we compare statistical measures calculated from both the
original data and its shuffled surrogate to distinguish
those properties of the data that arise from correlation
among intervals (such as from long-term rate fluctua-
tions) from those properties inherent in the form of the
IIH.
The shuffled surrogate data set is formed by randomly

reordering the sequence of interevent intervals $ti% of the
original data set. Such random reordering destroys de-
pendencies among the intervals, and therefore the long-
term correlation properties of the data, while exactly pre-
serving the IIH. It provides a method for generating a
point process that is essentially renewal in nature, with
an IIH that is identical to that of the original point pro-
cess. Data set MD2-LGN and its shuffled version were
used to generate Figs. 1(a) and 1(b), respectively.

4. RESULTS
A. Fractal Character of Retinal-Ganglion-Cell and
Lateral-Geniculate-Cell Neural Spike Trains
The interevent-interval and event-number measures de-
scribed in Section 3 were applied to maintained-discharge
spike trains recorded from LGN relay neurons in the
anesthetized and paralyzed cat. This preparation per-
mits pre- and post-synaptic activity to be reliably distin-
guished, so that RGC and LGN activity can be simulta-
neously collected and directly compared. All of the spike
trains studied were behaving in a tonic mode.
Retinal afferent activity manifested in the thalamus

takes the form of slow synaptic (S) potentials, also called
pre-potentials.69–73 It has now been firmly established
that (1) every action potential in a retinal afferent fiber
elicits an S potential in the LGN,71 (2) all S potentials ob-
served in the LGN arise from the activity of RGC’s,73 and
(3) most LGN principal cells receive the bulk of their ex-
citatory input from a single RGC.71,74 These observa-
tions make it possible to compare quantitatively the input
and the output of a particular LGN neuron by simulta-
neously monitoring its S potentials and action potentials.
The 26 data sets examined here are drawn from 13 re-

lay neurons, each yielding a pair (input and output) of
spike trains. We characterized eight of these neurons as
X-ON cells, four as X-OFF cells, and one as a Y-ON cell.
Selected characteristics of these data sets are provided in
Tables 1 and 2. The adapting luminance of the stimulus
was fixed at 0, 6.5, 33, or 65 cd/m2 (see Tables 1 and 2).
The mean firing rates displayed in Tables 1 and 2 show

that the spike rates observed at the LGN outputs are, on
average, only 25% of the input RGC rates, although this
percentage varies significantly across the data sets that
we examine. It has been determined previously that this
ratio depends on a number of factors,75 including the con-
trast of the stimulus.76 LGN cells typically (but not al-
ways) exhibit larger values of the CV than RGC’s; it has
been noted previously that the CV is usually inversely re-
lated to the firing rate, at least for RGC’s.6,13,15

The pairs of data sets (MD2-RET and MD2-LGN) used
for purposes of illustration in this paper are typical of
their respective classes of data.
In Fig. 3 we present IIH’s for RGC and LGN spike

trains simultaneously obtained from cell MD2 (solid
curves). Since random reordering of the intervals does
not alter the relative frequency with which they occur, the
IIH’s of the shuffled surrogates are the same as those of
the original data sets. Also shown are the respective
best-fitting results for the GRP (dotted) model and the
DTMP (dashed) model with fixed nonparalyzable dead
time. The DTMP parameters l and td were estimated by
finding the least-squares fit of Eq. (3) to the experimental
IIH. The GRP probability-density function in Eq. (5) was
obtained by equating its first and second moments to the
experimental values (m was set to 1/^t&, and r was set to
1/C2). The GRP is seen to provide a good fit to the IIH for
the RGC, while the DTMP with fixed dead time clearly
does not. We have shown previously, however, that in-
corporating stochastic,10 or relative,77 refractoriness in
the DTMP provides an excellent fit to the IIH provided
that C , 1, as is generally the case for the maintained,
non-dark discharge.
Neither the GRP nor the DTMP proves suitable for

modeling the LGN IIH at short interevent times, as is
clear from Fig. 3(b). A superior representation is pro-
vided by the refractoriness-modified shot-noise-driven
doubly stochastic Poisson process (RM-SNDP).11,14 This
has been explicitly demonstrated for the RGC dark-
discharge IIH,11,14 which often exhibits C . 1 and closely
resembles the LGN IIH illustrated in Fig. 3(b). With ap-
propriate choices for the multiplicative behavior and the
refractoriness recovery, the RM-SNDP can accommodate
data for C , 1 as well. Further discussion regarding the
relevance of this model to the problem at hand is left to
the discussion in Section 6.
A rescaled range analysis (R/S) for the two data sets

and their shuffled surrogates is presented in Fig. 4. The
dotted curves represent the baseline function Ak, corre-
sponding to uncorrelated interevent intervals. Positive
correlation among intervals (nonrenewal behavior) is
present in both cases, since R(k) grows more rapidly than
Ak. This measure fails to reveal any substantial differ-
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Table 1. Characteristics of the Retinal-Ganglion-Cell Recordings

File
Name

Cell
Type

Number of
Intervals

Duration
of Data
(s)

Luminance
Level
(cd/m2)

Mean
Rate

m
(s21)

Mean
Interval

^t&
(s)

Interval
Std. Dev. st

(s)

Interval
CV
C

FF
Exponent

a

AF
Exponent

g

PG
Exponent

b

MD1-RET X-ON 61,500 2500 33 24.6 0.0406 0.028 0.6906 0.82 0.88 1.32
MD2-RET X-ON 140,432 6388 33 22.0 0.0455 0.028 0.6223 0.56 0.48 0.33
MD6-RET Y-ON 126,276 3901 33 32.4 0.0309 0.016 0.5125 0.69 0.94 0.99
MDS-RET X-ON 56,661 3226 33 17.6 0.0569 0.066 0.7715 0.82 1.13 0.93
Y0101RET X-ON 201,496 5088 65 39.6 0.0253 0.011 0.4382 0.39 0.49 0.73
Y0102REF X-ON 161,301 5127 6.5 31.5 0.0318 0.015 0.4823 0.32 0.68 1.00
Y0103REF X-ON 36,502 4960 0 7.4 0.1359 0.207 1.5214 1.00 1.57 0.56
Y0202REF X-ON 130,173 4384 65 29.7 0.0337 0.025 0.7432 0.99 1.63 1.50
Y0203REF X-ON 38,841 4965 0 7.8 0.1279 0.349 2.7273 0.86 1.94 2.00
Y1102REF X-OFF 47,732 5127 6.5 9.3 0.1074 0.134 1.2474 0.81 0.90 1.41
Y1103REF X-OFF 234,096 4962 0 47.2 0.0212 0.017 0.8197 0.78 1.23 0.97
Y1202REF X-OFF 206,627 4384 65 47.1 0.0212 0.014 0.6795 0.92 1.89 1.94
Y1203REF X-OFF 116,470 5040 0 23.1 0.0433 0.058 1.3359 0.96 2.16 1.69

Mean 119,854 4619 26.1 0.0555 0.074 0.9686 0.76 1.22 1.18
Std. dev. 13.6 0.0406 0.101 0.6278 0.22 0.56 0.51

Table 2. Characteristics of the Lateral-Geniculate-Cell Recordings

File
Name

Cell
Type

Number of
Intervals

Duration
of Data
(s)

Luminance
Level
(cd/m2)

Mean
Rate

m
(s21)

Mean
Interval

^t&
(s)

Interval
Std. Dev. st

(s)

Interval
CV
C

FF
Exponent

a

AF
Exponent

g

PG
Exponent

b

MD1-LGN X-ON 1688 2500 33 6.8 0.1481 0.167 1.1271 0.37 0.33 0.70
MD2-LGN X-ON 70,320 6388 33 11.0 0.0908 0.305 1.0268 0.34 0.38 0.46
MD6-LGN Y-ON 33,890 3901 33 8.7 0.1150 0.147 1.2821 0.84 1.26 1.66
MDS-LGN X-ON 24,285 3226 33 7.5 0.1328 0.197 1.4824 0.56 0.63 0.80
Y0101LGN X-ON 22,852 5088 65 4.5 0.2227 0.255 1.1469 0.37 0.43 0.56
Y0102LGN X-ON 31,878 5127 6.5 6.2 0.1608 0.189 1.1750 0.78 0.53 0.48
Y0103LGN X-ON 25,234 4960 0 5.1 0.1966 0.533 1.4425 1.00 1.27 0.19
Y0202LGN X-ON 18,376 4384 65 4.2 0.2385 0.401 1.6808 0.49 0.67 1.21
Y0203LGN X-ON 29,265 4965 0 5.9 0.1696 0.471 2.7800 0.92 1.86 1.62
Y1102LGN X-OFF 27,734 5127 6.5 5.4 0.1848 0.220 1.1855 0.39 0.63 1.06
Y1103LGN X-OFF 79,453 4962 0 16.0 0.0624 0.064 1.0190 0.70 0.38 0.29
Y1202LGN X-OFF 5338 4384 65 1.2 0.8200 1.29 1.5728 0.83 1.10 1.22
Y1203LGN X-OFF 18,297 5040 0 3.6 0.2754 0.439 1.5953 0.68 1.76 1.85

Mean 29893 4619 6.6 0.2167 0.360 1.4243 0.64 0.86 0.93
Std. dev. 3.7 0.1907 0.312 0.4642 0.23 0.53 0.55
ence between the RGC and LGN data, however. R/S
curves for the shuffled surrogate data sets [lower solid
curves in Figs. 4(a) and 4(b)] display a dependence quite
close to Ak, as expected for renewal point processes.52–56
The ENH’s for the same RGC and LGN data sets, gen-

erated with a counting time of T 5 1.0 s, are shown as
the solid curves in Figs. 5(a) and 5(b), respectively. Aside
from the difference in mean values (the firing rate of this
particular RGC is 22 s21, whereas that of its target LGN
cell is 11 s21), the curves are quite similar in appearance.
The ENH for the RGC can be approximated by the DTMP
counting distribution (its variance lies below the mean at
this counting time),10,51 whereas the ENH for the LGN
cell can be approximated by the Neyman Type-A distribu-
tion (its variance exceeds the mean at this counting
time).14 Shuffling the data narrows the ENH’s (dotted
curves), which reflects reduced count variance. This in-
dicates that the count variance of the original process
arises at least in part from the ordering of the intervals,
which accords with the serial dependence shown in Fig. 4.
ENH’s for those GRP’s that best fit the shuffled-surrogate
ENH’s are indicated by dashed curves. The renewal
ENH’s (dotted and dashed curves) are Gaussian-like, as
expected from renewal theory.48,57,68

FF’s for the same RGC and LGN data sets are shown
(on doubly logarithmic coordinates) as the solid curves in
Figs. 6(a) and 6(b), respectively. The dotted curves rep-
resent average FF’s calculated from ten independent
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shufflings of the data; the light gray shading indicates the
region bounded by 61 standard deviation about the mean
of the shuffled curves. The values of the FF’s for the
shuffled data sets remain close to unity, providing further
evidence that the shuffling process destroys the long-term
positive correlation in the data. The short horizontal
bars at the right-hand ordinates represent asymptotic
values for the best-fitting GRP models, for which
F(T → `) 5 C2 (this relationship is satisfied for all re-
newal processes). Dashed lines with unity slope, for
which F(T) } T, are shown for visual comparison with
the data.
For short counting times (T → 0) the FF’s approach

unity, in accordance with Eq. (10). For time scales over
which the underlying events are highly regular, and
thereby exhibit low variance, the FF dips well below
unity. For counting times greater than approximately 1
s, the FF’s increases above unity and grow approximately
as Ta. This indicates that the data exhibit power-law
correlation and fractal behavior over the corresponding
time scales. The onset of this power-law behavior occurs
when the counting window is sufficiently large to allow
fractal event clustering to overcome the anticlustering
imposed by refractoriness. Estimates of a are provided
in Tables 1 and 2 for all data sets.

Fig. 3. Semilogarithmic plots of the interevent-interval histo-
grams (IIH’s) for retinal-ganglion-cell (RGC) and lateral-
geniculate-nucleus (LGN) nerve-spike trains (file names MD2-
RET and MD2-LGN, respectively). The spike trains were
simultaneously obtained from the same LGN relay neuron. The
histograms were normalized to have unit area. Also shown are
IIH’s for two candidate models (dotted and dashed curves). (a)
IIH for the RGC data (solid curve), along with the best-fitting
theoretical curve for the gamma-renewal-process (GRP) model
(dotted curve) and for the fixed-dead-time-modified Poisson pro-
cess (DTMP) model (dashed curve). The GRP model provides a
good fit to the IIH. (b) IIH for the LGN data (solid curve), along
with the best-fitting theoretical curve for the GRP model (dotted
curve) and for the DTMP model (dashed curve). Neither of
these two models provides a particularly good fit for short times,
but both do well at longer times.
The limited amount of spike-count mean and variance
data that we have been able to find in the literature is in
rough agreement with our results. Barlow and Levick,6

for example, collected two maintained- (dark-) discharge
ENH’s (see Figure 5 on page 707 of their paper), using
T 5 0.1 and 1 s. Values of the FF extracted from their
data are similar to the values we observe.
The AF’s presented in Fig. 7 (solid curves) have fea-

tures similar to those of the FF’s and, for the most part,
share the same underlying explanations. For counting
times greater than approximately 1 s, the AF’s grow ap-
proximately as Tg. There is an important distinction
that ultimately renders the AF more suitable than the FF
for estimating the fractal exponent of a nerve-spike
train: the power-law exponent g has a larger range than
a. Indeed, the exponents estimated by use of the AF fre-
quently exceed unity for RGC and LGN spike trains (see
Tables 1 and 2).
In Figs. 8(a) and 8(b) we present the averaged PG’s,

S ( f ), for the same RGC and LGN data sets, on doubly
logarithmic coordinates (solid curves). Count-based PG’s
were formed by dividing the data sets into contiguous seg-
ments of equal length T 5 250 s. Each of these seg-

Fig. 4. Rescaled range analysis (R/S) for the same data sets as
those analyzed in Fig. 3 and for shuffled surrogates of the data.
(a) R/S plot for the RGC data (upper solid curve) along with the
mean of ten R/S curves generated by independent shufflings of
the original data set (lower solid curve). The standard deviation
of the surrogate R/S curve is not shown, since it is less than the
thickness of the curve. (b) R/S plot for the LGN data (upper
solid curve) along with the mean of ten R/S curves generated by
independent shufflings (lower solid curve). The standard devia-
tion of the surrogate R/S curve is again not shown because of its
small value. In both (a) and (b), for sufficiently large k, the R/S
curves have a slope greater than 0.5 on this doubly logarithmic
plot, indicating the presence of positive correlation. The
shuffled-surrogate curves have a dependence very close to Ak
(dotted curves), as expected for sequences of random variables
that are essentially independent.
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ments was further divided intoM 5 32,768 equal bins, so
that the bin width was T /M 5 7.6 ms. A PG for each
segment was then formed in accordance with Eq. (16),
and the final estimate of the PSD (in the frequency range
from 1/T 5 0.004 to M/2 T 5 66 Hz) was obtained by av-
eraging these PG’s. Because the bin width is short in
comparison with the mean interspike interval ^t& for both
the RGC and LGN spike trains, there is rarely more than
a single event in any bin and the calculated result is es-
sentially the PSD estimate of the point process itself.
The dotted curves in Fig. 8 represent the PG’s calcu-

lated from shuffled surrogates of the data sets. After
shuffling, the PG’s are flat at low frequencies, indicating
that the counts are uncorrelated, as expected for a re-
newal process when f ! 1 /^t&. The white curves through
the centers of the PG’s are theoretical PSD’s for the GRP
model [given by Eq. (18)], using parameters that best fit
the IIH’s of the data sets. The original data are satisfac-
torily modeled by the renewal theory for frequencies
above approximately 0.5 Hz. In this same frequency
range our PG’s behave quite similarly to the PSD esti-
mates obtained by Robson and Troy15,16 for RGC spike
trains. The Fourier components of RGC and LGN spike
trains appear to have been first examined by Derrington
and Lennie78 and by Troy,18 respectively.
The behavior of the unshuffled data (solid curves) at

low frequencies (,0.5 Hz) indicates the presence of long-

Fig. 5. Event-number histograms (ENH’s) for the same data
sets as those analyzed in Figs. 3 and 4, with the use of a counting
time of T 5 1.0 s, shown together with the same measures for
shuffled surrogates of the data and their best-fitting GRP ENH’s.
The RGC [solid curve in (a)] and LGN [solid curve in (b)] histo-
grams were normalized so that they summed to unity. The
original ENH’s in (a) and (b) are wider than the shuffled and
model ENH’s, revealing their greater count variances on this
time scale and indicating the presence of long-duration correla-
tion in the original sequence of interevent intervals. For these
particular data sets the firing rate of the RGC is approximately
twice that of its target LGN cell.
duration correlation in the spike trains. The PG’s are
satisfactorily approximated by power-law functions of the
form S( f ) } f 2b over a substantial range of low frequen-
cies. The decreasing power-law behavior of the PG’s evi-
dent in Fig. 8 is consistent with the power-law growth of
the FF’s and the AF’s at large counting times, repre-
sented in Figs. 6 and 7, respectively, and with the self-
similarity of the rate fluctuations revealed in Fig.
1(a).23,27,28,61 Indeed, the values of b and g are signi-
ficantly correlated [correlation coefficient r 5 0.71
(p , 0.015)] for both the RGC and the LGN data. The
dashed lines in Fig. 8, shown for visual comparison, rep-
resent 1 /f-type behavior. Spectral estimates at low fre-
quencies could not be examined by Robson and Troy15,16

because they divided their data into short segments of du-
ration T 5 2.048 s (see the discussion in Subsection 4.B
below).

B. Data Selection: Dilution of Fractal Behavior
Researchers often select specific short segments of data to
eliminate putative nonstationarities. In their analysis of
maintained-discharge LGN spike trains, for example,
Troy18 and Levine and Troy21 chose a collection of 3.072-s
data segments with mean rates that were approximately
equal. However, the observation of fractal behavior re-
quires long data sets, and at the very heart of such behav-
ior are large fluctuations that take the form of spike
bursts. Moreover, selecting a particular short segment of

Fig. 6. Doubly logarithmic plots of the FF’s (solid curves) for the
same data sets as those analyzed in Figs. 3–5, along with the
FF’s for shuffled surrogates of the data (gray areas indicate the
region bounded by 61 standard deviation about the mean of the
set of ten shuffled FF’s, represented by dotted curves), and as-
ymptotic values of the FF’s for the best-fitting GRP models (short
horizontal bars at the right-hand ordinates). The FF’s for the
shuffled surrogates always lie near unity, indicating that long-
duration correlation associated with the ordering of the intervals
has been eliminated by the shuffling process, leaving only the
correlation intrinsic to the form of the IIH. Dashed lines of
unity slope [indicating F(T) } T] are included for comparison.
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data on the basis of lack of variability (i.e., lack of bursti-
ness or lack of changes in the mean) serves to reduce fur-
ther the manifestations of fractal behavior.
For data segments of duration T 5 3.072 s, such as

those chosen by Levine and Troy,21 the lowest frequency
available to the PG is fmin 5 1 /T 5 1/3.072 5 0.33 Hz.
The LGN PG presented in Fig. 8(b) reveals only a hint of
fractal behavior at this frequency. In a similar vein, as-
suming that ten such segments are available to provide
sufficient statistical accuracy, the maximum counting
time available to the FF and the AF would be Tmax
5 3.072 s. The FF in Fig. 6(b) and the AF in Fig. 7(b) do
not provide convincing evidence for fractal behavior for
counting times up to this value.
It is therefore quite possible that the LGN data exam-

ined by Troy18 and by Levine and Troy21 was indeed frac-
tal, but that they removed most traces of such behavior by
selecting short segments of data for analysis, and further
by choosing precisely those data segments that exhibited
minimal fluctuations. The RGC data sets collected by
Troy and Robson16 were divided into segments of duration
T 5 2.048 s and therefore also suffer from this limitation.

C. Comparison of Fractal Exponents Derived from
Retinal-Ganglion-Cell and Lateral-Geniculate-Cell Firing
Patterns
All 26 of the RGC and LGN data sets that we investigated
exhibit fractal behavior, as discussed in Subsection 4.A.

Fig. 7. Doubly logarithmic plots of the AF’s (solid curves) for the
same data sets as those analyzed in Figs. 3–6, along with the
AF’s for shuffled surrogates of the data (gray areas indicate the
region bounded by 61 standard deviation about the mean of the
set of ten shuffled AF’s, represented by dotted curves), and as-
ymptotic values of the AF’s for the best-fitting GRP models (short
horizontal bars at the right-hand ordinates). The AF’s for the
shuffled surrogates always lie near unity, indicating that long-
duration correlation associated with the ordering of the intervals
has been eliminated by the shuffling process, leaving only the
correlation intrinsic to the form of the IIH. Dashed lines of
unity slope [indicating A(T) } T] are included for comparison.
The fractal exponents of the RGC and LGN spike trains,
estimated using the FF, the AF, and the PG, are dis-
played along the abscissas and the ordinates of Fig. 9.
The spread in values is considerable, as is typical with
fractal event sequences.23,61

It is apparent from Figs. 9(b) and 9(c) that the AF ex-
ponent g and the PG exponent b both exceed unity for
many RGC and LGN data sets. Since a is restricted to
lie below unity [as it indeed does; see Fig. 9(a)], this con-
firms that the FF is not a useful measure for estimating
the fractal exponents of many RGC and LGN data sets.
The plots presented in Figs. 9(b) and 9(c) relate the

action-potential firing patterns at the outputs and the in-
puts of the LGN relay cells. The correlation coefficients
turn out to be substantial: r 5 0.77 (p , 0.006) and
0.73 (p , 0.01) for g and b, respectively. Therefore, al-
though the values of g and b for any RGC data set can
assume a large range of possible values (as shown in
Table 1), the observed values of g and b for its associated
LGN data set will likely not differ significantly. There-
fore, either the pattern of action-potential firings is par-
tially transmitted from the RGC to the target LGN cell (or
vice versa) or there is a common origin for the pair of fir-
ing patterns. On average, the fractal exponents of RGC
spike trains are slightly larger than those of their target
LGN cells. The difference is statistically significant
(from the Student t test p , 0.001 for g and b).

Fig. 8. Averaged PG’s for the same spike trains as those ana-
lyzed in Figs. 3–7 (solid curves), presented on doubly logarithmic
coordinates. The units on the ordinate are spikes squared per
seconds squared per Hertz. The shuffled-surrogate PG’s are
shown as dotted curves. The high-frequency asymptote on the
ordinate is numerically equal to the firing rate m, whereas the
low-frequency asymptote for the shuffled data (representing the
renewal process) is numerically equal to mC2. The PG’s for the
GRP with parameters that best fit the IIH’s are shown as the
white curves. The function 1/f is included for comparison
(dashed curves).
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5. GAMMA-BASED FRACTAL DOUBLY
STOCHASTIC POINT-PROCESS MODEL
Of the three simple renewal models discussed in Section 3
(HPP, DTMP, and GRP), the gamma-r point process best
describes the IIH’s of RGC and LGN spike trains. How-
ever, it is clear that a FSPP is required to account for the
fractal behavior inherent in the data.
We construct a mathematical model that accords with

both the short- and long-term features of the RGC and
LGN spike trains by constructing a FSPP with the GRP
as its core (see Fig. 10). The model is endowed with long-
duration correlation by imparting fractal fluctuations to
the rate m(t) of the GRP. These rate fluctuations are
taken to be fractal binomial noise (FBN),23 which is de-
scribable as the sum of K iid alternating fractal renewal
processes, as shown schematically in Fig. 10. Each of the
constituent processes assumes a value of 0 or a, and
switches states at a time drawn from a power-law
interevent-interval probability-density function. FBN is
useful for describing fractal ion-channel behavior and in-
tracellular ionic concentrations.23,38

Fig. 9. Estimates of the fractal exponents obtained from (a) the
FF, (b) the AF, and (c) the PG. In each plot the exponent esti-
mated from the RGC spike train is plotted along the abscissa,
while the exponent estimated from the LGN spike train is plot-
ted along the ordinate. The exponent associated with a given
RGC spike train is significantly correlated with that of its target
LGN spike train.
Our FSPP may therefore be described as a fractal
binomial-noise-driven doubly stochastic gamma (FBNDG)
point process. A special case of the FBNDG, the fractal
binomial-noise-driven doubly stochastic Poisson point
process (FBNDP), does an excellent job of describing the
action-potential activity of primary afferent auditory-
nerve fibers in a number of species, when refractoriness
effects are included.23,28,79 The Poisson kernel with re-
fractoriness modification is more suitable than the
gamma kernel for this application because auditory-
system IIH’s behave more like the shifted exponential
density in Eq. (3) than like the gamma density in Eq. (5).
Another related FSPP is the fractal lognormal-noise-
driven doubly stochastic Poisson point process (FLNDP),
which characterizes vesicular exocytosis in the developing
neuromuscular junction.39 The FBNDP is also a special
case of the FLNDP.
FBNDG point processes are constructed by means of

the following procedure. A GRP is simulated by mapping
interevent intervals ui uniformly distributed between 0
and 1 into GRP-distributed intervals ti by means of the
function P(t i) 5 ui , where P(t) is the probability-
distribution function for the GRP:

P~t! 5 E
0

t

pt~t !dt 5
~mr !r

G~r ! E
0

t

tr21 exp~2mrt !dt

5
1

G~r ! E0
mrt

nr21exp~2n!dn 5
g~r, mrt!

G~r !
. (21)

g (r, mrt) is an incomplete gamma function that is
readily evaluated by numerical integration.
To model a given data set, we set the order r of the

GRP kernel equal to 1/C2, where C is the measured
interevent-interval CV. FBN is simulated23 using a
mean rate ^m(t)& (which is governed by the height a and
the number K of constituent alternating fractal renewal
processes) set equal to the mean firing rate of the data, m.
The fractal onset time T0 (determined by K and by cutoff

Fig. 10. Construction of the fractal binomial-noise-driven dou-
bly stochastic gamma-r process (FBNDG). This model charac-
terizes the statistical behavior of RGC and LGN spike trains re-
markably well. Fractal binomial noise (FBN), generated from
the sum of K alternating fractal renewal processes, serves as the
time-varying rate of a GRP with fixed order r.
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Fig. 11. Comparison of data presented in Figs. 3(a)–8(a) for RGC data set MD2-RET with the predictions of the FBNDG model illus-
trated in Fig. 10. The model uses four parameters drawn from the data: m, C, a, and T0 . The FBNDG does just about as well as the
GRP for (a) the IIH, and incomparably better for (b) R/S, (c) the ENH, (d) the FF, (e) the AF, and (f) the PG. Thus the FBNDG model
preserves the IIH statistics of the original GRP model while accommodating the long-term correlations manifested in R/S and in the
ENH, the FF, the AF, and the PG.
parameters of the constituent processes), and the fractal
exponent of the FBN (determined by the fractal expo-
nents a of the constituent processes), are set equal to the
time at which the FF becomes proportional to Ta, and the
measured exponent of the FF for the data, respectively.
Thus the model makes use of four parameters drawn from
the data: m, C, a, and T0 . The fractal exponent can al-
ternatively be based on the AF or the PG, which is desir-
able when g or b is greater than unity.
The data presented in Figs. 3(a), 4(a), 5(a), 6(a), 7(a),

and 8(a) for RGC data set MD2-RET are compared with
the predictions of the FBNDG model in Figs. 11(a), 11(b),
11(c), 11(d), 11(e), and 11(f), respectively. The agree-
ment is quite good for all measures investigated. In par-
ticular, the FBNDG does just about as well as the GRP for
the IIH [compare Figs. 3(a) and 11(a)] and incomparably
better for R/S [compare Figs. 4(a) and 11(b)], the ENH
[compare Figs. 5(a) and 11(c)], the FF [compare Figs. 6(a)
and 11(d)], the AF [compare Figs. 7(a) and 11(e)], and the
PG [compare Figs. 8(a) and 11(f)]. In short, the FBNDG
model preserves the IIH statistics of the original GRP
model while accommodating the fractal behavior observed
in the various measures that we have reported in this
paper.

6. DISCUSSION
A FBNDG model has been developed that imparts (non-
renewal) fractal fluctuations to a (renewal) gamma-
distributed kernel. The overall result is a nonrenewal
fractal stochastic point process. This serves quite well
for characterizing the behavior of RGC and LGN spike
trains over all time scales, as illustrated by the good fits
to the data exhibited in Fig. 11. The FBNDG provides a
reasonable model for all of the maintained-discharge (and
dark-discharge) data sets that we have examined (see
Tables 1 and 2).
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A. Gamma Model for Short-Term Behavior
For many vision researchers the GRP has been the model
of choice for describing short-term RGC and LGN spike
statistics. The original motivation for considering the
GRP in visual neurophysiology was the prospect that
scaling might explain the large compression between the
rate of quantal absorption and the rate of RGC nerve-
spike generation6; a HPP scaled in such a way that only
every rth event survives results in the GRP.68 Unfortu-
nately, this interpretation leads to a host of incon-
sistencies,80 not the least of which is that the parameters
turn out to be quite wrong.6,10

Nevertheless, the GRP has continued to be used for
modeling short-term spike statistics because it is math-
ematically tractable, is characterized by only two param-
eters, and generally provides a reasonable fit to RGC
(and, to a lesser extent, LGN) IIH’s.15 We have therefore
made use of it as a point of departure for incorporating
fractal behavior.

B. Prior Evidence for Nonrenewal and Fractal
Behavior
Even in the short term, however, it has long been recog-
nized that the renewal assumption is not entirely valid.
Kuffler et al.1 showed that the first serial-correlation co-
efficient was negative for the maintained discharge, a
finding confirmed in many subsequent studies. (All
serial-correlation coefficients for any renewal process, in-
cluding the GRP, are, of course, zero.) Troy and Robson16

presented a sequence of higher-order serial-correlation co-
efficients (the fourth through the tenth) that are on the
positive side (see Figure 6 on page 544 of their paper),
thereby providing additional evidence for nonrenewal be-
havior. Our simulations show that FSPP’s can behave
precisely in this manner.
In retrospect, there have been several subtle hints of

excess low-frequency fluctuations in various measure-
ments. One is the average value of the Fourier compo-
nents calculated for a collection of LGN spike trains, pre-
sented by Troy18; the 0.33-Hz component is slightly
elevated in comparison with the components at higher
frequencies (see Figure 3 on page 406 of his paper). An-
other is found in Levine and Troy’s21 RSD curves, for
which a sample duration of 30 s was used (see Figure 3 on
page 346 of their paper). They found that 29 of the 48
dorsal LGN cells that they examined, in their words (page
347), ‘‘. . . provided plots in which the points from the
sampled spike train fell along an approximately horizon-
tal line located above the prediction for a renewal process.
This is an indicator of substantial low frequency compo-
nents in the maintained discharge. These components
were considered to reflect non-stationarity and were re-
moved . . ..’’ An approximately horizontal line for the
RSD curve corresponds to a ; 1 @F(T) } T1# (see Sub-
section 3.C.2). Fractal behavior is indeed apparent in
our LGN FF at T 5 30 s, as is evident in Fig. 6(b). We
conclude that fractal behavior was very likely present in
the original data sets collected by Levine and Troy but
was considered to reflect nonstationarity and was there-
fore excised.
C. Fractal Shot-Noise-Driven Doubly Stochastic
Poisson Model
A nonrenewal, physiologically plausible, alternative to
the GRP that is suitable for modeling the short-term be-
havior of RGC and LGN spike trains is the refractoriness-
modified shot-noise-driven doubly stochastic Poisson pro-
cess (RM-SNDP).11,14 It incorporates four features
known to be operative in the retina7—Poisson quantum
fluctuations, additive Poisson dark noise, multiplication
noise (random multiple neural spikes per absorbed quan-
tum), and refractoriness—and is therefore characterized
by four parameters. As mentioned in Subsection 4.A, the
agreement of the predictions of this model with short-
term measures of the spike train, such as the IIH, is sub-
stantially superior to that achievable with the GRP, par-
ticularly at low firing rates where C is large and the
gamma parameter r , 1. Moreover, the RM-SNDP pro-
vides a substrate for understanding how the RGC might
participate in the psychophysical detection of dim flashes
of light.81 The SNDP imparts gain to the RGC while
maintaining the essential proportionality of count vari-
ance to mean,7,14 thereby preserving the deVries–Rose
law at low light levels.81 The rod,82 and the central neu-
ral processing system,83 apparently behave similarly.
It might therefore be preferable to build a model

around the SNDP rather than the GRP. There are two
straightforward ways in which this could be carried out.
One is to modulate the mean of the SNDP by a process
such as FBN or FLN, in much the same way as the
FBNDG is generated using a gamma-distributed kernel.
The second way is to impart a power-law decaying tail to

Fig. 12. Comparison of AF’s (normalized-time abscissa) for sev-
eral biological systems exhibiting fractal behavior: cat striate-
cortex spike train (solid curve, adapted from Teich et al.25), cat
LGN spike train [long-dashed curve, data from Fig. 7(b)], cat pri-
mary auditory-nerve-fiber spike train (VIII-NERVE, medium-
dashed curve, adapted from Lowen and Teich31), cat RGC spike
train [short-dashed curve, data from Fig. 7(a)], and sequence of
human heartbeats (HEART, dotted curve, adapted from Turcott
and Teich43). For longer counting times all of these AF’s show
the power-law increase characteristic of fractal behavior. The
dip in some of these curves, in the vicinity of a normalized count-
ing time of 10, is associated with refractoriness, which serves to
regularize the events and reduce the variance in the vicinity of
these counting times.
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the impulse-response function in the SNDP model. This
approach would lead to a variation of the refractoriness-
modified fractal shot-noise-driven point process (RM-
FSNDP) that we have used earlier in other contexts.84

The relative merits of these approaches will have to be
evaluated.

D. Significance of Fractal Behavior
Fractal behavior is present in all of the RGC and LGN
neural spike trains that we have examined, provided that
they are of sufficient length. It is interesting to forge a
comparison with some other biological systems in which
fractal behavior is observed. In Fig. 12 we present AF
curves (with normalized-time abscissa) for spike trains
from a cat striate-cortex neuron25 (solid curve), a cat LGN
neuron [long-dashed curve, data from Fig. 7(b)], a cat pri-
mary auditory-nerve fiber31 (VIII-NERVE, medium-
dashed curve), a cat RGC [short-dashed curve, data from
Fig. 7(a)], and for the sequence of human heartbeats43

(HEART, dotted curve). All of these AF curves increase
in fractional power-law fashion for long counting times,
revealing similar fractal behavior in all of these prepara-
tions. The appearance of fractal behavior at synapses,39

as well as in systems comprising collections of synapses,
indicates that it is an inherent property of neuronal sig-
naling. The use of the AF and its generalization, the
WAF,61 as analysis tools mitigates against nonstationar-
ity as the underlying cause of these fluctuations.
The connection between fractal fluctuations, and infor-

mation encoding and transmission in neurons, if there is
one, remains unclear. Fractal noise exhibits larger fluc-
tuations at lower frequencies and thereby generally ren-
ders difficult the detection of the slowest, most gradual
changes in a signal. Thus fractal exocytic activity39 could
represent a fundamental source of noise ubiquitous in liv-
ing cells, to which natural systems must adapt. How-
ever, many natural signals are themselves fractal, and it
is possible that fractal activity in neurons provides some
advantages in terms of matching the detection system to
the expected signal.27,28

Fractal activity also represents a form of memory be-
cause the occurrence of an event at a particular time in-
creases the likelihood of another occurring at some time
later, with power-law decaying strength. How such
memory might be used at higher centers of the visual sys-
tem awaits the results of further studies.
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stand the opening and closing of ion channels,’’ Ann.
Biomed. Eng. 18, 177–194 (1990).

37. S. B. Lowen and M. C. Teich, ‘‘Fractal auditory-nerve firing
patterns may derive from fractal switching in sensory hair-
cell ion channels,’’ in Noise in Physical Systems and 1/f
Fluctuations, P. H. Handel and A. L. Chung, eds., AIP Conf.
Proc. 285 (American Institute of Physics, New York, 1993),
pp. 781–784.

38. S. B. Lowen and M. C. Teich, ‘‘Fractal renewal processes,’’
IEEE Trans. Inf. Theory 39, 1669–1671 (1993).

39. S. B. Lowen, S. S. Cash, M.-m. Poo, and M. C. Teich, ‘‘Neu-
ronal exocytosis exhibits fractal behavior,’’ in Computa-
tional Neuroscience: Trends in Research 1966, J. M.
Bower, ed. (Plenum, New York) (to be published).

40. M. E. Wise, ‘‘Spike interval distributions for neurons and
random walks with drift to a fluctuating threshold,’’ in Sta-
tistical Distributions in Scientific Work, C. E. A. Taillie, ed.
(Reidel, Boston, 1981), Vol. 6, pp. 211–231.
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