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General expressions are obtained for the mean and variance of the number of events in a fixed but arbitrary sam-
pling time for a nonparalyzable dead-time counter. The input is assumed to be a Poisson point process whose rate
is a stochastic process, and the dead time is assumed to be small in comparison with the fluctuation time of the driv-
ing process. The mean is shown to depend only on the first-order statistics of the rate, whereas the variance is for-
mally shown to depend on both the first- and the second-order statistics of the rate. For the particular process
arising in the detection of chaotic light, an explicit expression is obtained for the dependence of the dead-time-
modified variance on the power spectrum of the radiation. It is demonstrated that the variance takes on a particu-
larly simple form for chaotic light with Lorentzian and Gaussian spectra. In the regime in which our study is valid,
it turns out that the dead-time dependence of the variance is contained in a multiplicative function that is essen-
tially independent of the spectral properties of the light.

1. INTRODUCTION

The probability distribution for a dead-time-modified pulse
counter1' 2 has been studied by a number of researchers in a
broad variety of disciplines, such as photon counting,3 -9 nu-
clear counting,8-'2 and neural counting.5' 8" 3-17 Many cases
have been studied in detail, including paralyzable and non-
paralyzable counting under blocked, unblocked, and equi-
librium conditions. Attention has also been given to the
gradual recovery (sick-time) system' 5 and to the variable
dead-time case.2 "4 Miuller has summarized the results of a
number of authors1""2 and has compiled a comprehensive,
although by now somewhat dated, bibliography on dead-time
effects.18

Although most of the work cited above is applicable only
when the input to the counter is a Poisson point process with
constant rate, a few results are also available for the case in
which the rate is not constant. Cantor and Teich,4 Teich and
McGill,5 and Bedard3 present expressions for the photon-
counting distribution when the intensity of the light is a
random process, with the sampling time much smaller than
the coherence time of the light.

In a previous publication,'9 we obtained expressions for the
mean and the variance of the number of events in a fixed
sampling time for a nonparalyzable dead-time counter when
the input process is Poisson with a rate that is a known func-
tion of time. In this paper we extend those results to the case
in which the rate of the input process is an arbitrary stochastic
process, under the constraint that it vary slowly with respect
to the duration of the dead time. No constraints on the
sampling time are imposed. We show how the dead-time-
modified mean and variance depend on the first- and sec-
ond-order statistics of the rate. In the context of the detection
of light, we obtain explicit expressions for the photocount
mean and variance for chaotic radiation of arbitrary spectral
properties. Although the magnitude of the variance depends

explicitly on the power spectrum of the radiation in the ab-
sence of dead time, it is shown that the decrease in variance
with increasing dead time is basically spectrum independent.
Analytical and graphical results for the dead-time-modified
mean and variance are provided for chaotic light of Lorentzian
and Gaussian spectra.

2. DEAD-TIME-MODIFIED MEAN

Consider a Poisson counting process whose instantaneous rate
is a known function of time that we denote by X(t)[X(t) > 0].20

Let this process be the input to a nonparalyzable dead-time
counter, i.e., a counter that does not record pulses during a
time interval of fixed duration Td after recording a given pulse
(the pulses that arrive at the input to the counter during this
dead time are lost). We consider the case for which the
counter is always connected to the input process; this is the
equilibrium counter as opposed to the blocked or unblocked
counter. Actually, in the limits where our results are appli-
cable, the number of pulses recorded during a sampling time
is >>1, and therefore the differences among blocked, un-
blocked, and equilibrium counters become negligible, so that
our results are indeed valid for all three types of counter. We
are concerned with the statistics of the number of pulses n
counted in a certain time interval (tu, to + T). The expected
number of pulses during this interval is given by Eq. (3) of Ref.
19,

Eto +T X(t) dt (1)

under the constraint that X(t) vary slowly enough to be vir-
tually constant for any time interval with duration of the order
of T d.

If the instantaneous rate of the Poisson counting process
is not a known function of time but is itself a random process,
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we observe that each realization of the random process will
be a well-defined function of time. Therefore, for a given
realization X of the random process, we can regard Eq. (1) as
a conditional expectation and write

E[n I X] = + X(Mt) dt, (2)
where X(t) - X.

The conditional expectation is itself a random variable, and
its expected value corresponds to the unconditional expec-
tation.2 ' Thus

E[n] = E[E[n I X]] = E t0 + X dtt
[Jto 1 + X(t)'rd dt

= ito [T +X ) dt, (3)

where the expectation is taken with respect to the statistics
of X. If the random process to which A belongs is stationary,
then the integrand in Eq. (3) is independent of t, and we can
write

E[n] = TE [Xt))] =T f 1+ X p(X) dA; (4)

here X(t) is a random variable, since it represents the value
of the random process at a given instant t (first-order statis-
tics), and p(X) is its probability density function.

The constraint that X(t) vary slowly with respect to T
d, as

indicated earlier (see Ref. 19, Section 2), will be satisfied by
almost all realizations of the random process if and only if the
coherence time T, of the rate satisfies the condition

%c >> Td, (5)

since the coherence time provides a measure of the time scale
over which rate variations occur.6 Therefore, for Eq. (4) to
be applicable, the condition expressed by Eq. (5) must be
satisfied.

3. DEAD-TIME-MODIFIED VARIANCE

Equation (13) of Ref. 19 gives an expression for the dead-
time-modified variance when the rate is a known function of
time:

var[n] = tT X(t) dt. (6)
fto [1 + X(t)-rd]3

We observe that

E[n2] = var[n] + IE[n]12, (7)

and therefore when the rate is a random process of which X A=
X(t) is a realization, we can follow the same argument pre-
sented in the previous section to arrive at

E[n2 j X] = var[n I X] + IE[n I Al] 2

to +T (t) dt

Jto [1 + X(t)Td]
3

+Ito+T X(t) dt2 * (8)

fto 1 + X(taid

By evaluating the expectation of Eq. (8), we obtain

Emn2] = E [JO+T 1 +(t)Id]3 dtj

fto' [I + ~t)Id d3

+ E [{fto+T X(t) dt2 (9)

The first term on the right-hand side of Eq. (9) can be ma-
nipulated in the same way as Eq. (3), whereas in the second
term the integral raised to the second power can be rewritten
as a double integral. Thus

E[n2] = T X 1 X -d3 p()dX
[ f S (1 + X-rd)3P

t +T Jto+T X(t) X (t') dt' (10)
to to 1 + X(t)rd 1 + X(t')Td I

valid if the random process is stationary. By bringing the
expectation operator inside the double integral, the second
term in Eq. (10) can be expressed as

to+T to+T

where

77(t - t'I) =E k. WI) ~ ) ]. (12)
= 1 + X(t)1-d .1 + X(t')-dl

This notation is permissible only for a stationary random
process, in which case the expected value in Eq. (12) depends
only on the difference between t and t'. With an appropriate
change of integration variables (such as r = t - t' and T' = t
+ t'), the double integral in Eq. (11) can be simplified to a
single integral:

to+T fto+T It - t'C) dt dt' = 2 (T - r)7(r) dr.
Jto 0t f

(13)

We can now write an expression for the dead-time-modified
variance when the rate is a random process, by using the re-
sults of Eqs. (4), (7), (10), and (13):

var[n] = E[n 2] -E[n]12

=Tf f(l + Xd)SPXd

+ 2 | (T - r)n(r) d,

[ IT f + X- P(X)d1. (14)

The evaluation of B(T) requires knowledge of the second-
order statistics of the rate, i.e., the joint probability density
for two values of the rate separated by a time interval r. In
fact, the explicit expression for (7(T) is

7(1) = ,o ±XA2  p(X1, X2; r) dX1 dX2 ,
f 0 1 + XlTd'1 + /\2Td

(15)

where p (X,, X2; T) is the joint probability density function.
The constraints under which Eq. (6) was obtained (as dis-

cussed in Ref. 19) are somewhat more restrictive than those
for Eq. (1). Hence, for Eq. (14) to be valid, in addition to the
condition expressed in Eq. (5), the following condition must
also be satisfied:
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re >> (XArd) 2 rd/6, (16)

where X is the average value of the rate. This is equivalent
to the. condition expressed in Eq. (11) of Ref. 19 for the case
in which the rate is a known function of time.

4. DEAD-TIME-MODIFIED MEAN FOR
CHAOTIC RADIATION

The evaluation of Eq. (4) for the photon-counting detection
of chaotic radiation of arbitrary spectrum is straightforward,
since the first-order statistics do not depend on the spectrum.
It is well-known that for linearly polarized chaotic radiation
incident upon a detector substantially smaller than the co-
herence area, the probability density function for the rate X
is given by6

p(A) = (1/X)e-/x, (17)

where X is the average value of X. By using Eq. (17), Eq. (4)
becomes

E[n] = T =f -X 1/ dX.
1 + XTd X

(18)

The substitutions x = XA/ and y = x + 1/1Xd yield

E[n]i(T e-xdx- el/1d r dy
Td XTd J -X;d y

AT [E el/ (d(-)1 (19)
X7-d X-rd

where

Em (z) = eJ; dt = zm-1 e- dt,

m = 0,1, 2,..., (20)

is the (tabulated) exponential-integral function.2 2

In Fig. 1 we present a plot of the theoretical counting effi-
ciency, which is the normalized mean E[nJ/AT, as a function
of XTd. The solid curve represents the result for a Poisson

--- ---------

CONSTANT INTENSITY

---.----- CHAOTIC RADIATION
0.1

0 .0 1 0.1 1 10

Fig. 1. Counting efficiency (E[n]/AT) versus XTd, where A is the
average driving rate and rd is the dead time. Curves are for a Poisson
-process in which the rate is constant (solid curve) and for chaotic ra-
diation of arbitrary spectrum (dashed curve). It is clear that the ef-
ficiency is significantly reduced (up to 24%) when the rate is not
constant. The results are analogous to those presented in Fig. 1 of
Ref. 19 for a rate that is a known function of time.
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point process with constant rate (1/1 + Xrd) (see Fig. 1 of Ref.
19). The dashed curve is the result for chaotic radiation of
arbitrary spectrum [Eq. (19)]; it lies everywhere below the
solid curve in accordance with the upper limit on dead-time
counter efficiency derived in Section 6 of Ref. 19.

5. DEAD-TIME-MODIFIED VARIANCE FOR
CHAOTIC RADIATION

The evaluation of the variance, which is expressed in Eq. (14),
is more complex. The third term on the right-hand side of
Eq. (14), which is the square of the mean, is obtained directly
from Eq. (19):

[r 1 + X 1

=T [ elT X Hd 2
= =- t1--n- EI1XId

tX-rd V-X -d d]J
(19')

The first term on the right-hand side of Eq. (14) is dealt
with rather easily. Inserting Eq. (17) provides

T X p(X) dX = T S0  (l + X eA dX.
X)d) 3 2\

(21)

The form of Eq. (21) is closely related to the form of Eq. (18),
and the same technique is used to evaluate the integral. Again
we let x = XA and y = x + lA-rd. Then we use the expo-
nential-integral function defined in Eq. (20), together with
the recurrence relation22 Em+i(z) = m 1'[ezE-z Em(z)], valid
for m = 1, 2, 3, . . to obtain

Tfo X 11 + d)T (X 3+eX/rd)3d

= AT I e ' [d E2 (AId) -E 3 1 II

T [(+ ) e(-rd

2(~) (1 + X-rd) - (1 + 2X-rd) -- (1 (22)

Evaluation of the middle term of Eq. (14) requires a specific
knowledge of the second-order statistics of the radiation that,
in the case of chaotic light, is uniquely determined by the
power spectrum. This is carried out as follows.

It is well known2 3 that for narrow-band chaotic radiation,
the radiation field can be decomposed into the sum of in-phase
and quadrature components at the center frequency wo, where
the two components are Gaussian random processes with
identical statistics. Their autocorrelation and cross-corre-
lation functions R (T) are, respectively,

RYY(T) = R.X(.) = E[x(t + r)x(t)]

= f S
2
(Wo + w) cos wi dco

and

Rxy(r) = E[x(t + r)y(t)] = 
2

(Wo + c) sin wr dw,

(23)

where s2(W) corresponds to the power spectrum of the radia-
tion, w0 is the center radian frequency, and x (t) and y(t) are
the in-phase and quadrature components of the radiation
field, respectively.
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For narrow-band chaotic radiation, the power spectrum can
be represented by a function s

2
(Cv) that is significantly dif-

ferent from zero only in a region around co0 that is small with
respect to coo. Under these conditions we see from the ex-
pressions for R., (r) and R,, (r) given in Eq. (23) that x (t) and
y(t) will be slowly varying with respect to wo, and the intensity
of the radiation will therefore be given by

1(t) = C'[x2 (t) + y2 (t)], (24)

where C' is a constant. Accordingly, when a detector is exposed
to this type of radiation, photon absorptions at the input of
the detector (before dead time) will occur as the events of a
Poisson point process whose rate is the random process

X(t) = C[x2(t) + y 2 (t)], (25)

where C is again a constant.
To evaluate Eq. (15), we require an expression for the joint

probability density function of the values of A at two points
in time separated by a specified interval r. This result was
obtained by Barrett and Lampard in 1955 [see Eq. (76) of Ref.
24]. In our notation it is written as

P(X1 X10r)J2R(-r)iJ/XiX2X2[1 - R2(r)] I X[1 - R2 (-r)]

X exp (- - R2Qr)]i X (26)

where Iofx is the modified Bessel function of order zero
and

X = E[X1] = E[X2] = E[C(x1
2 + y12)] = 2CRxx(0), (27)

- RXX(r) + R2(r) I S ei- rS 2
(co + W) d c2

R (T) = T =+ R-
RRXX(0) rf 2

- RJ s2(c) dcv

f S2(c,)S2(cv) COs(cv - W2) dcl dW2
. (28)

By substituting Eq. (30) into Eq. (15) and exchanging the
summation with the double integral, we obtain

(-) = f +X p(X) dx]

+ER 2 n(r) [J l/ +X e xL.(XA) d * (31)
eX LR(A) dX

n=1 1S 1+ X-rd

The first term on the right-hand side of Eq. (31) is simply the
square of the mean divided by T, and the expression in
brackets in the summation does not depend on T, so Eq. (31)
can be rewritten as

where

n(T) = {E[n]/TI2 + X2 
E an(XTd)R2n(7),
n=1

an(rd) (XLn) ex dx.
0 1 + XrdX

(32)

(33)

Since 22

Ln( ) = y(-I)k (k) k'x
L x =0 kO k k!

we can evaluate the ratio of the two polynomials in the inte-
grand of Eq. (33) to obtain

an (Xrd) = fi( ±b Fx _ bnjXi) ex- dx,
o(1 + XrdX i=0

where

bni= (-l) j (k) k! (Xrd)jik-l,

bn = -bnO = -(1/Td)Ln(-1/XTd)

(34)

(35)

Evaluating the integral in Eq. (34) yields

an(Xrd) = bn f X dx + bn,j oxiexdx

n
= bn(1/Xrd)el/XTdEl(1/Xrd) + Y bnj0!).

j=O
(36)

E s 2(cv) dco]

We see that R (r) can be expressed in terms of the power
spectrum of the radiation; since s2 (cv) > 0 for any value of co,
Eq. (28) shows that R2(r) ' 1 for any value of r, and thus the
expression 1 - R 2 (r), which appears in Eq. (26), is always
nonnegative. R2 (Tr) is in the form of a normalized intensity
correlation function minus 1.

As is indicated in Eq. (78) of Ref. 24, we can now make use
of the following identity,

(1-t)-l exP [(x + Y) 1 - 2t]'o1 -t I

= 1 + i tnL,(x)Ln(y), (29)
n=1

where Ln ) is the Laguerre polynomial of order n, to rewrite
Eq. (26) in the form

p(Xl, X2; T)

= p(Xl)p(X2) 1 + E R2n(r)Ln(Xl/X)Ln(X2 /X)] (30)
. n=lI

Substituting the values of bn and bn, given by Eq. (35) into
Eq. (36) gives

An- ) h (n) (XATd )-k-2
k=O k fk!

(37)

Finally, substituting Eqs. (22), (32), and (37) into Eq. (14)
allows us to write a complete expression for the dead-time-
modified variance for chaotic radiation,

______ el/Ald (1\
var[n] = (I + Ard) -(1 + 2Xrd) - - 1-)]

2 (X'd)[ X-rd \XTdJ

+ 2X2 T a2(XTd) (T - r)R2n(r) dr. (38a)
n=l O

Equation (38a) shows explicitly that the expression for the
dead-time-modified variance given in Eq. (14) depends on the
power spectrum of the radiation.

For XTd = 0, Eq. (33) can be directly evaluated to yield a,(0)
= 1 and an (0) = 0, for n > 1. In that case, Eq. (38a) reduces
to

G. Varmucci and M. C. Teich
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STvarfn] = AT- 2X2 (T - r)R2(r) dr, (38b)

which is the known expression for the chaotic-light photo-
count variance in the absence of dead time.6 As is well un-
derstood, light sources with different power spectra give rise
to different variances under the same conditions. What is
interesting and new here is that the functional dependency
of the variance on the dead time turns out to be virtually in-
dependent of the power spectrum, as will be demonstrated in
the next section.

6. VARIANCE FOR CHAOTIC RADIATION
WITH LORENTZIAN AND GAUSSIAN SPECTRA

We evaluate Eq. (38a) for the Lorentzian and Gaussian cases.
The Lorentzian spectrum G (w) is given by

G( ) A (39)

so that

R(r) = e1lIfI, (40)

where 1/P is the coherence time6 and A is a constant. With
this substitution, the second term in Eq. (38a) becomes

-2X S T
2X2 Ea (rd) (T - r) exp(-2nFr) dr

n=l J O

(XT) 2  
2 2

- T - [a (Ard)/2n2][2nPT+ exp(-2nrT) -1].

(41)

For a Gaussian spectrum,

G(co) = A' exp[-(w - wo) 2/2r 2]

and

R(r) - exp(-r2-r2 /2).

(42) B

0-4

(43)

Again, 1/r is the coherence time. By using this substitution,
the second term in Eq. (38a) becomesST
2XA2 F an(ATd) (T - r) exp(-nr2 2 ) dr

n=1

(AT)2

- (T) 2 
n[a [n( rd)/n]jVrnT[1 - erfc(VPrT}]

-1 + e-n(rT)2 . (44)

Here erfc(x) denotes the complementary error function22

2 Jr =
erfc(x) = 2 e_~2 dt. (45),\7 x

We have numerically calculated the photocount variance [Eq.
(38a)] for light with these spectral properties for a variety of
values of the parameters PT, XT, and X-d. The results were
obtained with the help of an IBM 370 computer and are
summarized in Figs. 2 and 3.

The solid curve in Fig. 2 displays the ratio of the variance
to the unmodified mean [var[n]/XT] as a function of Ard for
a Poisson process with constant rate. In this case,' 9

var[n] 1 (46)
AT (1 +A_-d )3'(6

a00

10

0.1

001

0.001
0.0007

0.01 0.1 10
XTd

Fig. 2. _Ratio of dead-time-modified variance to unmodified mean
(varfn]AT) versus ?vrd for a Poisson process with constant rate (solid
curve), for chaotic radiation with Gaussian spectrum (dashed curves),
and for chaotic radiation with Lorentzian spectrum (dotted curves).
The values of the parameters for the chaotic radiation curves are rT
= 100, XT = 10,000 (upper curves) and rT = 2, AT = 40 (lower
curves). The vertical separation between any of the curves for chaotic
radiation is essentially independent of Xrd, an indication that the
different curves are scaled versions of one another. Thus the nor-
malized variance will be essentially the same for all four curves, as is
demonstrated in Fig. 3.

0.1

0.01

0.001

0.0003

Fig. 3. Normalized variance (ratio of dead-time-modified variance
to unmodified variance) versus XTd. Curves are for a Poisson process
with constant rate (solid curve) and for chaotic radiation (dashed
curve). All results were obtained under the assumption that the dead
time is much shorter than the coherence time (Td << 1/F), in which
case the effect of dead time turns out to be virtually independent of
spectral shape (see text). The normalized variance is therefore the
same function of XTd for all types of chaotic radiation. The results
are similar in character to those presented in Fig. 2 of Ref. 19 for a rate
that is a known function of time.

which is independent of the value of the mean. The other
curves represent the results for chaotic light with Gaussian
spectrum (dashed curves) and Lorentzian spectrum (dotted
curves), with rT = 100, XT = 10,000 (upper curves) and FT
= 2, XT = 40 (lower curves). It is clear from Fig. 2 that the
vertical separation between any of the dashed and dotted
curves (chaotic radiation) is reasonably independent of XTd,

particularly where Xrd is not too large. Since the ordinate is
a logarithmic scale, this implies that the ratio is constant and
therefore that the normalized variance, i.e., the ratio of the
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dead-time-modified variance to the variance in the absence
of dead time, will be the same for the two spectra, for the two
sets of parameter values. Thus it appears that under the
conditions for which our results are applicable, the effect of
dead time on the variance is independent of the spectral shape.
Stated differently, the normalized variance is a prescribed
function of XTd, essentially independent of spectral parame-
ters. We have obtained curves for several sets of parameters,
for both Gaussian and Lorentzian spectra, and we have found
this to be consistently true.

The behavior, which is not a priori obvious, can be under-
stood by observing that our results are applicable only when
the dead time is much shorter than the coherence time (1-d <<
1/F). For sufficiently small -rd, the rate of the Poisson process
can be locally approximated as being constant. Thus the
dead-time-modified point process has a rate that is locally a
function of the unmodified rate only and as such is not in-
fluenced by the second-order statistical properties of the ra-
diation.

Figure 3 provides a plot of the normalized dead-time-
modified variance, i.e., the ratio of the variance in the presence
of dead time to the variance in the absence of dead time, for
a Poisson point process with constant rate (solid curve) and
for chaotic radiation (dashed curve). The latter is reasonably
independent of the spectral characteristics of the light, as was
discussed above.

A few words about the procedure used to evaluate Eq. (38a)
by computer are in order. The infinite summation must be
truncated at a point where the neglected terms cause a suffi-
ciently small error. For values of XTd larger than 1, several
a, (X-rd) terms are needed to achieve acceptable accuracy.
The expression for a,, (Td) [Eq. (37)] includes summations
of terms with alternating signs that almost precisely cancel
and must therefore be evaluated with great precision to
achieve acceptable accuracy. To obtain the data for the fig-
ures, we used extended precision (REAL*16) in our calcula-
tions.- The exponential integral function Ei(x) was evaluated
to REAL*16 precision through its series expansion2 2 for x <
2 and through its continued fraction expansion 22 for x 2 2;
other functions (exponential, erfc, etc.) were provided by the
FORTRAN H compiler with full REAL*16 accuracy.

7. CONCLUSIONS

The principal results of this paper comprise analytic expres-
sions, complemented by computer results, for the mean and
variance of a dead-time-modified Poisson counting process
driven by a continuous rate process representative of chaotic
radiation. It has been assumed that the nonparalyzable dead
time is small in comparison with the coherence time (inverse
bandwidth) of the light. In this limit, as well as in the absence
of dead time, the photocount mean is explicitly shown to de-
pend only on the first-order statistics of the radiation. As was
expected, the counting efficiency lies below that for a constant
intensity source for all values of the dead-time parameter
X'Td.

The photocount variance, on the other hand, exhibits a
strong dependence on the spectral properties of the radiation
even in the absence of dead time. The forms of the dead-
time-modified analytic expressions for the cases of Lorentzian
and Gaussian spectra are therefore substantially different.
Nevertheless, numerical computer evaluation of these ex-

pressions (variance as a function of A-rd) demonstrates that
the effect of dead time on the variance is essentially inde-
pendent of the spectral shape of the light, although a depen-
dence can be discerned to develop at higher values of XTd.
This can be understood by noting that our results are appli-
cable only when the dead time is much shorter than the co-
herence time (Td << 1/). For sufficiently small T d, the rate
of the Poisson process can be locally approximated as being
constant so that the dead-time-modified point process has a
rate that is locally a function of the unmodified rate only and
as such is not influenced, by the second-order statistical
properties of the radiation.

In light of our results, we may expect that the dead-time-
modified count variance will exhibit an increasing dependence
on the spectrum as 7Td becomes larger; indeed, this dependence
should become substantial as Td approaches 1/F. An analysis
in that regime, although difficult to carry out, might therefore
lead to the intriguing possibility of using a dead-time counter
to extract spectroscopic information about a radiation source.
The notion of dead-time spectroscopy is not unlike photo-
counting spectroscopy,6 but the upper limit of bandwidths
that could be measured by the technique would be -10 GHz.
This value is higher than the upper limit for photocounting
spectroscopy, -100 MHz, because the dead time can in prin-
ciple be made about a factor of 100 smaller than the 10-nsec
minimum counting time in which variations can be detected
with commercially available fast electronic circuits. The
region of usefulness of dead-time spectroscopy would probably
be similar to that of the Fabry-Perot 6talon.

Finally, we point out that the dead-time-modified count
mean may also depend on the spectral properties of the light
for Ird -1/r, in which case dead-time spectroscopy could be
implemented quite easily. Kikkawa et al.25 ,26 have calculated
the efficiency (normalized mean) of a dead-time-modified
photon counter for Lorentzian light and have discussed the
dependence of this quantity on spectral parameters. Their
results are valid only in the limit where the coherence time is
much smaller than the mean time interval between pulses,
however, and this is not a useful region [see remarks following
Eq. (10) in Ref. 25].
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