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When effects due to refractoriness (reduction of sensitivity following a nerve impulse) are taken into
account, the Poisson process provides the basis for a model which accounts for all of the first-order statis-
tical properties of the maintained discharge in-the retinal ganglion cell of the cat. The theoretical pulse-
number distribution (PND) and pulse-interval distribution (PID) provide good fits to the experimental
data reported by Barlow and Levick for on-center, off-center, and luminance units. The model correctly
predicts changes in the shape of the empirical PND with adapting luminance and duration of the interval
in which impulses are counted (counting interval). It also requires that a decrease in sensitivity to stimu-
lation by light with increasing adapting luminance occur prior to the ganglion cell and is thus consistent
with other data. Under the assumptions of the model, both on-center and off-center units appear to ex-
hibit increasing refractoriness as the adapting luminance increases. Relationships are presented be-
tween the PND and PID for Poisson counting processes without refractoriness, with a fixed refractory
period, and with a stochastically varying refractory period. It is assumed that events unable to produce
impulses during the refractory period do not prolong the duration of the period (nonparalyzable count-
ing). A short refractory period (e.g., 2% of the counting interval) drastically alters both the PND and
PID, producing marked decreases in the mean and variance of the PND along with an increase in the
ratio of mean to variance. In all cases of interest, a small amount of variability in refractory-period dura-
tion distinctly alters the PID from that obtainable with a fixed refractory period but has virtually no ef-
fect on the fixed-refractory period PND. Other two-parameter models that invoke scaling of a Poisson

input and paralyzable counting yield predictions that do not match the data.

. INTRODUCTION

The sequence of impulses recorded from the retinal gan-
glion cell of the cat remains irregular even when the retina is
thoroughly adapted to a steady stimulus of fixed luminance.
Though this maintained discharge has been observed in a
variety of vertebrates, its main characteristics have been de-
scribed in greatest detail in the cat.1-!* Barlow and Levick®
and Sakmann and Creutzfeldt” have noted that the average
maintained firing rate of on-center units increases as the
adapting luminance is increased from zero up to a point at
which the increase is either slowed or reversed with further
increases in luminance. At still higher adaptation levels, the
firing rate again rises.36 Both Sakmann and Creutzfeldt” and
Barlow and Levick® attribute the plateau or fall in firing rate
to increasing contribution from the inhibitory surround. The
average firing rate of off-center units tends to decrease with
increasing adapting luminance, though the change is neither
as consistent nor as large as that observed for on-center
units.

The most striking properties of the maintained discharge
are the large and increasing compression between numbers
of quanta absorbed and nerve impulses generated, and the
substantial increase in mean-to-variance ratio of the empirical
pulse-number distribution (PND) with increasing luminance.
The pulse-number distribution is also often referred to as the

386 J. Opt. Soc. Am., Vol. 68, No. 3, March 1978

0030-3941/78/6803-0386$00.50

pulse-counting distribution (see Fig. 1). These properties
have led workers to consider that scaling and refractoriness
mediate between absorbed quanta and the maintained dis-
charge.14-6:8-13 While we employ the term “refractoriness”
in its usual sense—to imply a reduction in sensitivity for some
period following the occurrence of a neuronal spike—it is
important to note that we do not imply that the refractory
period we deal with be identified with those normally found
in axons following electrical stimulation (see Sec. V for further
related considerations). We shall also often employ the term
“dead time” to refer to the period following an impulse (spike)
during which another impulse cannot occur; this term has its
roots in the nuclear physics literature.}* The terms refractory
period and dead time will thus be nearly interchangeable. We
use the term “scaling” to refer to a particular kind of reduction
in sensitivity in which a system requires r input events in order
to produce a single output event; r is then the scaling param-
eter. Barlow and Levick® considered such a simple scaling
model for the case in which the input events represented
Poisson-distributed quanta of light and the output was the
discharge of ganglion cell spikes, but found that the required
parameter values were seriously wrong. Barlow!2 subse-
quently criticized this scaling model on other grounds as well,
though Levick® has recently pointed out that some modifi-
cations introduced by Stein!516 may improve matters. We
develop the simple scaling model further and arrive at a con-
clusion similar to that arrived at by Barlow.12
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FIG. 1. (a)Five sample records of nerve impulses for a given unit during
steady stimulation by light are schematized. T is the time interval during
which a count of nerve impulses (n) is taken in each record; n is equal to
3,7, 4, 6, and 4 impulses (or counts) in the five records. A single time in-
terval between a pair of impulses in the second record is labeled as t (in-
terspike interval). (b) Experimental pulse-counting or pulse-number dis-
tribution (PND): A relative frequency distribution of n over a set of sample
records such as those in{a). The ordinate represents the proportion of the
total number of records in which the value of n shown on the abscissa was
obtained. Arrow indicates mean number of counts. (c) Experimental
pulse-interval distribution (PID): A relative frequency distribution of inter-
spike intervals () over a set of sample records such as in (a). Arrow indi-
cates mean interspike time interval. [The PND shown in (b) and the PID
shown in (c) are not drawn from the records in (a)].

Barlow and Levick® modeled the recorded discharge by
fitting Gaussian distributions to the empirical PND’s (mean
and variance determined by the experimental data) and
gamma distributions to the empirical pulse-interval distri-
butions (PID’s); see Fig. 1. (The gamma distribution is the
PID of the scaling model with Poisson input.) As Barlow and
Levick® note, this model works reasonably well empirically
although the combination of a Gaussian PND and a gamma
PID does not provide a consistent model of the underlying
process. Indeed, the PND and PID are intimately linked (see
Sec. II1).17 Further, the increasing mean-to-variance ratio
of the PND with increasing luminance is a characteristic that
is not present in the particular number distribution that
correctly corresponds to the gamma interval distribution (see
Sec. V where we provide the PND that is consistent with the
gamma PID) unless a further relationship between the scaling
parameter and the luminance is assumed. However, even
with such a relation, the empirical PID’s and PND’s cannot
be fitted by the theoretical curves over the entire luminance
range.

Because the PND of a Poisson process having either fixed
or variable dead time exhibits an increasing mean-to-variance
ratio with increasing intensity,18-23 a number of authors have
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attempted to use a dead-time model to explain this effect. In
particular, Kuffler, FitzHugh, and Barlow! considered a
fixed-dead-time model, but the calculated PID (a displaced
exponential) did not fit the recorded data well. Trabka,!! on
the other hand, attempted to incorporate a refractory period
in the scaling model that Barlow and Levick® describe in order
to deal with the change in increment threshold at high adap-
tation levels, and Rodieck* considered the effect of a stochastic
dead time on the mean and standard deviation of the PID.
Lee?* proposed a neuronal model with stochastic dead time
driven by a stationary renewal input process. Though theo-
retical dead-time-modified PND’s have been obtained by a
number of authors in various fields of endeavor,20:22,23,25,28
there has been little effort in the past to use this theoretical
approach to describe the distribution of nerve impulses in a
discharge in general, and to describe the maintained discharge
in particular.

Since we shall be developing in detail a stochastic model
based on the dead-time-modified Poisson process, we give
some further attention to Rodieck’s previous work.48 Ro-
dieck’s basis for considering this model lay in the observation
that the relation of standard deviation and mean of the PID’s
for different ganglion cells was roughly linear and had a slope
of unity. In each case the mean was somewhat larger than the
standard deviation; the average difference was 17.0 ms with
values as low as 0 ms for some units and as high as 45 ms for
others. The mean and standard deviation of the PID for a
Poisson process are precisely equal, but the introduction of
a fixed dead time following each registered pulse (during
which subsequent incoming pulses are lost) increases the mean
of the PID by the value of the dead time without affecting the
standard deviation. If we identify the algebraic difference
between the mean and standard deviation of the empirical
distributions with the dead time of such a theory, the corre-
spondence of the data to the main properties of the dead-
time-modified Poisson model is striking. In addition, dead
times estimated in this way were found by Rodieck to be di-
rectly related to the time taken for the probability of a second
impulse to follow a first impulse to reach half of its final value,
as should be the case if the model is to hold.* This is repre-
sented by the un-normalized autocorrelelogram or postfiring
interval distribution.

Most, if not all, inputs to the ganglion cell are graded and
arise from cells that do not appear to exhibit refractoriness.
Hence, if dead time (manifested as refractoriness) is to play
a role, the ganglion cell is the most likely location at which

.such an influence would be exerted. This is consistent with

the conclusions drawn by Rodieck* regarding the origin of the
maintained discharge. Although Rodieck’s finding that loss
of the maintained discharge from ganglion cells consequent
on chemical destruction of the photoreceptor layer implies
that photoreceptors are necessary for the maintained dis-
charge, it does not imply that the fine time structure of the
discharge follows the fine time structure of the synaptic input.
Instead the synaptic input may simply set a level that is ap-
propriate to allow a ganglion cell to generate impulses. Since
Rodieck? also finds that firing patterns of nearby cells may
be statistically correlated, he reasons that Hughes and Maf-
fei’s?” conclusion that the maintained discharge is intrinsic
to the ganglion cell is not supported. Rodieck? also concludes
that the synaptic input does provide a level-setting function
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from the observation that the pattern of discharge following
an antidromic spike is not distinguishable from that following
a normally produced spike. If this is so then the generating
mechanism for the fine time structure may indeed originate
within the ganglion cell and would suggest even more strongly
that the ganglion cell is the main—if not the only—locus in
the retina at which refractoriness might play a role.

In the present work our main interest is in characterizing
the stochastic properties of the maintained discharge at var-
ious fixed levels of adaptation with PND’s and PID’s that are
consistent with each other. In addition to yielding excellent
fits to the empirical stochastic distributions, the compression
in sensitivity required by our model is in good accord with the
experimental data and with predictions obtained from para-
metric feedback models282? which characterize changes in
mean response levels with adapting luminance but do not treat
the stochastic properties of the maintained discharge (see also
Refs. 30-35).

In Sec. IT we discuss the principal bases for applying the
Poisson process to the ganglion cell discharge. In Sec. III we
derive the relationships between the pulse-number and
pulse-interval distributions for Poisson processes with no
dead-time restrictions, with a fixed dead time, and with a
stochastic dead time. In Sec. IV a model is presented for the
ganglion cell and the theoretical results are compared with the
recorded data.56 Section V is devoted to a discussion of the
results.

Il. BASES FOR APPLICATION OF THE POISSON
PROCESS TO THE GANGLION CELL DISCHARGE

Since the nerve impulse train from the single retinal gan-
glion cell results from the summation of a number of signals
from different cells in more distal retinal layers and since, in
addition, the light stimulus is effectively temporally and
spatially Poisson and results in the absorption of less than one
quantum per rod per millisecond under most conditions of
present interest, there is some basis for considering that the
Poisson process might provide a reasonable foundation for a
model of the ganglion cell discharge. Limitations to the va-
lidity of this approach may be expected at high levels of ad-
aptation where rod saturation occurs at 200-10 000 quanta
absorbed per rod per second in the human,?® at low levels of
adaptation where absorption of one quantum may yield sev-
eral nerve impulses from a single retinal ganglion cell,13 and
for situations in which the light is statistically different from
Poisson.3”7 In the present report our main concern shall be
with data on the single cat retinal ganglion cell for a range of
adapting luminances extending from a low level at which on
the average one quantum is absorbed per rod every 10¢stoa
high level at which on the average 1000 quanta are absorbed
per rod per second.

Since communication within the retina between rods,
horizontal cells, amacrine cells, bipolar cells, and ganglion cells
appears to be carried out almost exclusively by graded po-
tentials rather than by pulses of fixed height, it might appear
that there is some inappropriateness in developing a model
that is based on pulsatile point processes. In fact, the fol-
lowing considerations show that this is not so: (i) If Rodieck’s
inference8 (described above) is correct and the synaptic input
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to the ganglion cell serves a level-setting function but does not
determine the fine time structure of the maintained discharge,
then whether it is pulsatile or graded is irrelevant since the
pulsatile point process with which we are concerned is gen-
erated by the ganglion cell. In this case, there are no preferred
time intervals so that the Poisson is the natural choice for the
underlying point process generated. (i) If, on the other hand,
the fine time structure of the ganglion cell output follows its
graded input, the present model incorporates it directly in the
following way: Consider a system whose input consists of a
stochastic series of fixed-height pulses following a Poisson
distribution with mean M. The output from the first stage
of this system for each input pulse is a graded potential whose
height is a random variable with an arbitrary distribution. If
the second stage of such a system (we call this the detector)
requires an input greater than some arbitrary criterion height
in order to generate an output pulse, and if the probability is
P that the graded potential at the input to the detector will
reach this height, then the pulse stream out of the detector will
be Poisson with mean MP. Hence regardless of whether the
first stage of such a system truly represents a series of com-
partments (e.g., rod signal is sent to a horizontal cell which
itself sends a signal to a bipolar cell) and that communication
from compartment to compartment within the stage is by
graded potentials, regardless of whether the communication
route for the signal changes (e.g., rod to bipolar on one occa-
sion, rod to horizontal cell on another occasion), and regardless
of whether a single quantum distributes signals via several
pathways, as long as we can characterize the input to the de-
tector as reaching the criterion height with some probability
P, the spike stream out of the detector will be Poisson with
mean MP. It is also worth noting that even if there should
be a convergence of inputs to the detector, the same result
would be produced, and this holds regardless of how far back
from the detector is the stage at which the convergence oc-
curred; this would also permit the dark discharge to be treated
as additive with the discharge produced by quanta of light.
Holden has considered a broad range of models for the gen-
eration of nerve impulses in great detail,38 and the reader is
referred to his book for further information.

Finally, we note an important theorem which states that
the process resulting from the superposition of a number of
stochastic point processes approaches the Poisson limit under
a very broad range of conditions regardless of whether the
point processes themselves are Poisson.39-42 As first con-
sidered by McGill43 the generality of this result suggests that
the Poisson process may be important in neural counting
mechanisms. If we consider a stochastic point process as a
collection of random points, the superposition of two (or more)
processes is obtained by taking the union of the points of both
(or all) of the constituent processes. Perhaps the simplest and
most widely known result is that the superposition of two or
more independent Poisson processes is again Poisson.
However, if the following four conditions are fulfilled, the
superposition of a number of point processes will also ap-
proach the Poisson limit for arbitrary (not necessarily Poisson)
component processes: First, we require that each of the
constituent processes contribute no more than one point in
the counting interval. Second, we require that the component
processes be independent; since each of the n points in the
process that is the result of the superposition belongs to a
different component, the positions of the n points within the

Teich et al. 388



counting interval are also independent. Third, we require
each of the components to be stationary, so that each of the
points is uniformly distributed over the counting interval.
Finally, if there are n7 points in the interval (0,7) the number
n7 must be such that ny/T is the intensity or rate of the su-
perposition process as T' — «. A rigorous proof of the Poisson
limit was initially provided by Cox and Smith404l; recent
advances have been summarized by Cinlar.#2 Thus, even
should the component processes giving rise to the timing of
the ganglion cell’s maintained discharge itself be other than
Poisson, there are a broad set of conditions for which modeling
the discharge with a Poisson process would provide a fair
representation.

lil. RELATION BETWEEN PULSE-NUMBER AND
PULSE-INTERVAL DISTRIBUTIONS

We now consider the relationship between various pulse-
number distributions and the corresponding pulse-interval
distributions.17:19:234¢  First we obtain an expression relating
the PND and the PID for the Poisson process in the absence
of dead-time restrictions. (For a nonparalyzable counter, the
dead time represents a period of time, after the registration
of a pulse, during which other pulses are not registered, and
furthermore, do not prolong the duration of the dead-time
period.) We then obtain the relationship in the presence of
fixed dead time,22:23:25,26 finally generalizing this to allow for
a stochastic dead time.2445-47  An exact expression for the
PID and an approximate expression for the PND is obtained
when the variation in dead time can be represented by a
Gaussian distribution. Relevant examples are presented to
illustrate each of the situations considered.

A. Absence of dead time

Consider the Poisson pulse-number distribution p(n,t)
representing, for each integer n, the probability of registering
n pulses in a time interval t. We seek an expression for the
pulse-interval distribution of the underlying process in terms
of the pulse-number distribution. Let F(t) represent the
probability that the arrival time of the succeeding pulse is <t
following the registration of a pulse at time t = 0. Clearly,
F(t) is the cumulative probability distribution of the pulse-
interval density, denoted by f(¢), i.e.,

Fe)= “f) ar (1)

By definition, only arrival times ¢ = 0 are considered.
Equivalently, 1 — F(¢) is the probability that the arrival of the
next pulse occurs after time ¢, i.e., that exactly zero events
occur in the interval (0,¢). Therefore,

1 - F(¢t) = p(0,t), (2)
which, when combined with Eq. (1), yields
t
1- t’) dt’ = p(0,t). 3
ey =poo) 3)

Differentiation of Eq. (3) with respect to ¢ yields the desired
relationship,

f(¢) = =ap(0,t)/ot. 4)

Thus for a Poisson process with mean rate A, the PND is given
by
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p(n,T) = (\T)" exp(—=AT)/n!, 5)

so that the probability of registering zero counts in the time
interval T is

p(0,T) = exp(—=AT), (6)

where 0! = 1. The corresponding PID is obtained by differ-
entiation of Eq. (6), in accordance with Eq. (4), i.e.,

f(t) = X exp(=At). (7

This is the familiar exponential distribution.17.19.48

Processes other than Poisson, e.g., those with noninde-
pendent pulses such as the strictly periodic pulse train!2 or
the doubly-stochastic Poisson process,3” must be treated more
carefully. In general, a distinction must be made between the
density function for interspike intervals (PID) and the density
function for the time to the first pulse with the time origin
chosen arbitrarily (first time-of-arrival or time-interval dis-
tribution, denoted TID).174449,50 Tndeed, for a particular
(experimental or theoretical) TID it is in principle possible,
by repeated differentiation of the TID, to obtain an estimate
of the PND. The TID may also be expressed as a sum over
a set of PND’s, though the accuracy of these relations is lim-
ited in practice (see Ref. 17, pp. 106-108). Dead-time effects
further complicate the interrelation. The Poisson process is
sufficiently general to meet our needs, however, in which case
no distinction need be made between the PID and the TID.

B. Fixed dead time

We now consider a random Poisson pulse train at the input
to a processor. The output of this processor is defined to be
identical to the input, with the restriction that following each
output pulse, there is a (nonparalyzable) dead time 7 during
which no further output pulses can occur. At the termination
of the dead time, the processor is again free to respond to in-
coming pulses. We investigate the PID at the output of the
processor, i.e., the dead-time-modified pulse-interval distri-
bution. For a Poisson input process the pulses are indepen-
dent, i.e., the probability of occurrence of a given pulse does
not depend on the occurrence or nonoccurrence of previous
pulses. For this reason, the Poisson process is sometimes
called a purely random or zero-memory process.4® Further-
more, the exponential pulse-interval distribution [see Eq. (7)]
has the following property: Beginning at any time ¢, the
probability of the next pulse occurring at time ¢ = ¢ is given
by

f(t) = Nexp[-At —to)]  t=¢to. 8

The pulse-interval distribution for a Poisson process with
fixed dead time 7 is thereforel419,24,25

flt]7) = X exp[—=A(E — 7)] t = 9)

Thus at the termination of the dead time which follows a given
pulse, the process behaves as if this time interval did not exist
(has no memory) and the PID for the dead-time-modified
process is obtained by simply replacing ¢ by ¢t — 7 (for ¢t = 7)
in the unmodified PID.

For a Poisson process with fixed dead time 7, the probability
of registering n counts in a time interval T (PND) with a
nonparalyzable counter is22:23.25
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( e—}\Tx n=0
3 NE[T = nel#/kY) expl=A[T — nrl}
k=0
p(n,Tir) = T _ :il INR[T — (n — 1)7]*/kRY exp{—\[T — (n — 1)7]}, 1<n<T/r (10)
=0
- ;é: INE[T = (n = D)r]*/RY expl=A[T — (n — 1)7], T/r <n < (T/r) +1

assuming that a pulse did not occur just prior to the beginning
of the sampling interval (unblocked or free counter). Count
numbers greater than (7'/7) + 1 are forbidden. Figure 2 shows
the deviation from the original Poisson PND when the effects
of dead time are included, and also provides a comparison with
a normalized (mean approximately equal to that of the original
Poisson) dead-time-modified PND.23 The ratio of dead time
to sampling time /T = 0.025 for all curves. The mean of the
original Poisson (solid curve) along with its variance was set
equal to 25.0; it can be seen from Fig. 2 that the mean of the
dead-time-modified PND (dotted curve) is reduced to 16.3,
whereas its variance is reduced to 5.6. The dashed curve was
obtained by increasing AT to 66.5 from AT = 25 in order to
approximately compensate for dead-time losses in the mean.
This clearly demonstrates the reduction in variance (= 3.6)
due to dead-time effects. These effects become more pro-
nounced with increasing values of 7/T. It is worth noting that
the parameters yielding the substantial effects in Fig. 2 are
equivalent to a refractory period (dead time) of 1.25 ms with
a sampling interval of "duration 50 ms, values that.would be
appropriate in the physiological range. The asymptotic mean
and variance for the dead-time-modified PND are given ex-
plicitly by!8-23

e ANT(1 4+ A7)+ Yo(A7)2(1 + }\1');2 (11)

and
a2 ~ \T'(1+ A1)73, (12)

respectively. Note that the second term in Eq. (11), Ya(A7)2
X (1 4 A7)~2, is always <Y, (for 7 > 0), so we may just as well
write

7T~ AT(1 + \r)~L. (13)

In fact, Miiller?2 has shown that Eq. (13) represents the exact
as well as the asymptotic mean for the equilibrium process,
representing a random choice of time origin rather than the
particular choice corresponding to an unblocked (free)
counter. Furthermore, Eq. (12) represents a good approxi-
mation for the asymptotic variance of the equilibrium process
as well as for the shifted process (unblocked counter). Using
the terminology of renewal theory, we note that this section
has dealt with a quasi-Poisson process,51:52 as is clear from the
form of the renewal function 77 represented in Eqgs. (11) and
(13). Finally, we observe that since AT is the average number
of pulses that would be registered in the sampling time T in
the absence of dead time, the ratio 7/AT =~ (1 + A7)~! [see Eq.
(13)] represents the fractional transmission of the dead-time
processor.
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C. Variable-dead-time PID

We now consider a dead time that is not fixed, but that
undergoes random variations.2445-47 This model has been
discussed by Rodieck48 in relation to the maintained dis-
charge considered here. We note that the dead time imposed
by a multichannel analyzer used in nuclear event measure-
ments is also generally random.2! In both of these cases, the
stochastic dead-time variations can be represented in terms
of a probability distribution P(r), assumed to be statistically
independent of the input process and to have mean value 7
and variance ¢2 It is shown in Appendix A that the exact
pulse-interval distribution for a Poisson process with a
Gaussian-distributed dead time is [see Eq. (A8)]

oo (i -2-5 e ()]

t =7~ o2\ 7+ o2\
X [erfc <—- ————21/20, > — erfc (—-——21/26T )], (14)

COUNTING DISTRIBUTION p(n)

=3
066 20 30 40 50
NUMBER OF COUNTS (n)

FIG. 2. The Poisson theoretical pulse-number distribution with no dead

time is represented by the solid curve (mean = variance = 25.0). The

effects of dead time produce the theoretical pulse-number distribution shown

by the dotted curve (mean = 16.3, variance = 5.6). The dead-time-modified

theoretical PND normalized to approximately the same mean as the un-

modified Poisson distribution is shown by the dashed curve (mean = 24.6,

variance = 3.6). The ratio of dead time to sampling time 7/ T was chosen

to be 0.025 for all curves. Arrows indicate means. After Cantor and Teich
(Ref. 23).
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FIG. 3. Theoretical pulse-interval distributions for fixed (dashed curve)
and variable (solid curve) dead time. For the dashed curve, the dead time
7 was chosen to be 30.0 ms as was the mean dead time 7 used in obtaining
the solid curve. The dead-time variance o2 was taken to be 25.0 ms? (solid
curve), and the rate parameter \ was taken as 0.1 ms™1 for both curves.
Note the substantial change in shape due to the dead-time variation. Means
are indicated by arrows.

where erfcx is the complementary error function®3 evaluated
at x.

This distribution is plotted in Fig. 3 for 7 = 30.0 ms and ¢2
= 25.0 ms? (solid curve). Note the considerable difference
in shape (arising from the dead-time variation) in comparison
with the fixed-dead-time PID with = 30.0 ms (dashed curve),
which is simply a displaced exponential. Both curves corre-
spond to a value A = 0.1 ms~L

D. Variable-dead-time PND

To obtain the corresponding pulse-number distribution,
we use a generalized expression for the fixed dead-time-
modified distribution to include the case in which the dead
times following the occurrences of different pulses may take
on different values. Specifically, the first pulse is assumed
to be followed by dead time 71, the second by 79, and so on up
to the nth pulse, which is followed by dead time 7,,. For a
nonparalyzable counter unblocked at the beginning of the
counting interval, this distribution is given by54

p(n’Tl T1T2 " )Tn)
= 5 AT = (ry + 79+ -+« + 1) ]4/R)
k=0
X exp{—)\[T - (Tl + T2 .ot Tn)]}
-1
=T KT = (ry + 79 4+ o+ + 7 p)]/RY)
k=0
X expl—=A[T = (11 + 1o+ + 7,-1)]}, nx=1 (15)
forT> 7+ 79+« + 7,. Assuming each of the dead times
7; to be an independent sample of the underlying Gaussian
random variation of the dead time, it is shown in Appendix
B that to good approximation the PND is [see Eqs. (B13) and
(B14)]

n n—1
p(n;Tr?)U‘r) = kzo Pkn — kzo Prn-1, 1 21 (16)
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where

Phn = YIA2V2n 12 1% expl—\[T = 7] = Yano??)
X ikerfc[—(T — n7 — nAe?)(2V2n1/26)~1].  (17)

Here i%erfcx represents the kth iterated integral of the com-
plementary error function® evaluated at x.

In Fig. 4 we present plots of the PND represented by Eqs.
(16) and (17) for two different values of the dead-time variance
o2 in order to illustrate the effect of this parameter on the
distributions. The mean number of counts 77 = 3.0 and the
mean dead time 7 = 10.0 ms for both plots; the rate parameter
A was set equal to 0.04197 ms~! and the counting interval T’
was chosen as 100 ms for both distributions. The dead-time
variance o2 was set at 0.1 ms?2 (solid lines) and 50.0 ms? (dashed
lines). The resulting variances of the two counting distri-
butions are quite similar, viz., ¢2 = 1.54 (solid lines) and ¢2 =
1.70 (dashed lines). Thus the dead-time variance has little
effect on the counting distribution in this example. In all
cases throughout this paper, the dead-time distributions P(r)
are reasonably narrow (i.e., 7 > g,); it is therefore expected
that the fixed-dead-time PND can be used in place of the
variable-dead-time expression. It is of interest to note that
for < 1, the effect on the PND of dead-time variability is
expected to be substantial since the PID, which is related to
the probability of n = 0 through Eq. (A2), is sensitive to this
variation.

E. PND mean-to-variance ratio

In the absence of dead time, the mean np and variance o5
of a Poisson process with mean rate X [see Eq. (5)] are equal,
viz.,

np= 0’123 = \T. (18)

For a fixed-dead-time-modified Poisson process, expressions
for the asymptotic mean and variance are given by Egs.
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FIG. 4. Theoretical pulse-number distributions for a variable-dead-time-
modified Poisson distribution. The solid lines (mean = 3.0, variance = 1.54)
represent a (small) dead-time variance o2 = 0.1 ms2 and a mean dead time
7= 10.0ms. The dashed lines {(mean = 3.0, variance = 1.70) represent
a (relatively large) dead-time variance o2 = 50.0 ms2 and the same mean
dead time 7 = 10.0 ms. The counting interval T was taken equal to 100
ms and the rate parameter A was 0.04197 ms~" for both cases. The mean
count is indicated by an arrow. At n = 0, the two lines coincide since the
counter is assumed to be unblocked.
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theoretical PND as a function of the logarithm of the rate parameter A. The
dead time 7 Is 20.0 ms.

(11)—(13). Using Eqs. (12) and (13), the ratio of mean to
variance for a fixed dead time 7 is, to good approximation, a
parabola in A for fixed 7, i.e.,

n/o? ~ (1 + A7) (19)

Since the approximation represented by Eq. (19) is applicable
for the equilibrium process as well as for the shifted process
(free counter),22 the unblocked nature of our results is not
critical in this context. Furthermore, the dead-time variance
has little effect on the PND’s for all cases considered here so
that the mean-to-variance ratio will be approximately the
same as that for a fixed dead time equal to the mean dead time
7. Figure 5 shows a plot of this function for = = 20.0 ms with
A ranging from 10~4 to 10~ ms™~! on a logarithmic scale.

To this point we have obtained a number of expressions for
pulse-number and pulse-interval distributions in the absence
of dead time, for fixed dead time, and for variable dead time.
These results, in conjunction with the experimental distri-
butions measured by Barlow and Levick,5¢ are used in the
next section to provide a model for the statistical behavior of
the all-or-none maintained discharge in the retinal ganglion
cell of the cat.

IV. GANGLION CELL MODEL AND COMPARISON
WITH DATA

The theoretical results obtained in the last section are now
applied to the experimental pulse-number and pulse-interval
distributions of the maintained discharge recorded from the
retinal ganglion cell of the cat.56 As mentioned earlier, at-
tempts to use a fixed-dead-time model! were unsatisfactory
inasmuch as the theoretical PID’s did not fit the data. The-
oretical dead-time-modified PND’s, which are far less sensi-
tive to the details of the dead time, were not available until
recently.2223,2526  Ag g result, considerations of refractoriness
were, with few exceptions,*8 given less attention than scaling
models. The latter, which give rise to gamma pulse-interval
distributions, generally fit the data far better than do the
fixed-dead-time PID’s, but with parameters that are im-
proper.8? This will be discussed in more detail in the next
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section. The stochastic-dead-time model, as we now show,
provides consistent and reasonable fits for both the pulse-
number and pulse-interval distributions.

A schematic representation is given in Fig. 6: The ganglion
cell may be viewed as the locus of a union of the point pro-
cesses that result, at its output, from individual excitation
signals. Lines A, B, and C in Fig. 6 each indicate the ganglion
cell output due to an exclusive excitation (e.g., by a bipolar
cell). In actuality, there will be many more than three inputs
to a given ganglion cell. Using the results of Sec. II, we infer
that the process that is the union of the outputs due to a
number of excitations (line D in Fig. 6) approaches Poisson
(with rate parameter A\) for luminance values sufficiently large
that bunching effects!3 are negligible. Alternatively, we note
that the stochastic time course of the pulse train may be
generated wholly within the ganglion cell itself, in which case
the details of the pulse train do not in any way reflect the time
course at the input to the ganglion cell. Our model makes no
predictions on this point but rather provides an adequate
representation for both realizations.

In either case, the overall process (line D) is assumed to be
Poisson and subject to the restrictions of a stochastic non-
paralyzable dead time, inasmuch as the ganglion cell itself
requires time to recover after the registration of a pulse. The
output process (line E in Fig. 6) then consists of a stochastic-
dead-time-limited point process; the values of the dead time
denoted by 71,79, . . . ,7g represent samples of the dead-time
random variable.

As discussed previously, we use a Gaussian distribution to
model the variation in dead time. This distribution yields
results similar to those obtainable using any singly peaked
continuous probability density. It is truncated at 7 = 0 when
computing the PID. The PID and PND for this process were
presented in Eqs. (14), (16), and (17); the experimental data
will be fit with these distributions using suitably chosen values
of the dead-time mean and variance, 7 and 2, respectively.

In Figs. 7-10 we present a number of (best visual) theoret-
ical fits to Barlow and Levick’sé experimental data. For an
observed mean count 7 in a prescribed counting interval T,
the rate parameter A was determined from the expression
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FIG. 6. Schematic representation of a set of sample functions for the
ganglion cell model. Lines A, B, and C represent hypothetical outputs due
to individual excitations (e.g., each line may represent the response to a
single bipolar cell). Line D represents the union of the three processes
A,B,and C. Line E shows the variable dead time effect on this union, and
represents the ganglion cell output. The quantities 74,73, . . . ,7g represent
samples of the stochastic dead time.
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FIG. 7. Experimental PND (stepped histogram, 1000 samples) and theo-
retical fixed-dead-time PND (dotted lines) for an on-center unit at a luminance
of 3.4 cd/m2.  The dead time 7 is 31.0 ms, the rate parameter A is 0.0787
ms™1, and the counting interval T'is 100 ms. Arrow indicates mean number
of counts. Data adapted from Fig. 5 of the paper by Barlow and Levick (Ref.
6).

e ANT(1+ A7) 1+ (A7)2(1 + A\7)~2, (20)
where 7 is the mean dead time yielding the best fit. This

approximate determination of the parameter \ turns out to

be sufficiently accurate so that the more complicated ex-
pression including P(7) need not be used. Both the pulse-
number and pulse-interval distributions are determined from
a single set of parameters A, 7, and ¢2. Formal curve-fitting
procedures were not used so that better fits than those pre-
sented here could presumably be obtained.

Figures 7 and 8 show the theoretical distributions along with
the recorded data for an ordinary on-center unit at a lumi-
nance of 3.4 cd/m2, whereas Figs. 9 and 10 correspond to an
off-center unit at the same luminance. In Fig. 7 the theo-
retical distribution is shown by the dotted lines, whereas in
Figs. 8-10 the theoretical results are shown as smooth curves.
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FIG. 8. Experimental PID (stepped histogram, 2000 intervals) and theo-
retical PID (smooth curve) corresponding to the on-center unit of Fig. 7. The
parameters 7, o2, and \ are again 31.0 ms, 18.0 ms?, and 0.0787 ms™",
respectively. Note that the mean dead time is the same as the (fixed) dead
time used in the PND.  Arrow indicates mean time interval. Data adapted
from Fig. 5 of the paper by Barlow and Levick (Ref. 6).
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FIG.9. Experimental PND (stepped histogram, 1000 samples) and theo-
retical variable-dead-time PND (solid curve) for an off-center unit at a lu-
minance of 3.4 cd/m2. The mean dead time 7 is 6.5 ms, the dead-time
variance o is 3.24 ms2, and the rate parameter X is 0.0589 ms™'. The
dashed curve corresponds to the theoretical fixed-dead-time PND with
= 6.5 ms and the same value of A\. The counting interval Tis 100 ms for
all curves. Arrow indicates mean number of counts. Data adapted from
the paper by Barlow and Levick (Ref. 6).

In all cases, the stepped histograms represent data adapted
from Fig. 5 of the paper by Barlow and Levick.® No attempt
was made to draw a continuous curve for the theoretical re-
sults of Fig. 7 since there are so few points and the number
distribution is, of course, discrete. Smooth curves were used
in Fig. 9 only for simplicity.

For the on-center unit represented in Figs. 7 and 8, the
parameters used are A = 0.0787 ms~1, 7 = 81.0 ms, and ¢2 =
18.0 ms? for the PID, and 7 = 31.0 ms, T = 100 ms and A =
0.0787 ms~1 for the PND. For the off-center unit represented
in Figs. 9 and 10, the parameters are 7' = 100 ms, A = 0.0589
ms~!, 7 = 6.5 ms, and ¢ = 3.24 ms? for both the PID and PND.
The fits obtained are very good. We note that Barlow and
Levick® were unable to obtain a satisfactory fit to the recorded

interval distribution for the off-center unit (Fig. 10) using the
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Fig. 10. Experimentat PID (stepped histogram, 4000 intervals) and theo-
retical PID {smooth curve) corresponding to the off-center unit of Fig. 9. The
parameters 7, ¢, and \ are again 6.5 ms, 3.24 ms2, and0.0589 ms~!,
respectively. Arrow indicates mean time interval. Data adapted from the
paper by Barlow and Levick (Ref. 6).
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gamma (also known as the Erlang or Pearson type III) density
with which they attempted to model the PID.

It has been shown earlier (see Fig. 4) that the variation in
dead time has little effect on the pulse-number distribution.
This fact, coupled with the computational difficulties en-
countered in evaluating the PND in Eqgs. (16) and (17) for high
count numbers n and in cases where the dead time is large, has
encouraged us to use the (much simpler) fixed-dead-time
PND [see Eq. (10)] as a good approximation. The dead time
7 used in the pulse-number distribution is set equal to the
mean dead time 7 used in the pulse-interval distribution [see
Eq. (14)]. InFig. 7 the fixed-dead-time PND (dotted lines)
is seen to provide a reasonably good fit to the observed dis-
tribution (stepped histogram). In Fig. 9 the fixed-dead-time
(dashed curve) and the variable-dead-time (solid curve)
theoretical PND’s are compared with the recorded data to
clearly illustrate this point. Recall that in calculating all
PND’s, it has been assumed that the ganglion cell is unblocked
at the beginning of each counting interval. This assumption
is important only at very low count numbers, such as those
encountered in Fig. 7. The equilibrium process counting
distribution calculated by Miiller22 would likely provide a
better fit to the data, since for an initially blocked counter,
there is essentially one more dead time present in the interval.
This would tend to decrease the probability at n = 3 in Fig.
7, providing an even better fit to the data. This effect can be
ignored in Fig. 9.

Figures 11-14 present comparisons of the theoretical dis-
tributions with the recorded data for an (on-center) luminance
unit (I1:2) and another “ordinary” on-center unit (DD:6), as
adapted from Fig. 10 of the paper by Barlow and Levick.®
The luminance unit, if it can be classified as a separate type
at allé is rare and is characterized by a mean firing rate that
closely follows the adapting luminance. Furthermore, pulses
from these units are far more regular than those recorded from
either on-center or off-center units. The theoretical PND in
Fig. 11 is plotted for a (fixed) dead time with r = 24.5 ms, T
= 1000 ms, and A = 0.148 ms™!, whereas the interval distri-
bution in Fig. 12 has a mean dead time 7 = 24.5 ms, a dead-
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FIG. 11. Experimental PND (stepped histogram, 100 samples) for a lu-
minance unit at 3.4 cd/m2.  The smooth curve is the fixed-dead-time (7 =
24.5 ms) theoretical PND, with rate parameter A = 0.148 ms™" and counting
interval T= 1000 ms. Arrow indicates mean. Data adapted from Fig. 9
of the paper by Barlow and Levick (Ref. 6).
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FIG. 12. Experimental PID (stepped histogram, 3003 intervals) corre-
sponding to the luminance unit of Fig. 11. The theoretical PID (smooth
curve) has a mean dead time 7 = 24.5 ms and dead-time variance o2 = 7.56
ms? with a rate parameter A = 0.148 ms~, asin Fig. 11. Again, the mean
dead time is taken equal to the (fixed) dead time used in the PND. Arrow
indicates mean time interval. Data adapted from Fig. 9 of the paper by
Barlow and Levick (Ref. 6).

time variance o2 = 7.56 ms2, and again A = 0.148 ms~!. The
data were recorded at an adaptation level of 3.4 cd/m2. Itis
clear that the PND and PID obtained from the stochastic
dead-time model fit the luminance unit data well. In Fig. 13
the counting distribution for on-center unit DD:6 is plotted
for a (fixed) dead time = = 10.0 ms, with 7' = 1000 ms and A
=(0.110 ms~!. The corresponding pulse-interval distribution
is shown in Fig. 14 with mean dead time 7 = 10.0 ms, dead-
time variance ¢2 = 45.0 ms2 and, again, A = 0.110 ms~1. The
fixed-dead-time PND does not appear to provide a good fit
in Fig. 13, this being the only such case we have found; we note,
however, that the experimental results represent only 100
samples. The recorded interval distribution in Fig. 14, on the
other hand, represents over 5000 intervals, and is fit well by
the theoretical PID. It is interesting to compare Fig. 14 with
Fig. 8 inasmuch as they both represent PID’s for (different)
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FIG. 13. Experimental and theoretical PND’s for another on-center unit.
Again, the fixed dead-time (7 = 10.0 ms) theoretical result (smooth curve)
isused. The rate parameter A is 0.110 ms™" and the counting interval T
is 1000 ms. The data was recorded at an adaptation level of 3.4 cd/m? and
is shown as the stepped histogram (100 samples). Arrow indicates mean.
Data adapted from Fig. 9 of the paper by Barlow and Levick (Ref. 6).
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FIG. 14. Experimental PID (stepped histogram, 5007 intervals) and the-
oretical PID (smooth curve) corresponding to the on-center unit of Fig. 13.
The parameters 7, 63, and A are 10.0 ms, 45 ms2, and 0.110 ms™", re-
spectively. Note that the mean dead time is taken equal to the (fixed) dead
time used in the PND.  Arrow indicates mean time interval. Data adapted
from Fig. 9 of the paper by Barlow and Levick (Ref. 6).

on-center units at the same adaptation level; the parameters
describing their behavior are, nevertheless, quite different.

For fixed luminance, Barlow and Levick® found the variance

of the pulse-number distribution to be approximately pro-
_portional to the counting interval T. The fixed-dead-time
PND, in fact, has precisely this characteristic [see Eq. (12)],
as does the Poisson distribution (see Eq. (18)], the scaled
Poisson distribution presented in the next section [see Eq.
(24)], and the paralyzable counter also presented in the next
section [see Eq. (25b)]. Figure 15 shows the theoretical curve
(solid line) obtained by using the data at T = 0.6 s to compute
values for the parameters A and 7 from Egs. (12) and (13); also
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FIG. 15. The variance 02 of the experimental PND (individual points) is
plotted as a function of the counting interval T and, by consequence, the
mean count n. The fixed-dead-time theoretical result is shown as the
straight line and was obtained by using Eq. {12) with 7 = 9.835 ms and A
= 0.089 ms™'. The data was obtained at an adapting luminance of 40
cd/m2. Data adapted from Fig. 4 of the paper by Barlow and Levick (Ref.
5).
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shown are the recorded data adapted from Fig. 4 of the paper
by Barlow and Levick® for this on-center unit at a (high) lu-
minance of 40 cd/m? The stepped histograms in Figs. 16-19
represent the actual recorded PND’s for T' = 40, 100, 400, and
1000 ms, respectively, as adapted from Fig. 3 of the paper by
Barlow and Levick.> The theoretical distributions are shown
as dashed lines in Figs. 16 and 17 and as smooth curves in Figs.
18 and 19. The (fixed) average dead time 7 and the rate pa-
rameter A were set equal t0 9.835 ms and 0.089 ms—}, respec-
tively, for all theoretical curves. The fits for all cases (Figs.
15-19) are seen to be very good, indicating that the T-de-
pendence of the dead-time model is appropriate.

Barlow and Levick® found, furthermore, that the mean-
to-variance ratio of the pulse-number distribution for most
on-center units generally increased with increasing luminance,
which is linked to the rate parameter A. We have seen pre-
viously (Fig. 5) that the dead-time-modified Poisson distri-
bution exhibits similar behavior, although it cannot predict
all of the experimental data with a single set of values for the
parameters A and 7. We can, however, use the experimental
data presented in Fig. 6 of the paper by Barlow and Levick6é
for the mean number of counts and for the mean-to-variance
ratio for a single on-center unit (DD:6) to obtain unique values
of XA and 7 as a function of luminance. Using the fixed-
dead-time approximations for the mean and for the mean-
to-variance ratio given in Egs. (13) and (19), respectively, we
obtain the results presented in Table I and shown in Fig. 20.
Since Eq. (19) is applicable only for mean-to-variance ratios
21, and ignores the bunching effects observed by Barlow,
Levick, and Yoon!3 at low luminance levels (which they in-
terpret as a consequence of a single quantum yielding several
impulses in a ganglion cell), we have shifted the mean-to-
variance ratio up by about 1% to yield a minimum mean-to-
variance ratio equal to 1. This procedure does not disturb the
data in any significant way and is equivalent to the clustering
of impulses in groups of 2 or 3 at low luminance levels to the-
oretically eliminate multiplication effects and restore Poisson
behavior as performed in Fig. 5 of the paper by Barlow, Levick,
and Yoon.I3 It is interesting to note, in any case, that the
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FIG. 16. Experimental PND (stepped histogram, 10 000 samples) and
theoretical fixed-dead-time PND (dashed lines) for an on-center unit at a
background of 40 cd/m2. This corresponds to one data point in Fig. 15,
for T=40ms, 7 = 9.835ms, and A = 0.089 ms™'. Arrow indicates mean
number of counts. Data adapted from Fig. 3 of the paper by Barlow and
Levick (Ref. 5).
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FIG. 17. Experimental PND (stepped histogram, 5000 samples) and the-
oretical fixed-dead-time PND (dashed lines) for an on-center unit at a
background of 40 cd/m?2. This corresponds to one data point in Fig. 15,
for 7= 100 ms, 7 = 9.835ms, and A = 0.089 ms™—". Arrow indicates mean
number of counts. Data adapted from Fig. 3 of the paper by Barlow and
Levick (Ref. 5).

strong antibunching effects of the dead time can rapidly ov-
erpower intrinsic bunching effects which may be associated
with a given distribution.2? In Fig. 20, the solid curve repre-
sents the rate parameter A (i.e., the average number of im-
pulses per unit time that would be observed in the absence of
dead time) as a function of luminance (L), required to fit the
data. Subtracting out the residual dark count (7 = 19), we
obtain the reduced rate parameter denoted by N’ (dotted
curve) as the solution to 7 — 19 = N'T/(1 + N'7). The unique
values for 7 used to calculate both A and N are those shown in
Table I and as the dashed curve in Fig. 20. The relationship
between the luminance L and the rate parameters A and X/,
namely a monotonically increasing curve in the plot of A (or
\) versus logL, appears similar to experimental data and to
the relationship predicted by parametic feedback models.28:2%
In obtaining the reduced rate parameter \’, we have assumed
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Fig. 18. Experimental PND (stepped histogram, 1000 samples) and the-
oretical fixed-dead-time PND (solid curve) for an on-center unit at a back~
ground of 40 cd/m2. This corresponds to one data point in Fig. 15, for T
= 400 ms, = 9.835 ms, and A = 0,089 ms™!. Arrow Indicates mean
number of counts. Data adapted from Fig. 3 of the paper by Barlow and
Levick (Ref. 5).
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FIG. 19. Experimental PND (stepped histogram, 1000 samples) and the-
oretical fixed-dead-time PND (solid curve) for an on-center unit at a back-
ground of 40 cd/m2. This corresponds to one data point in Fig. 15, for T
=1.0s, 7 = 9.835 ms, and A = 0.089 ms™'. Arrow indicates mean
number of counts. Data adapted from Fig. 3 of the paper by Barlow and
Levick (Ref. 5).

(solely to enable us to perform the calculations easily) that the
noise pulses are unaffected by any dead-time restrictions.

Equally interesting, perhaps, is the increase in average dead
time with increasing luminance that is required to fit the ob-
served statistics (fixed-dead-time approximation). One is
led to conjecture, at least within the framework of the re-
fractory model, that the inhibitory influence of the surround
may be manifested in part as an increase in the average re-
fractoriness of the ganglion cell. Observationally, of course,
this relates to the increasing regularity of the discharge as the
adaptation level is increased.

In Table I and in Fig. 21 we present the rate parameter A
(solid line) and dead time 7 (dashed line) required to fit the
data for an off-center unit (JJ:3) adapted from Fig. 6 of the
paper by Barlow and Levick.6 Although the rate parameter
)\ varies only slightly with the luminance L, the dead time 7
again increases over the luminance range from 3.4 X 10~4 to
3.4 cd/m2. The behavior of = with L is very similar to that,
observed for the on-center unit (see Table I and Fig. 20)
though for values of L < 3.4 X 10~ ¢cd/m?2, 7 appears to de-
crease with L for the off-center unit.

TABLE I. Fixed-dead-time model parameters for on-center unit
DD:6 as a function of luminance. Data in columns 2 and 3 adapted
from Fig. 6 of the paper by Barlow and Levick® (see Fig. 20).

L A T N
(cd/m?) n nle? (ms™1) (ms) (ms™1)

0 19 1.0 0.019 0.0 0.0
3.4 X106 21 1.0 0.021 0.0 0.002
3.4 X105 25 1.0 0.025 0.0 0.006
3.4x10™4 32 1.2 0.035 2.7 0.013
3.4%X1073 40 1.5 0.049 4.6 0.023
3.4 X 102 48 2.2 0.071 6.7 0.036
3.4 X% 10! 51 3.2 0.091 8.7 0.044
3.4 53 7.1 0.141 11.8 0.057
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FIG. 20. Average dead time 7 (dashed curve) and rate parameter A (solid
curve) as a function of luminance for an on-center unit, as obtained from
the fixed-dead-time model. The dotted line represents the reduced rate
parameter A’ obtained by subtracting the zero-luminance (dark light) mean
n = 19 from observed values of the mean. \' is seen to be nearly pro-
portional to logL over some 4 orders of magnitude of variation in L. Raw
data (see Table ) derived from Fig. 6 of the paper by Barlow and Levick (Ref.
6).

V. DISCUSSION

Using the general properties of the Poisson process, the
effects of fixed and variable dead time on this process, and the
relationship between pulse-number and pulse-interval dis-
tributions, we have been able to develop a consistent theo-
retical model that fits all of the data on the maintained dis-
charge of the cat’s retinal ganglion cell described by Barlow
and Levick.>®6 We have therefore brought together, within
a single framework, the work of Rodieck,48 Barlow and Lev-
ick,56 and Barlow, Levick, and Yoon.13 Specifically, the
following three assumptions are implicit in our model: (i)
Poisson process, (ii) nonparalyzable variable dead time that
depends on luminance, and (iii) a small upward shift of the
mean-to-variance ratio to separate away the effects of
bunching at low luminance levels.

In this section we demonstrate the merit of this model in
comparison with two alternative descriptions for the main-
tained discharge: scaling and paralyzable-dead-time
counting. We also discuss the large values of dead time re-

TABLEII. Fixed-dead-time model parameters for off-center unit
4J:3 as a function of luminance. Data in columns 2 and 3 adapted
from Fig. 6 of the paper by Barlow and Levick® (see Fig. 21).

L A r
(cd/m?) n i/ o? (ms™1) (ms)

0 43 2.0 0.060 6.9
34X 1076 40 2.2 0.059 8.2
3.4 X105 42 1.9 0.058 6.6
3.4 X104 46 1.4 0.054 3.3
3.4 X 1073 43 1.8 0.058 5.9
3.4X10°2 39 1.9 0.054 7.0
3.4 %101 35 2.0 0.049 8.5
3.4 31 2.7 0.051 12.6
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FIG. 21. Average dead time 7 (dashed curve) and rate parameter A (solid
curve) as a function of luminance for an off-center unit, as obtained from
the fixed-dead-time model. Note that the rate parameter X is virtually in-
dependent of L over more than 6 log units. The dependence of 7 on L is
very similar to that obtained for the on-center unit (Fig. 20 and Table 1) for
L =3.4X 10"*cd/m2. Raw data (see Table Hl) derived from Fig. 6 of the
paper by Barlow and Levick (Ref. 6).

quired by our model. We conclude the section with sugges-
tions for future work.

A. Scaling model

As discussed earlier (see Sec. I) the model considered by
Barlow and Levick® assumed that r absorbed quanta were
necessary to yield one ganglion cell spike (where r is the scaling
parameter). For this case, the PID is the gamma distribu-
tion1?

f(&) = M)~ exp(=At)/(r — 1)}, (21)

for r > 0 and integer. Though Barlow and Levick5¢ chose to
fit their PND’s by Gaussian distributions, this conjunction
with the gamma PID does not form a consistent set within the
framework of the scaling model. Since the gamma PID gives
the waiting time to the rth pulse for a process obeying the
Poisson probability law, the correct PND is1®

r(in+1)—-1
p-(n,T)= ¥ [(\T)*¥/k!] exp(—AT), (22)

k=rn

where p,(n,T) is the probability of registering n pulses in a
time interval (0,T). The mean 7, and variance o2 of this
distribution are

.= AT/r (23)
and

o2 = AT/r2, (24)
respectively.

One of the major difficulties with this model is that the
value of the scaling parameter calculated from Barlow and
Levick’s data® deviates by several orders of magnitude from
the value needed to provide a good fit to the interval distri-
butions; the fit is worse at high luminance levels. Further-
more, the gamma distribution does not provide a good fit to

Teich et al. 397



the PID for off-center units. These authors® also obtain, at
very low luminance levels, a value of r < 1, which was inex-
plicable in terms of the scaling model they presented. [More
recently, Barlow, Levick, and Yoon!3 presented a multiple-
path bunching model (see Sec. IV) to explain this behavior.]
Barlow and Levick suggested two possible modifications to
their scaling model to remedy the problems cited above. In
the first, they presume that the scaling is imperfect, so that
whereas the mean rate may be given by the rate of quantal
absorptions divided by the scaling factor, the irregularity is
caused, in large part, by added noise. In the second modifi-
cation, the mean rate is assumed to be suppressed by the in-
hibitory influence of the surround which does not materially
affect the noise. They suggest that results so far favor the
second modification in which it is expected that the standard
deviation of the quantal absorption rate divided by the scaling
factor is equal to the standard deviation of the PND but that
the mean rate would not be exactly predicted. (In the context
of the present model we note that if the effect of the surround
is associated with an increase in the effective dead time of the
ganglion cell, both the mean firing rate and the variance of the
PND would be suppressed.) Subsequently, Barlow1?2 criti-
cized the scaling model on other grounds as well. More re-
cently, however, Stein!516 showed that a model incorporating
both scaling and exponential decay (presumed to be associated
with the membrane of the ganglion cell) also leads to a gamma
distribution. Though the scaling parameter for this model
corresponds with a larger range of luminance levels than the
pure scaling model, the fit is still not satisfactory.?

B. Paralyzable dead-time counter model

We also observe that a model based on the paralyzable
(extended) dead-time counter'8-21:55 does not fit the ganglion
cell data. In this case, even though events occurring during
the dead-time period do not produce impulses, they never-
theless extend the period during which the counter does not
respond. For a fixed dead time 7, the asymptotic mean 7,
the asymptotic variance o2, and the asymptotic mean-to-
variance ratio 7,/o> are given by!9:56

Fipr = ANTe™ 27, (25a)
o2 o \Te 27 — 2\T(A7)e 2V, (25b)

and
fipelo? =~ (1 — 2 e~ )", (25¢)

respectively. Setting the derivative of Eq. (25¢) equal to zero
to determine the maxima and minima of the mean-to-variance
-ratio, we obtain

d(ﬁ,r/o',%) _ —29—)\T(>\T —- 1) _
d0D) (- 2Are2 (26)

The solution A7 = 1 represents a maximum, indicating that
fie/ol< (1 —2 1)1 3.78. Thisis not consistent with the
value 7.1 at 3.4 cd/m? in the data presented in Table I; we do
not consider this model further here. The upper bound arises
because the strongly driven paralyzable counter loses counts
faster than the registrations become regularized. This is in
distinction to the nonparalyzable counter which exhibits no
upper bound for 1z/¢2 [see Eq. (19)].

We note that the general type-p counter, which reduces to
paralyzable and nonparalyzable behavior as special cases, has
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been considered by Albert and Nelson,?¢ Bharucha-Reid,5”
and Parzen.!® Use of this model would introduce another
parameter, however.

C. Long dead times

Although the values of dead time required for our model to
fit the data are quite long (range 6.5-31 ms) in comparison
with values normally considered as durations of an absolute
refractory period (<2 ms), they are consistent with the values
that Rodieck* has inferred via a different but related approach
from his plots of standard deviation versus mean of the
pulse-interval distributions, where he obtains an average dead
time of 17.0 ms. It is worth noting that large values are not
an artifact of the statistical approach since Goldberg, Adrian,
and Smith,%8 using the same procedure employed by Rodieck,
obtain a mean value of 1.9 ms for third-order superior olivary
neurons in the auditory system. Although it is possible to
interpret a sizeable portion of the dead time as arising from
arelative refractory period (see below), it is possible that the
dead time may be entirely due to a stochastic absolute re-
fractory period. It is also worth noting the following: PID’s
for auditory nerve fibers contain many very large intervals
between successive impulses at all stimulus levels. Thus, for
example, an auditory neuron may not respond to 20 or more
successive 1000 Hz sinusoidal fluctuations at 90 dB above the
neuron’s threshold (corresponding to a delay time of 20 ms)
but may respond to two successive fluctuations at 30 dB above
threshold.?® Such lack of sensitivity to intensity change could
reflect a stochastic dead time following an impulse. Asnoted
above, dead times for superior olivary neurons appear to
conform to more normally expected values of refractory pe-
riods. Thus it is possible that neurons receiving inputs from
presynaptic units with graded potentials may have very long
refractory periods for stimulation via normal synaptic routes
(not via extrinsically applied electrical stimulation of the
neuron) relative to those normally observed in units receiving
inputs from presynaptic units generating spikes.

D. Extensions

Although the model we have presented considers only the
one-dimensional PID’s and PND’s, it can be extended to deal
with successive intervals that are not independent. Such an
extension would be able to readily incorporate the serial cor-
relation coefficients of the interval distribution (Kuffler,
FitzHugh, and Barlow! have observed correlations between
adjacent interspike intervals to range between 0 and —0.25,
and Rodieck? has reported values between —0.21 and +0.11
with an average of —0.06). A likely way to do this is to assign
a large part of the dead time in the model to a relative re-
fractory period during which the neuron recovers sensitivity
gradually, and a smaller portion to an absolute refractory
period. (The values of 7 and o2 we have obtained here are
compatible with such a division.) If the recovery process
following a sequence of two impulses is slower when the in-
terval between the two is shorter, a negative serial correlation
would result. It may be, however, that the observed depen-
dencies are in the transfer of information between the ab-
sorption of quanta by photoreceptors and the ganglion cell
wherein, for example, excitation via one path is accompanied
by an inhibition of conduction via adjacent paths either si-
multaneously or shortly afterward. In this connection it is
worth noting that Rodieck? observes frequent significant cross
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correlations between the discharges from two nearby neurons
following the occurrence of a spike in one of them. Rodieck
has also observed that both the joint-interval histogram and
the serial correlation coefficients can be used to demonstrate
the statistical dependence between time intervals, which
varies from unit to unit, and is not revealed by the autocor-
relelogram. Forward and backward recurrence-time exper-
iments®0 could also be performed on adjacent ganglion cells
to better quantify the statistical dependence over short time
intervals (less than 1s).

Retinal ganglion cells do not appear to be a single group, but
have been classified into X and Y cells®1.62 and W cells,83 al-
though it has also been suggested that X and Y cells may be
ends of a continuous distribution of units.* The units for
which Barlow and Levick® presented PID’s and PND’s were
not chosen with respect to these classifications, and it will be
desirable to determine how the present model fits different
varieties.?5 Finally we note that our model, although pro-
viding good fits to the maintained discharge, has not yet been
applied to transient responses.f®6 Indeed it may also apply
to preparations simpler than the cat’s ganglion cell, e.g.,
Limulus. 556768
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APPENDIX A: CALCULATION OF THE EXACT
VARIABLE-DEAD-TIME PID

Let us represent by F(t) the probability that the time of
occurrence of a second pulse, after the registration of a first
pulse, is less than ¢ seconds. As previously, 1 — F(t) repre-
sents the probability that zero pulses occur in the time interval
t. There are now two independent ways in which this can
occur: (i) t < 7, and (ii) £ > 7, and 0 pulses occur in the in-
terval (7,t). Thus for the memoryless Poisson process?8

1—F(t) = jth(r) dr + j;tP(T)p(O,t—‘r) dr, (A1)

where p(0,t — 7) represents the probability that exactly zero
pulses occur in the interval (7,t). Differentiation of Eq. (A1)
with respect to ¢ yields the desired pulse-interval distribu-
tion,

f(t)=P(t)—(6/6t)[ j; " P(rp(0t — 1) df]. (A2)

This is the simplest general expression which can be obtained
for f(t) inasmuch as the integral in Eq. (A2) must be evaluated
for the particular distribution P(7) under consideration.

We recall that for a Poisson process, p(n,T) is given by Eq.
(5); for P(7) we choose the relatively simple distribution

P(7) = ¢~1(27) Y2671 exp[—(26)~1(r — T)2], =0
(A3)

which is a truncated Gaussian, since 7 < 0 is forbidden. The
quantity c is the normalization constant and is given by

¢ = Yy erfc[-7/(224,)]. (A4)
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The function erfcx is the complementary error function
evaluated at x, which is defined by the integral

erfcx = 2x—1/2 fm e~v?du, (AB)
X

and has been tabulated.>® The integral in Eq. (A2) thus be-
comes

ft P(1)p(0,t — 7) d7 = c~1(27)~ Y247t
0

x f " exp[~(20)~1(r — 7)?] expl— A(t — )]dr. (A6)
0

Combining the exponents and completing the square, this is
evaluated as

j; " P(r)p(0,t — 7)dr = ¢~ exp — [t — 7) = Yo(oN)]
X {erfc[—(t — 7 — o2\)(21/2¢,)1]

— erfef[(7 + a2 (2V20,)"1]}.  (AT)

Using Egs. (A2), (A4), and (A7), the exact pulse-interval dis-
tribution for a Poisson process with a Gaussian-distributed
dead time is found to be

0= (3091222 B (52 |

x [erfc(_ t:-——-é> — exfe (M)]. (A8)

91/2 o, 91/2 or

An alternate method of obtaining the pulse-interval distri-
bution given in Eq. (A8) is to average the distribution for a
fixed dead time, given in Eq. (9), over the variation in the dead
time, given by P(7).2¢ This provides a convenient check on
the result presented in Eq. (A8), as both methods yield the
same result. Rodieck’s*® computer simulation relates to this
latter method.

APPENDIX B: CALCULATION OF THE
APPROXIMATE VARIABLE-DEAD-TIME PND

The PND for the variable-dead-time case is obtained with
the help of Eq. (15) as

p(n;T;?x U'r) = <p(n;T| T1H,T2 - ;Tn)>|'r,'l;
lTi} = ‘11’72! LR ,Tn}: (Bl)

where the angular brackets represent an ensemble average
over the statistics of {7;}; the argument of the total probability
now reflects its dependence on the mean and variance of the
dead time, 7 and ¢%, respectively.

If each of the dead times ; is assumed to be an independent
sample of the underlying random variation of the dead time,
the 7;’s can be treated as identically distributed independent
random variables. Furthermore, the distribution of each 7;
is now chosen to be precisely Gaussian with mean 7 and vari-
ance o2 so that the distribution of the sum 71 + 79 + -+ - 4 7,
will be Gaussian with mean n7 and variance no?. The choice
of a Gaussian distribution for the dead time is an approxi-
mation, since in reality, the dead time 7 cannot be less than
0, which is why we truncated the distribution in Eq. (A3).
The Gaussian approximation will be reasonably good when

Teich et al. 399



the mean dead time 7 is larger than the standard deviation .
This insures that the portion of the dead-time distribution
below 7 = 0 is small. This is the case throughout this
paper.

Formally, we define T, as
Th=71+790% e+ 1, (B2)

Since the 7;’s appear only as a sum in Eq. (15), we can write
the conditional counting distribution as

P(n:Tl THT2 -« ;Tn) = p(n,TlTn)

= ki NE[T = To]¥/kY} expl=A[T — T,]}
=0

=T IMT = Toea6Y expl=AT = Tocsl,

nz1l (B3)
for T > T, so that the total probability is

p(nT.70,) = f " p(,T|Ta)P(Ta|n,T) dT. (B4)

The quantity P(T,|n,T) is the conditional probability of T,
given n and T. This is in general difficult to evaluate. For
counting intervals T' 2 n7 + 2n1/2¢,, however, P(T, |n,T) can
be approximated by the unconditional distribution of the sum
of the 7;’s, given by

P(T,) = (2m)~V207, exp[—(20%,) YT, — Tp)?, (B5)

with
T,=n7 (B6)

and
ok, = nel B7)

This is simply a Gaussian distribution. Combining Eqs. (B3)
and (B4), the total probability becomes

T n
p(n,T7,0,) = f_ i (kgo BT = T, ]#/kY) expl=A[T — T}

=S M = Tocsl#/hY expl=NT = To-sll) P(T,) dT;
k=0

(B8)

the upper limit on the integral reflects the fact that p(n,T'| T},)
=0 for T, > T. Since the sums within the integral are finite,
the order of summation and integration can be interchanged,
leading us to seek integrals of the form

T
D = f_ IN[T = T, ]%/kY expl—=A[T — To{P(T,) dTh,
(B9)
with P(T},) given in Egs. (B5), (B6), and (B7).

The integral can be evaluated in terms of the nth-iterated
integrals of the complementary error function, denoted
irerfcx. These are tabulated functions®® and are defined
as

irerfex = f ° ir~lerfeu du,
X
i%rfex = erfex, i~lerfex = 2712 exp(—x2). (B10)
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It is also possible to express i"erfcx in terms of a single integral
as

irerfex = (2a~1/2/n)) fm (uw — x)" exp(—u2) du; (B11)
x

the function satisfies the recurrence relation
2ninerfex + 2xi"—lerfex = i~ 2erfcx. B12)
After some algebra, it can be shown that the py ., are

P = %[A22n126 J% exp{—A[T — n7] — Yano222}
X ikerfe[—(T — n7 — nAe2)(2V2n 125 )"1], (B13)

and the total probability is therefore given by

n n—1
p(n,T,’?,()}) o kzo pk,n - kg() Pk,n—l: n Z 1- (B14)

Of course, the total dead time T, must be >0. As anindica-
tion of the validity of the Gaussian approximation, the integral
represented in Eq. (B9), but now with limits from —« t0 0, is
found to be

3 [k =m0 [T/ 212, ) omm

m=0
X imerfe[(n7 + no\)/(2V/2n125.)]. (B15)

For the data that we consider, these terms contribute only
about 1078 to the probability, whereas the p, , in Eq. (B13)
contribute ~10~1,
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It has been known for some 40 years that the perceived velocity of a moving object does not
correspond to its physical velocity. It is also known that the perceived length and temporal duration
of a moving object is affected by its physical velocity. In this paper it is argued that such phenomenal
distortions can be embedded in a model for motion perception that involves the concepts of moving
frames, Lorentz transformations, perceived length contractions, and time dilations. Experimental
results support this model and indicate that ¢ *, the maximum perceivable velocity of movement,

plays a crucial role in determining motion effects.

I.  INTRODUCTION

The problem of how we perceive movement has been a
perennial object of investigation.2 Such factors as distance,
size, homogeneity and structure of background, orientation
of the direction of movement, brightness, and mode of ob-
servation affect the perception of velocity.? Similarly, the
velocity of a moving stimulus is known to have specific effects
on the static parameters of the perceived shape. For example,
it is known that the apparent length of a moving object de-
creases as its velocity increases both in linear? and rotary di-
rections of motion.5

One puzzling observation which has intrigued many in-
vestigators is that perceived velocity is not proportional to
physical velocity in terms of the (Galilean) distance-to-time
ratio.® These results indicate that subjective estimates of
visual spatio-temporal events undergoing motion are in-
consistent with a Galilean perspective of the visual space-time
geometry: a perspective that does not consider the relative
nature of such estimates.”8

We propose-here a model for motion perception which in-
corporates the relativity of subjective space-time estimates
and we argue that many of the questions posed by previous
data can be answered by the proposition that a visual form of
the Lorentz transformations governs the visual processing of
movement. An important result of this formation will be that
the geometrical structure of perceived space-time constitutes
a Riemannian space of negative curvature (hyperbolic ge-
ometry), governed largely by the maximum velocity of per-
ceived movement.

IIl. THE REFERENCE FRAMES FOR PERCEIVED
MOTION

In order to distinguish between, what we term, the physical
and perceptual frames of reference, consider a light source
translating horizontally at velocity v with respect to a sta-
tionary observer. Here there are two physical frames: one
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moving [P1, Fig. 1(a)] at velocity v with respect to the sta-
tionary (observer) frame [P2, Fig. 1(a)]. In this system signals
propagate at the speed of light, ¢, and no distortions would
occur in the detection of velocities within the range of human
velocity perception (40-100 deg/s, Refs. 1 and 9). This system
assumes that the detector can process velocities at the speed
of light.

However, the perceptual frames of reference are more
limited. If we regard P2, the physical stationary frame, as
having a human observer centered at its origin [S2, Fig. 1(b)],
then the observer’s processing of the velocity of the moving
object [S1, Fig. 1(b)] is limited by the maximum velocity of
perceived movement, ¢*. This maximum velocity is consid-
erably lower than the physical propagation rate of light (c*
« c) and is a measure of the finite propagation rate of signals
in the human visual system.!® Such limitations are possibly
due to a variety of phenomena from retinal persistence to more
general finite neural propagation rates along the visual
pathways.

Past treatments of the problem of movement perception
have invariably assumed that the subjective frames S1 and

(a)
physical (b)
subjective
’
y y 14 s
Yy
v<&c P ’ -
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FIG. 1. Physical (a) and subjective (b) frames of reference: standard
configurations.
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