verse relations. Thus, the foregoing criteria permit estimates
of the maximum value of the source coherence length from
estimates of the minimum intensity far-zone range.
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Observation of dead-time-modified photocounting distributions for
modulated laser radiation
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We report a series of optical experiments that verify the theoretical photocounting distributions
obtained by Diament and Teich for triangularly and sinusoidally modulated laser radiation. Another
series of experiments validates the (nonparalyzable) dead-time-modified versions of these formulas
obtained by Cantor and Teich. A new expression is obtained for the counting distribution in the
presence of modulation and paralyzable dead time. The results have application in photon counting,

nuclear counting, and neural counting.

. INTRODUCTION

The photocounting statistics for intensity-modulated ra-
diation have been studied by a number of researchers.l-® In
particular, theoretical results for various periodic modulation
formats (square-wave, triangular, and sinusoidal) have been
obtained by Diament and Teich*5 for arbitrary modulation
depth and short sampling times. There have been few ex-
perimental measurements of these counting statistics, how-
ever, though some time ago Teich and Diament observed the
flat y-ray counting distribution resulting from a linearly swept
mean,»10

For an unmodulated (Poisson) source, the effect of detector
dead time on the counting statistics has also been studied
extensively, primarily in the context of nuclear particle
counting and neural pulse counting.!!-14 In the presence of
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intensity modulation, the theoretical dead-time-modified
counting statistics have been obtained only under the special
conditions of a nonparalyzable counter with a sampling time
short in comparison with the fluctuation time of the
source.15-17 A particularly useful form for this distribution
has been presented by Cantor and Teich.'6 (A comprehensive
bibliography on dead-time effects was compiled by Miiller in
1975.18)

In this paper we report a series of experiments that verify
the theoretical photocounting distributions for triangular and
sinusoidal modulation given by Diament and Teich,5 and the
nonparalyzable-dead-time-modified versions of these for-
mulas obtained using the method suggested by Cantor and
Teich.l6 We also present a new result for the paralyzable-
dead-time-modified counting distribution for intensity-
modulated radiation and short sampling times. In arelated
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paper,!9 we use the formulas discussed here to investigate
likelihood-ratio detection, channel capacity, and maximum-
likelihood image estimation in doubly stochastic Poisson
counting systems subject to nonparalyzable dead-time ef-
fects.

ll. THEORY

We first consider a detector irradiated by an amplitude-
stabilized spatially coherent polarized source of intensity I(¢).
In this case, the photocounting distribution po(n| W), repre-
senting the probability of registering n photocounts in the
fixed sampling time (¢, t + T), is given by

po(n|W) = Wne=W/n/, (1)

where the integrated intensity W is
t+T
W= a f 1) de’ @)
t

and «a is the quantum efficiency of the detector.

If W is a random variable [by virtue of ¢t being a random
variable or I(¢) being a random process, or both] the photo-
counting distribution is given by Mandel’s formula2®

p(n,<n)) = (poln| W))w = j;mpo(nlw)P(W) aw,

(3)

where (n) is the average count number ({n) = (W)).
For the special case where I(t) is a triangular waveform with

(uniformly distributed) random phase, period Ty > T andl

modulation depth m, Eq. (3) yields#5:10

_exp[—(n) 1-m)] » [(n) (1 —m)]*
_exp[—(n) (1 +m)] ~ [(n) 1 +m)* @
2m(n) E=0 k! )

Again, (n) is the mean number of counts. Equation (4)
represents the family of flat counting distributions studied
by Teich and Diament.451° For sinusoidal modulation of
depth m, with random phase and period T3 > T, the
counting distribution is the finite sum®

np—(n)
p(n,m,(n)) =ﬂe,—

n!

x5 (1) () £ () ti-awt (min)), @

i=o \1 2/ k=0 \k
where I, (-) is the modified Bessel function of order g.

Note that for cases in which the intensity fluctuates very
rapidly and the degeneracy parameter is much less than
unity,?® p(n, (n)) approaches the Poisson distribution.20-21

By definition, a nonparalyzable-dead-time counter cannot
record counts (i.e., it is dead) for a time interval of fixed du-
ration 7 immediately following the registration of a count. We
consider in detail the nonparalyzable(or nonextended)-
dead-time counter unblocked at the beginning of the counting
interval (see Refs. 13 and 22 for a more detailed description
of the various kinds of dead-time counters). For an unmo-
dulated amplitude-stabilized source, I(¢) = I, (constant) and
W = aloT. In this case the exact dead-time-modified
counting distribution p(n|W, 7/T) is1214.16

kiopo(klw[l - n7/T)) — :i:Po(le[l —(n=14/T], n<T/r

p(n|W, 7/T) =

0,

The exact nonparalyzable-dead-time-modified counting
distributions for the blocked and equilibrium counters have
also been obtained (see Ref. 14 for the appropriate formulas).
In the usual situation the mean count is much greater than 1,
in which case the differences among the blocked, unblocked,
and equilibrium counters are not substantial.22 In that event,
Eq. (6) may be approximated by

p(n|W, 7/T) = po(n| W[1 — n7/T)) (Gaﬂ

p(n,(n), 7/T) = (p(n|W, 7/T))w

1="% polk|WIL = (= 1) 7/7)),

T/r<n<T/r+1 ()

nzT/r+1.

I
for all three types of counter when n < T/r. (Simple as-

ymptotic expressions for the dead-time-modified count mean
and variance are also available for all of these cases.14)

When W is random, Cantor and Teich16 have indicated that
the nonparalyzable-dead-time-modified counting distribution
is obtained by averaging Eq. (6) over the statistics of W,
Le.,

[ &, okIWIL = no/Tyw =S (ool WEL = = 1) /7Dy, n </

- 11— :ﬁ; (polk| WL = (n = 1) 7/T])) w,

0,

The averaging operation is valid, however, only if I(t) is vir-
tually constant during the sampling time (i.e., if T <« T or,
when I(¢) is a random process, if T' « 7. where 1, is the co-

1339 dJ. Opt. Soc. Am., Vol. 68, No. 10, October 1978

T/r<n<T/r+1 (7

nzT/r+1.

|
herence time of the source??). The need for this condition

stems from the fact that Eq. (6) is applicable only when the
intensity is constant [I(t) = I]. Equation (7) is therefore not
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valid when appreciable intensity fluctuations occur during the
sampling time, as clearly demonstrated by Vannucci and
Teich.23

We can now combine Egs. (3) and (7) to obtain the non-
paralyzable-dead-time-modified counting statistics for an
arbitrary modulation format. For triangular and sinusoidal
modulation we combine Eq. (7) with Egs. (4) and (5), re-
spectively. Again, for a mean count much greater than 1, the
distinction among blocked, unblocked, and equilibrium
counters is often not significant in which case Eq. (7) may be
approximated by

p(n, (n), 7/T) = (p(n|W, 7/T)w
~ (po(n| W[l — ne/THw (Ta)

for all three types of counter when n < T/r. Equation (7a) is
obtained by averaging Eq. (6a) over the statistics of w.
(Closed-form expressions for the dead-time-modified count
mean and variance in this case are mathematically identical
to those obtained by Vannucci and Teich for a related prob-
lem.23)

ill. EXPERIMENT

A series of experiments was performed to verify the theo-
retical photocounting distributions for triangular and sinus-
oidal modulation in the absence of dead time, as well as in the
presence of nonparalyzable dead time. The source was a
Spectra-Physics Model 162 Ar* ion laser?4 operated at 514.5
nm. The radiation was fed into an acousto-optic modulator
that modulated the intensity of the beam with a triangular or
a sinusoidal wave. The modulated radiation was attenuated
sufficiently for the photocounting statistics to be observable
and was polarized and detected by an RCA Type 8575 pho-
tomultiplier tube. The output pulses from the anode of the
photomultiplier tube were counted by an (unblocked) pulse
counter with an electronically generated nonparalyzable dead
time whose value could be set arbitrarily.

Data were taken for triangular and sinusoidal modulation
for various combinations of values of the modulation depth

9.12

0.04 0,08 c. o 0.10

COUNTING DISTRIBUTION

0.02

.00
o
»
=
&

Ningen oF counts’ in » = o -
FIG. 1. Theoretical counting distributions (solid curves) and experimental
data for sinusoidally modulated radiation in the absence of dead time (7/T
=0). The modulation depth m takes on three values: m= 0(X), m=0.75
(A, Ty=5s, T=10ms, N= 50 000),and m= 1.0(0, Ty =5s, T= 10
ms, N = 50 000) [see Ref. 29]. The mean count is approximately the same
for all three distributions ({n) = 17).
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FIG. 2. Theoretical counting distributions (solid curves) and experimental
data for triangularly modulated radiation in the absence of dead time (/T
=0). The modulation depth mtakes on three values: m=0 (A), m=0.74
(O, N = 200 000), and m = 0.99 (X, N = 200 000). The mean count is
approximately the same for all three distributions ({n) ~ 15). Note the flat
counting distribution [see Refs. 4, 5, and 10] obtained when m =~ 1.

m and the dead-time ratio 7/T. Other experimental param-
eters were the period of the wave T = 1 s, the sampling in-
terval T = 1 ms, and the number of observation samples N =
105. These parameters were the same for all sets of data,
except where explicitly indicated in the figure captions.

The experimental data (data points indicated by O, A, X,
1) as well as the theoretical counting distributions for the same
parameters (solid curves) are presented in Figs. 1-6. Figures
1 and 2 display results for sinusoidal and triangular modula-
tion, respectively, in the absence of dead time [see Egs. (5) and
(4)]. The modulation depth is varied parametrically. In Fig.
3 the light is unmodulated (m = 0) so that the results corre-
spond to the nonparalyzable-dead-time-modified Poisson
distribution [see Eq. (6)]. This case has been studied in
considerable detail in the context of nuclear counting,!,14.22
neural counting,1225 and photon counting.1®!¢ The more
general cases of triangular and sinusoidal modulation in the
presence of nonparalyzable dead time are presented in Figs.
4-6 [see Eqs. (7), (4), and (5)].

0,48

0.16 0.24 0.32 0.40

COUNTING DISTRIBUTION

08

0.

g8
.0 5.0 10. 35, 40, us.

NONBER OF "COUNTS' (n)
FIG. 3. Theoretical nonparalyzable-dead-time-modified counting distri-
butions (solid curves) and experimental data in the absence of modulation
(m = 0). The dead-time ratio takes on four values: 7/7=10 (T, Poisson
distribution, T= 10 ms, N = 50 000), 7/ T = 0.02 (X}, 7/T = 0.05 (A), and
7/T=0.1(0). The unmodified mean count (i.e., the mean count before
the dead-time reduction) is approximately the same for all four distributions
{({n) = 15).
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FIG 4. Theoretical nonparalyzable-dead-time-modified counting distri-
butions (solid curves) and experimental data for triangularly modulated ra-
diation (m =~ 0.75). The dead-time ratio takes on four values: 7/T =0
(+, N=200 000), /T =0.02 (X, N= 200 000), 7/T = 0.05(A), and 7/T
=0.1(0). The unmodified mean count is approximately the same for all
four distributions ({n) ~ 15).

In examining the figures, it is clear that the theory is in
excellent agreement with all of the experimental data. It is also
apparent that modulation broadens the counting distributions
(see Figs. 1 and 2); this is interpretable as accentuated photon
bunching. Dead time, on the other hand, decreases both the
mean and variance of the counting distribution as well as the
variance-to-mean ratio (see Figs. 3-6), corresponding to a loss
of counts and to count antibunching. The dead-time-modi-
fied counting distributions converge to the unmodified dis-
tributions for low count numbers n where dead-time effects
are least important.

IV. PARALYZABLE DEAD-TIME COUNTER

All of the results discussed to this point are specifically for
the nonparalyzable (or nonextended) dead-time counter.
When W is a random variable (and T <« Ty, 7.) and the
counter is of the extended-dead-time type, the paralyzable-
dead-time-modified counting distribution w(n, (n), +/T) is
obtained by using Libert’s results26 for the constant-intensity
paralyzable counting distribution w(n|W, 7/T) in conjunction

0.24

0.08 0.12 0.1

COUNTING DISTRIBUTION
0.04 8

5.0 10, 15. 20. 25.
NUMBER OF COUNTS fa)

$.00

FIG. 5. Theoretical nonparalyzable-dead-time-modified counting distri-
butions (solid curves) and experimental data for triangularly modulated ra-
diation (m ~ 1). The dead-time ratio takes on four values: 7/7=0 (T, N
=200 000), 7/T = 0.02 (X, N = 200 000), 7/T = 0.05 (A), and 7/T = 0.1
(O). The unmodified mean count is approximately the same for all four
distributions ({n) =~ 15).
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FIG. 6. Theoretical nonparalyzable-dead-time-modified counting distri-
butions (solid curves) and experimental data for sinusoidally modulated
radiation (m = 1) [see Ref. 29]. The dead-time ratio takes on two values:
7/T=0(0)and 7/T = 0.02 (A). The unmodified mean count is approxi-
mately the same for both distributions ({n} ~ 17).

with the technique of evaluating the ensemble average
(w(n|W, 7/T))w used earlier. Thus for the blocked paraly-
zable dead-time counter,26:27 for example,

NN Gl D —kWr/T[ —k= ]k
nnlW, 7Ty = ¥~ —n)¢ W<1 kT) ’
(8)

so that

w(n, (n), 7/T) = (x(n|W, 7/T))w

=S ()], @

Here | T/7| denotes the largest integer smaller than 7T'/r.
Results for the unblocked and equilibrium counters are similar
in form. The same technique can be used with the type-p
counter?® which reduces to paralyzable and nonparalyzable
behavior as special cases.

In practice, it is often the discriminator following the pho-
todetector that provides the major contribution to dead time
so that the detailed structure of the system is important in
determining which formulas should be used.
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