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Dead-time-corrected photocounting distributions for laser radiation-
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Exact forward photocounting distributions for a source of optical radiation with arbitrary statistics
are obtained in the presence of photodetector dead time. In particular, we examine the counting and
pulse-interval distributions that arise from amplitude-stabilized radiation, from chaotic radiation, and
from a Van der Pol laser with arbitrary excitation. The exact dead-time-corrected Poisson distribution
is graphically compared with a previous approximate result and with the uncorrected Poisson. Plots
of the Bose-Einstein distribution clearly indicate the dramatic anti-bunching effects of the dead time
in overcoming the inherent bunching of this distribution. A simplified approximate solution is also
found. for the Van der Pol laser above threshold; this result is similar to light from an
amplitude-stabilized source incident on a photodetector with a gaussian-distributed dead time.
Information about photodetector dead-time variation can therefore be obtained either by using an
amplitude-stabilized source or by properly choosing system parameters such that irradiance
fluctuations are averaged out.

Index Headings: Source; Lasers; Detection.

During the past decade, there has been a great deal of
study of the forward-photocounting distributions-'7 for a
variety of radiation sources, modulation schemes, and
stochastic channels. Laboratory measurements have
shown the need to consider the effects of the photodetec-
tor dead time on the form of these distributions. 4 The
dead time i- is a fixed period of time, after the registra-
tion of a photoelectron, during which the photodetector
cannot emit another electron. As optical communica-
tions systems operate at increasing rates of information
transmission, sampling times become smaller and the
effects of dead time more pronounced.

The effects of dead time on counting distributions that
arise in nuclear-counting problems have been studied by
De Lotto et al., 8 who present a number of results in the
Laplace domain for both paralyzable and nonparalyzable
systems. Johnson et al.4 applied this work to both am-
plitude-stabilized and chaotic sources for sampling
times T>>» ; their calculation of the counting distribu-
tion breaks down, however, for count numbers n such
that nT approaches the value of the counting interval T.
Under such conditions, it is necessary to make use of
the exact solution for the distribution, including dead
time. Although some progress toward this end has been
made by Bedard, 9 it is of interest to obtain dead-time-
corrected counting distributions for arbitrary sources
of radiation, such as the Van der Pol laser. Such re-
sults can also provide information about the distribution
of dead times manifested by a detector (where T is not
fixed) for a source whose radiation statistics are known.

I. DEAD-TIME-CORRECTED POISSON COUNTING DISTRIBUTION

In the absence of dead time, the probability of record-
ing n counts in a time interval T from a detector illumi-
nated by an amplitude-stabilized source isi

p(n, A) =(AT )nexp(- AT)/nl,(1

with

X= al.

This is the well-known Poisson distribution, with a the

quantum efficiency of the detector and I the (constant)
irradiance at the detector. Poisson counting is also ob-
served for a source of arbitrary statistics, provided that
T>>» ', where TC is the coherence time of the source.
In the presence of a dead time Tr, the results of De Lotto
et al. 8 for a nonparalyzable system are used (see Appen-
dix) to show that the probability of registering n counts
in a time interval T is given exactly by

n

Po(n, A, r) = Z {Xk(T - nT )kVk! } exp{- X(T - n-r)}
k=o

n-1

-,{A[T - (n - 1)Trjk/k!}exp{- X[T - (n - 1)TrD . (2)
k=O

This expression is valid for counts n such that n-- < T,
and assumes that the counter is unblocked at the begin-
ning of the sampling interval. By the definition of dead
time, count numbers greater than TI-i are forbidden.
The mean and variance of this distribution can be writ-
ten as

i = xT(1 + XT)-1 + 2 (XT)2(1 + XT)-' (3a)

and

c 2 = XT(1 + XT) 3 (3b)

respectively. 8,10 Equation (2) can also be obtained from
Eq. (23) in Ref. 9, by use of the properties of the incom-
plete gamma function.

Figure 1 shows the deviation from the original Poisson
distribution when the effects of dead time are included
and also provides a comparison with a dead-time-cor-
rected distribution whose mean is approximately equal
to that of the original Poisson distribution. The ratio
of dead time to sampling time TIT is 0.025 for all
curves. The mean of the original Poisson distribution
(solid curve) along with its variance is 25. 0; Fig. 1
shows that the mean of the dead-time-corrected distribu-
tion (dotted curve) is reduced to 16. 3, whereas its vari-
ance is 5. 6. The dashed curve was obtained for an ir-
radiance that was increased such that AT= 66. 5 to com-
pensate approximately for dead-time losses in the mean.
This clearly demonstrates the reduction of variance to
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the dead-time-corrected statistics for an amplitude-
stabilized source can be written as [see Eq. (2)]

n n-t

PO(n, X, T) = E Pk(n, X) -E ph(n - 1 x) .
ha=0 h=O

(5)
* II \

II
I I

p (n, A, T) = (P p(n, Ad -r)),. X

with

M= & ft I(t')dt' .

(6a)

(6b)

n n-i
p(n, X, T) = E (Pk(nf lx))m -Am (pk(n- 1, x))m -

h=O k=0
(7)

Each of the pk(n, X) is simply the probability of register-
ing k counts in a time interval (T - nr) for a process that
obeys a Poisson probability law with rate X. Thus, each
of the ensemble averages in Eq. (7) represents an appli-

50

FIG. 1. The Poisson distribution with no dead time is repre-
sented by the solid curve (mean=variance=25.0). The effects
of dead time produce the distribution shown by the dotted curve
(mean = 16. 3, variance = 5. 6). Note the reduction of the mean
(shown by arrows) due to the elimination of output pulses. The
dead-time-corrected distribution normalized to approximately
the same mean as the uncorrected Poisson distribution is shown
by the dashed curve (mean=24.6, variance= 3.6); this clearly
demonstrates the decrease of variance brought about by dead-
time effects. The ratio of dead time to sampling time T/T was
0.025 for all curves.

3.6 by the dead-time effects. Figure 2 presents a com-
parison of the exact result (solid curve) obtained above
with the approximate result (dashed curve) obtained by
Johnson et al.4 for the same irradiance, with T/T =0.005.
The two distributions are sufficiently different so that
the exact results should be used, particularly for count
numbers greater than the mean. These distributions
correspond to a value of no = 29 (Johnson et al. 4) and
X = 2. 9, with T = 10 in both cases. For r/T = 0. 001, the
exact and approximate results cannot be distinguished
graphically. The effects of the detector dead time are
therefore to shift the mean to a lower value, and to re-
duce the variance of the distribution.

II. DEAD-TIME-CORRECTED ARBITRARY COUNTING
DISTRIBUTION

If, for convenience, we define a function pk(n, X) as

p(n, X)={ X(T -nr)k/k!}exp{-X(T -nT)} (
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FIG. 2. Photocounting distributions corresponding to exact
(solid curve) and approximate (dashed curve) corrections for
dead time. The mean value for both curves (shown by arrows)
is 25.3. These curves are normalized to the same irradiance
and correspond to a value T/T=0. 005.
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When illuminated by a source whose irradiance fluctu-
ates, then, the photoelectron-counting distribution will
be given by

This represents an ensemble average of the underlying
dead-time-corrected Poisson distribution over the sta-
tistics of the integrated irradiance M. Using Eq. (5),
we see that Eq. (6a) becomes

I

(4)
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cation of Mandel's formula' that uses the statistics of
the integrated irradiance M. We have therefore obtained
a simple expression for the exact dead-time-corrected
distribution for any source whose statistics are known.
In the following, we explicitly calculate a number of
dead-time -corrected distributions.

III. DEAD-TIME-CORRECTED COUNTING DISTRIBUTION FOR
A VAN DER POL LASER

Armstrong and Smith5 and Chang et al. 11 have shown
by photocounting experiments that the behavior of a sin-
gle -mode laser is well described throughout the range
from well-below to near to well-above threshold by Ris-
ken's irradiance distribution12 " 3

P(I) = 27T-11 2 [ I1(l + erfw)] -1 exp {-I(I/I) - w]2} . (8)

Because I>0, thisisatruncated gaussian. Theparameter
w describes the state of excitation of the laser; it is neg-
ative below threshold, zero at threshold, and positive
above threshold. 5,6,12,13

For sampling times T«<< ,,, Eq. (6b) shows that the
statistics of M are identical with the statistics of I. In
this case, then, the ensemble average in Eq. (7) yields 6

(ph(n, X) )M = [exp(w2 ) erfc(- w)]-'

x {(vt)k exp[( vt/2) - w]2 ik erfc[(vt/2) - w] , (9)

vir-/ 2 [exp(w2) erfc(- w)]'-{1 - 7rI/2 [(v/2)(t - T)-

f(t) =
0, t<T .

In the limit of large w, this properly reduces to the
pulse-interval distribution corresponding to a dead-
time-corrected Poisson distribution with rate wv, i. e.,
wv exp[ - wv(t - T)], for t ' T.

IV. APPROXIMATE SOLUTION FOR A VAN DER POL LASER
WELL ABOVE THRESHOLD

Far above threshold, for large positive w, the irra-
diance distribution in Eq. (8) is gaussian, with mean wI,
and standard deviation I,/(2)1/2. We now consider this
special case for sampling times that are short in com-
parison with the irradiance fluctuations. Thus, the pa-
rameter X of the counting distribution is related to the
instantaneous value of the irradiance by

X = caI (t), (12)

and the distribution of X will be of a form identical to
that of the irradiance I. The counting distribution given
in Eq. (2) can then be directly averaged over the fluctua-
tions in X to obtain the dead-time-corrected counting dis-
tribution for a photodetector illuminated by a Van der
Pol laser above the threshold of oscillation.

Specifically, for w > 5, the distribution of the rate pa-
rameter X may be written as

P(X)= (27r)"2 u'exp{-I [(X ,)/u]3 } (

with t = (T - nT) and v= aIl. The function ik erfc repre-
sents the kth -iterated integral of the complementary er-
ror function. 6" t4 The average laser output (I) can be re-
lated to the parameters w and I, by the expression5

(I) = Ij[w + 7T-1 / 2 (I + erfw)-l exp(- w2)] (10)

The results represented by Eqs. (7) and (9) above are
not only exact, but also provide dead-time-corrected
counting distributions for a source that has a broad
range of statistical behavior. Thus, for large negative
w (w < - 3), we obtain the dead-time-corrected distribu-
tion for a source that is essentially chaotic.

For arbitrary T/lr, the dead-time-corrected counting
distribution for the rotating-wave Van der Pol laser can
be obtained in a similar way by use of Eq. (7) and the re-
sults obtained by Lax and Zwanziger. 15 This exact dis-
tribution would then permit a highly accurate comparison
with experimentally observed distributions, 16 where
dead-time losses must be considered.

We can, furthermore, obtain the exact pulse-interval
distributionf (t). For fixed dead time, this is given by
the expression - ap(o, T)/a T. Using Eq. (9) and a form
of Eq. (7) corresponding to a counter blocked at the be-
ginning of the sampling interval, 8 we find

w] exp[(v/2)(t - r)- w]2 erfc[(v/2)(t - -r)- w]}, t '-r
(11)

with

A= aVIIw

and

a= UI,/(2"/ 2) .

The desired counting distribution will then be given by

(14)p(n, ) = po(n, X, T)P(X) dX ,
0

where po(n, x, r) is the distribution with dead time in the
absence of source variations, given in Eq. (2). Thus,

0n

p(n, or,A)= f E(tX(T -nT)A/k!}exp{-,(T - nT)}
-/k=O

n-l

- {k [T - (n - 1)T]'k/k! I exp{- k[T - (n - 1)Tr]}
k=O

X P(X) dX . (15)

Since the sums involved are finite, the order of integra-
tion and summation may be interchanged. The solution
therefore involves the evaluation of integrals of the form

Pk,.= f { Xk(T _.nr)kI/k!}exp{..- X(T - nr)}P(X)dA .
0 (16)

An approximate evaluation of the integral in Eq. (16)
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may be carried out by the method of steepest descent. 6,7
For convenience, we use Eq. (4) and express p,(n, X) as
an exponential of its own logarithm. The point of sta-
tionarity for the combined exponential is then sought,
and a Taylor-series expansion about that point readily
yields an approximate expression for the desired inte-
gral. Because all integrals occurring in the sums of
Eq. (15) are of the same form, the desired counting dis-
tribution can be calculated.

Formally, we let the combined exponent be repre-
sented as

f (X) = ln[ pk(n, X)] - (x - A)2/2a2

and define

qm(nk, x) = atm lnp (n, X)/agxm

(17)

(18)

We then determine Xo implicitly for each n and k from
the stationarity condition

A Taylor-series expansion of f(X) in the variable
x = (X - X0) yields

f(X) =f(X0 ) +f '(Xo)x+f "(Xo)x2/2! +R(x) (21)

in which the remainder term R(x) is of order f"'(x 0 )x3 .
Provided that this can be neglected in comparison with
f"(X 0)x

2, the integral in Eq. (16) yields

PA, c [1 - 2 q2(n, k, XO)]-"2{pAn, X0 )exp[- (X0 -X)/u 2]} .

(22)
The function pk(n, A) given in Eq. (4) yields qm(n, k, X)

given by

ql(n, k, X) = k/X - (T - nT) ,

q2 (n, k, X) = - k/X 2 ,

q3(n, k, X)= 2k/X3 ,

(19) so that the procedure requires the solution of

X0 = A + a2k/X0 -u 2 (T - nv)or, specifically,

(23a)

(23b)

(23c)

(24)

(20)
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FIG. 3. Dead-time-corrected photocounting distribution
amplitude-stabilized (dashed curve) and Van der Pol lasE
(solid curve) radiation. The mean irradiance of the Van
Pol laser is equal to the irradiance of the amplitude-stal
source to first order. The excitation parameter w of the
is taken to be 12.5. As in Fig. 1, T/T=0.025.

for Xo(n, k), with X and a as parameters. Thus, the in-
tegral in Eq. (16) yields

Pk, n - (I + c~k/Al 0{ fPk(n, Ao) exp[ - 2 1 )d
(25)

the desired photoelectron-counting distribution is there-
fore

n *n-1 l

p(n, a, 3) = E Pk, n - E Pk, n-l -
k=O k=O

(26)

Figure 3 shows a comparison of the distributions arising
from an amplitude-stabilized source (dashed curve) and
a Van der Pol laser (solid curve) for a photodetectorwith
T/T=0. 025. The mean irradiance from the Van der Pol
laser is taken to be equal (to first order) to the irradi-
ance from the stable source, and the variance corre-
sponds to a laser-excitation value w= 12. 5. The dashed
curve is identical to the dashed curve in Fig. 1
(mean = 24. 6, variance = 3. 6), whereas the solid curve
has a mean of 25. 2 and a variance of 3. 9.

To obtain the approximate counting distributions giv-
en above, the averaging integrals in Eq. (16) were eval-
uated by the saddle-point method. This yields reliable
results when the irradiance distribution represented in
Eq. (8) has a well-defined peak and falls off rapidly on
either side of that peak. This requires w> 5 and there-
fore corresponds to the Van der Pol laser somewhat
above threshold. When the method of steepest descent
cannot be used, a Gauss-Laguerre integration might be
applied to provide accurate numerical results.

V. DEAD-TIME-CORRECTED BOSE-EINSTEIN COUNTING
50 DISTRIBUTION

For a chaotic radiation source, the ensemble averages
s for in Eq. (7) are given by

der
ilized
e laser

(pk(n, X))M ={A[T -n 7 }k/{1 +X[T -n-T]}k+l, (27)

yielding a dead-time-corrected Bose-Einstein counting
distribution that can be written

I'I

I'
- I I
- I I
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FIG. 4. The Bose-Einstein distribution with no dead time is
represented by the solid curve (mean = 25. 0, variance = 1275.0).
The effects of dead time produce the distributions shown by the
dashed curve (,r/T =0. 025, mean =12. 7, variance 54. 5) and by
the dotted curve (,r/ T= 0. 1, mean =6. 5, variance 4. 7). Note
the reduction of the mean (shown by arrows) due to the elimina-
tion of output pulses. The dotted curve labeled P represents
the dead-time-corrected Poisson distribution (TIT= 0. 1, mean
= 6. 7, variance = 0. 7), clearly demonstrating the similarity of
diverse counting distributions in the dead-time-limited domain.

n

p (n, x, T~)=Z{4X[T - nT] }k/{I+ X[T - n.]}I+1
k -.O
n-\

-Z x[T -(n - 1)-lTk/{1 +4T -(n -

(28)

This counting distribution is valid for counts such that
nT < T; count numbers greater than T/IT are forbidden.
In Fig. 4, we compare the dead-time-corrected Bose-
Einstein distribution with the uncorrected distribution,
for several ratios of dead time to sampling time, T/T.
The solid curve represents the original uncorrected
Bose-Einstein (mean =s25.i0, variance = 1275. 0), the
dashed curve represents the distribution for TIT =0.025,
whereas the dotted curve represents the distribution for
TIT =i0. 1. For comparison, the dotted curve labeled P
represents a dead -time-corrected Poisson distribution
with TIT =70. 1. The original mean was taken to be
XTd=25.0 foruall curves. The dead-time-corrected

means and variances are reduced to 6.7 and 0.7 (Pois-
son, TT= 0. 1), 6. 5 and 4.7 (Bose-Einstein, T/T =0. 1),
and 12. 7 and 54. 5 (Bose-Einstein, r/T= 0. 025). Note
that all Bose-Einstein distributions have the same prob-
ability at n= 0; this is a result of assuming that the coun-
ter is unblocked at t= 0. For a blocked counter, the
probability at n = 0 depends on the dead time T. The anti-
bunching effects of the dead time rapidly overcome the
inherent bunching of the Bose-Einstein distribution. In
the highly dead-time-limited case (T/T= 0. 1), the Pois-
son and the Bose-Einstein distributions appear quite
similar, in marked contrast with their behavior in the
absence of dead time. Note the sharp cutoff at
n= T/T= 10 counts. The effects of the detector dead time
are, once again, to shift the mean to a lower value, and
to reduce the variance of the distribution.

VI. COUNTING DISTRIBUTION FOR VARIABLE DEAD TIME

In much the same way that Eq. (6) or Eq. (14) repre-
sents an average over the statistics of the irradiance,
they could be modified to provide an average over the
stochastic variation of dead time for a source of constant
intensity. If the distribution of dead time is gaussian
with mean 7 and variance aT, the method of solution will
be similar to that presented previously in Eqs. (16)-(22),
and an approximate solution can be obtained for T> o.
Thus, a measurement of the photocounting distribution
for a source of constant intensity will provide informa-
tion about the statistical distribution of the photodetector
dead time in those cases in which it is not fixed. Inas-
much as the light from a tungsten lamp has a very small
coherence time To, simply choosing T>> T. will provide
a convenient laboratory source suitable for this pur-
pose. Applications of the variable-dead-time model
to problems in vision research will be discussed in a
future publication.
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APPENDIX

The exact dead-time-corrected Poisson counting dis-
tribution given in Eq. (2) can be derived using the results
of De Lotto et al. 8 For simplicity, we use the same no-
tation as these authors. In general, we may write

(Al)Pn(0 t)= f [P*(o, t') -P*+1(0, t')]dt',
0

where Pn(0, t) is the probability of recording exactly n
counts in the interval (0, t) and p,(0, t' ) dt' is the proba-
bility that the nth count occurs between t' and t'+dt' in
an observation interval beginning at t= 0. The asterisk
indicates that the counter is unblocked at t= 0, whereas
functions without an asterisk represent a counter blocked
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at t= 0. In the Laplace domain, Eq. (Al) becomes

;P~n (s) = s - [ Pn (S) Pn*+l(S) I -

For a nonparalyzable counter,

Pn* (S)= Pt(S)Pn-l(S) =pl*(S) [Pl(S)]n- ,
and Eq. (A2) can be written

Pn*(S) = slp*(S) [1 -Pi(s)] [P1(s)]'

(A2)
-_ Xn-(m) {[t _(n - 1)T](n-m-l)/(n - m - 1)!}

xexp{- X[t- (n - 1)T]}. (A12)

(A3) In a similar manner, the second term in Eq. (A8) yields

S-'{AXn' exp[- (nsT)]s1 (s +

(A4)

for n- 1.

For a Poisson input distribution with mean rate X,
pI (s) and p1 (s) are given by8

pl (S) =pI(S) = A(s + A) -1 . (A5)

At the output of the counter, taking into account the fixed
dead time T,

Pt. (s) = X(s + W,

and

an (s) = A(s + A)61 exp(-dST)(,

where u signifies that Eq. (A6) represents a dead-time-
corrected process. Therefore,

n*,(s = s1 ls+ )1 [1-s + -1 exp(- ST)]

X [A(s + A) -1 exp(-ST) ]n-1 ^(A7)

which reduces to

Pn*.(S) = S -l~n(S + X) n exp[ -sT(n-1

-s-1Xn+I(S + X)-(n+. exp[ (nST)] (A8)

A partial-fraction expansion for the term 5-1(5 + >)-n
takes the form

5 + A)n = K=s 1 
+ K2, n(s + A)n+ K2 , n-1(S + X)( n-1)

+ * * * +K2,2(S + A)'+K2 , 1(S + (A9)

The coefficients are easily found to be

and (A10)

K2,n= -A(m 1 ) m=0, 1, 2 ,...,n- .
The inverse transform of this term is therefore given by

2-11{S-1 (S + X)-n} = U(t)X-n -_ -tM+l) Z-1[ (s + x)-(n-m) ]

= u(t)xA' - > -(m+l)[t n-m-)eXt/(n m - 1)1]
m=O

(All)

where u(t) is the unit step function.

Thus, for the first term in Eq. (A8),

£Z1{nx exp[- sT(n- 1)]s-1 (s +X)-n}

=u[t- (n - 1)T]
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n
=u(t -nr) - x Xn-m{[t - nr]n-m/(n - m)!}exp[- X(t - nr)].

(A13)

If k=n- m-1 in Eq. (A12) and k=n- m in Eq. (A13), the
desired counting distribution is

pO(n, X, T) = P* J0, T)
n,

=E {k(T-nT)1/k ! } exp{- X(T - nT)}
k=O

n-l

-Ak[ T - (n - l)Tik/k!}exp{- A[T- (n - 1)T

(A14)
valid for nT < T.
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