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We investigate the counting statistics for stationary and nonstationary cascaded Poisson
processes. A simple equation is obtained for the variance-to-mean ratio in the limit of long
counting times. Explicit expressions for the forward-recurrence and inter-event-time probability
density functions are also obtained. The results are expected to be of use in a number of areas of

physics.
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I. INTRODUCTION

Multiplication, reduction, and branching processes
have been examined in a broad variety of contexts.'™® Appli-
cations range from astrophysics to biological information
transmission. In the great majority of mathematical treat-
ments, the multiplication or branching is treated as an in-
stantaneous effect [see Fig. 1(a)]. However, in many physical
systems, a random time delay (or spatial dispersion) is inher-
ent in the multiplication process. In this paper, we carry out
an analysis of a cascade of Poisson multiplications that in-
cludes such time effects [see Fig. 1{b)]. Our results reduce to
previously known descriptions, in the limit of instantaneous
multiplication.

In a recent series of papers, we examined the two-stage
multiplicative-Poisson process with random time delay. The
particular model that we analyzed is the shot-noise-driven
doubly stochastic Poisson point process {SNDP), in which
each event of a Poisson point process generates an inhomo-
geneous rate function which, in turn, generates a second
Poisson process. The SNDP is a doubly stochastic Poisson
point process (DSPP)™, it is also a special case of the Ney-
man-Scott cluster process.>'®

A number of results were established in our study. We
showed that the theoretical count variance is proportional to
the count mean for an arbitrary inhomogeneous rate func-
tion [we call this the impulse-response function # (¢)]. For
long counting times, the theoretical counting distribution
was shown 1o be the Neyman Type-A,'"'? and this distribu-
tion was experimentally measured for radioluminescence
from glass.'? The forward-recurrence-time and inter-event-
time probability densities were obtained, both in the absence
and in the presence of self-excitation {dead time or refractori-
ness).' The results were used to describe the detection of
optical fluorescence or scintillation generated by ionizing
radiation. They were also used to fit the maintained-dis-
charge interspike-interval histograms recorded from a cat’s
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on-center retinal ganglion cell in darkness.'*

General expressions for the count mean and variance
were also obtained in the presence of small dead time, and
the results were experimentally verified for radiolumines-
cence from several transparent materials.'® We showed that
self-excitation could be used to constructively enhance or
diminish the effects of point processes that display cluster-
ing, according to whether they are signal or noise. Finally,
general expressions for the single- and multifold counting
and time statistics, as well as for the power spectrum, were
obtained for many cases of interest.'” We presented a broad
review of the application of such multiplied-Poisson noise to
many areas in physics, optics, and electrical engineering
(e.g., cathodoluminescence, x-ray radiography).!” The statis-
tics for a nonstationary SNDP were also obtained, and the
counting distribution was found to reduce to the Neyman
Type-A for input signals of short duration.'® In this paper,
we extend many of these results to the multistage case.

The results of our cascade analysis are likely to find use
in problems where a series of multiplicative effects occur.
Examples are the behavior of photon and charged-particle
detectors, the production of certain types of cosmic rays, and
the transfer of neural information. In Sec. II, we briefly re-
view the results for the case of instantaneous multiplication.
In Sec. ITI, we obtain the cascade counting and time statis-
tics, as well as the autocovariance function, in the more gen-
eral case, when time effects are incorporated into the model.
The behavior of the resulting counting statistics is discussed
in Sec. IV, and the Conclusion is presented in Sec. V.

Il. THE INSTANTANEOUS MULTIPLICATION PROCESS

We briefly discuss the instantaneous multiplication
process. Let p(n) represent the probability that an event at
the mth generation creates # events at the {m 4+ 1)st genera-
tion. The quantity G, (2), which is the probability generating
function for the total number of events produced at the mth
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FIG. 1. Schematic representation of an m-stage cascaded system with Poisson multiplication at each stage. (a) Instantaneous multiplication; (b) time effects
included. P. P. represents a Poisson process generator, whereas 4,(f ) represents a linear-filter impulse response function.

generation, is given by
G.(2)=G\(G, ()

so that
Gn.(2) = Gi(G\(G\(G,G\(2)))). (1)
m times
Here
Gylz) =2
and

Gie) = 3 #pin)

Assuming that p(n) is Poisson distributed with mean a,
and substituting z = exp( — s) in (1), we obtain the moment
generating function Q,, (s) at the mth generation for the cas-
caded Poisson instantaneous multiplication process: that is,

0n5) = Qi@ 1 9)),

or
0, (s) = Q@1+ Qi5)))- (2)
m times
Here
Qols) = exp( — s)
and

Q,(s) = explafexp( — 5) — 1)).

1. POISSON MULTIPLICATION WITH TIME DELAY

As indicated in the Introduction, time delay can be an
important effect in multiplication processes. In Subsec. A,
we derive the counting-distribution moment generating
function for an m-stage cascade of Poisson processes, for
arbitrary T /7,. The quantity 7, is the characteristic decay
time of the inhomogeneous rate. This is followed by a calcu-
lation of the counting statistics for the single and multifold
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cases in Subsec. B and C, respectively. In Subsec. D, we de-
rive the autocovariance function. The time statistics are ob-
tained in Subsec. E. The counting statistics for the nonsta-
tionary case are considered in Subsec. F.

A. Moment generating function for the counting
process at the mth stage

We consider the system illustrated in Fig. 1(b). The
quantity u is the initial deterministic driving rate, { Z;(¢)} isa
process of impulses corresponding to the point process at the
Jjth stage, and {X(¢)} is the linearly filtered point process at
the jth stage which, in turn, provides the driving rate process
for the(j + 1)ststage. The boxes labeled P.P. and /(¢ ) repre-
sent Poisson point process generators and linear filters, re-
spectively. The moment generating functional for the fil-
tered point process at the jth stage is defined by

Ly(s)& <exp( - J‘_ww s(t)X;(¢) dt )>,

j=12,..,m—1. 3)
It can be shown (see Appendix A) that (3) can be written as

Ly )= (exo{ [~ %110

X [exp( - fjmhj(r— £ )s(7) dr) - 1] dt ]}

(4

If wereplaceexp( — f= _ A, (r — t})s{7) d7) — 1 by — s(t), the
right-hand side of (4) is, by definition, the moment generat-
ing functional of the process {X,_,(¢)]; that is,

<exp{fj0jo_ . (t)[exp( — Jjwhj(T — t)s(7) dr) — 1] dt ]>
:><exp< — fjws(t X, () dt )> =Ly  (5) (5)

Therefore, we have a recursive formula for the moment gen-
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erating functional of the process {X;(¢)},

Ly(s)=Ly | {1 - exp( - fjwhj(T — t)s(7) dr)], (6)

where the moment generating functional of the first stage is

Ly (s)= exp[,uf_mch [exp( - J_wwhl(r —t)s(7) d7'>

- 1] dt ] 7
For convenience, we define the following operator:
ati=ew|[" mit-g)te-11ar)

j=12...m—1.

By using the above equations recursively, the moment gener-
ating functional for the process {X,, _,(t)} becomes

Ly, b= eXp[pJ-jw [ql(q2<q3...
(q"'”(e"p(‘f P2l —tm_z)s(tm,lydtm,l)))
)) - l]dtll. ®)

The integrated driving rate process at the mth stage is
shown schematically in Fig. 2, and the moment generating
functional for the process { W,,(¢)} is defined by

Ly (s)& (exp( - fjws(t )W, (t)dt )> 9)

It can be shown that the above equation can be written as

Ly (s)= <epr-_wam _,lt)

X [exp( — fjmhm _rlr—t)s(7) dT) — l] dt ]),

(10)

where the linear filter #,, _; ,-(¢}is a convolution of 4,,, _, (¢)
with an integrator (assumed to be noncausal for conve-
nience) on the time interval (0,T), i.e.,

hrlt) = [y ste ) d (m)

To find the moment generating function of { W, (¢)}, we let
s(t ) = s6(t ) and we obtain

Q.5
—(ewp{ [* X s enpl = b 1)~ 17 )
= Lo (1= expl—shp_ .~ 1), 12
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FIG. 2. Block diagram for generation of the
integrated rate { W, (t)}.
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Combining (8) and (12) yields

Qw, s) = exp{#fw [4:(g2(g5++

qm —2(exp( —ShmA 1,T( - tm— 1 )))"')) - 1] dtl]

(13)
This result will be used subsequently to find the counting and
time statistics.
The moment generating function for the counting pro-
cess at the mth stage is related to that of { W,,(¢)} by"®

O, ()= Qw, {1 — exp( —s)}. (14)

Inserting (13) into {14) then yields the final result
On, )= eXP{ﬂf [41(92(93-9 — »(exp(1 — exp( — s))

X A gl =t ) — ldtl}‘ (15)

B. Singlefold counting statistics at the /mth stage

The probability distribution for the occurrence of n
events in a fixed time interval (0,7), at the mth stage, can be
computed by using the formula'®

( _ l)nan

Pmin) =-———— Q5

16
n! ds” (16

s=1

With the help of the results derived in Appendix B, we have

Pn{0)= exp{,ujio [DP(e)—1] dt], m>2  {17a)

and

n (_1)k+1
r+N)p.n+l)=p ———p,n =k Y,
o k!
m32, {17b)
where
I“‘*”:f D+ dt, k>0,
(k+ 1) k k (k—1r)
DY+ )= ZO , DY~ ¢)
Xf hy(r —)D 1 \7) dr,

k>0,

j=123,.,m—2,
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D)= exp[fw hyr —)[D P 1(7) 1] dT]’
J=12,...m -2,
D% (t)={ — 1 — )} expl — By r(— 1)},

m>2, k>0,
ak+1
D‘J’f+ )= P exp(d;(£,5)) ) k>0,
j=12,..m =2,
O _1(t85)= —sh, _,r(—1t) m>2.

The count mean and variance at the mth stage can be
derived by using the relations for the cumulant generating
function'?

W(Th = =2 1m0y ) (182)
and
Varl, (T)) = 2510 0. (9] (18b)

However, a moment’s thought will demonstrate that the sys-
tem in Fig. 3 is equivalent to the one in Fig. 1(b), as far as the
first and the second moments are concerned. Here § V(z)},
§Viit ), { Vom 1 (t)} are zero-mean, unit-variance white-
processes, and the cross-correlation function of { ¥;(¢)} and
{Vile)) is

Ry )= (Wit + e = (47
The identity is provided by the theory of random processes
in linear systems.?®?! It can be shown that the mean and the
autocorrelation function at the input to the mth stage are,
respectively,

(19)

m—1

X ) =p ] ap m>2 (20a)
i=1
and
m—1 m—l[i—l m—1

Ry n=p[leg+uy {[l% X _gk(T)]’ m>2,

ji=1 i=1

where
ap =1,

akéf h(t)dt,

g () Ehy (T)xhy (— 7),

-1 (T)2g,(T)eg, , (Tt 1 (T):

The symbol « indicates convolution. The counting statistics
are easily derived by using the above equations.'® The mean
number of counts at the mth stage, in the counting interval
(0,T), is**

(N.(T) = (WT,,,(T»
:UO Xm_l(t)dt>=/.tT”Alﬁlaj‘ 1)

Jj=1
The variance of the number of counts at the mth stage can be
expressed as'®

Var(N,(T)) = ,uT".ll:Il a

j=1

m—1{i—1 T m—1
w3 (Maf =i s sin)] )
i=1 /=0 -T k=i
(22)
In the limit of long counting times, which is a special
case of substantial interest, the results can be found by sub-
stituting a, 8(t ) for 4, (¢ ) in the above equations, which
yields??

m—1 m—1 (i—1 m—1
Var(N,,(T) =uT [] @ +uT Y { a- I ai].
AL . .

i=1 li=o k=i
(23)
The variance-to-mean ratio (Fano factor) is then expressed
quite simply as
Var(N,,(T)) m—1 ['"*1 ]
m=——=1+ a,i, m>2. 24a
(N.(T) 2 L e 24

k=i
When all o; = e, Eq. (24a) reduces to

F,=14cal(l—a" "Y1 —a), m>l. (24b)

For m = 1 and m = 2, we recover the usual expressions for
the Poisson and Neyman Type-A distributions, respectively.

C. Multifold counting statistics at the mth stage

The joint probability for the number of counts N, in L
time intervals [7;,7; + T;],j = 1,2,3,...,L, for the m-stage
cascaded Poisson system, can be written as'®

L (_ {yugm
pato) =11 % 0w (25)
where
N = (A,Np...,Rt; ),
S = (51,5255 )s
1=(1,1,...,1),
W, =W, W, ,...W, )

Vi Ged <X > e VX Vo) VLK (R> V (6))
2 (Z4e) {Z (e (o) 2o 2,6
hi() S hi(t) h (&) D> h(t)
I.A
(X, &) Xeh {X &) X6

FIG. 3. Equivalent model to that presented in Fig. 1(b) as far as the count mean and variance are concerned. The { V(¢ )] represent zero-mean unit-variance

white processes.
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provided that the integrated rate processes { W, (¢)} at the
mth stage are'’

7+ T,

W = [ Xt 26)
Here Qy,_ (s) is the L-dimensional multifold moment gener-
ating function of the integrated rate process at the mth stage,
and can be expressed as

ov=esnfu]” [ (oo
Gm - z(exp( —jglsjhm T LA m))...)) - l]dt,].

(27)

However, it is quite difficult to obtain the joint probability
distribution function using (25) and (27), and we therefore
carry this result no further.

The L-dimensional multifold moment generating func-
tion for the counting process at the mth stage can be deter-
mined by using the formula'®

On,, (s) = Ow,_ {1 —exp(—s}}, (28)
where

N, ={NtsNmzsesNow s )s

m,1
1 —exp(—s)=(1 — exp( — s5,),1 — exp( — 53),...,

1 —exp( —s.))
Finally, we obtain the general expression

O, (s)=exp {,uj: [‘11(‘]2(43"'

G - 2(exp( — i (1 —exp( —s;)Apm 17t 1 + Tj]))

j=1

) =1]ar). (29)

D. Autocovariance function at the mth stage

In this subsection we derive the autocovariance func-
tion for the number of counts ¥,,, registered in a time inter-
val of duration 7, for the m-stage cascaded Poisson process.
The time separation between the intervalsis 7 = ¢, — ¢,. Us-
ing the definition of the autocovariance function and (29) we

have
2

CN,,, (tpty) = In QN",(1|)N,,,(12)(SI’S2)

51085 s, =5,=0

=uf (U (L) Uns 1 (6 Vi (010t2)) i,

(30a)
where

Ulst) :J hir—t)U, _,(rt)dr, k=12,..m—1,

j=12,  (30b)
Ugltit) = — [ult—t) —ult —t, — T)], j=12, (30c)
Vilttots) = f h(r— [ Ue s mt)Ue 1 (rt3)
+ Vk — l(T’tlth)] dT,
k=12..m—1,  (30d)
Vit 1t) = O. (30e)
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It can be shown (see Appendix C) that, when all stages are
identical, (30a) can be rewritten as

Cy._(7) Z#Tfjw {a \H ()"~ — o~ 1]

H ) —a
+lHEP e 22,

where
T=1t,—1, a=J hit)dt,

Hw)=FT.ofh(t), @ lw)=T [M]z

(T /72)
From (31), we can obtain the variance of the counting pro-
cess by simply setting 7 = 0, so that

Var(N,,(T)) = pTa™ !

m—1 T m—i
+ud (ai’ ‘J (T— ]T|)[ * g(7) dr].
i=1 - T
(32)
Equation {32) can also be obtained from (22), and the defini-
tion of g, (7) given in (20b), by substituting 4, (¢t ) = A {t ) for all
k. The power spectral density for the process is obtained by
taking the Fourier transform of (31).

E. Time statistics at the mth stage

The forward-recurrence-time probability density P{})(z)
and the inter-event-time probability density P '?/(¢), for the
m-stage cascaded Poisson system can be derived from the
explicit expression for Qy, (s).'® The calculations are
straightforward and lead to

a
PUT) = —— 1
m(T) a7 Ow, (1)
Q[ [ " AT
(r_n c_o 1)-!;[:7integrzlsw
Xhm—Z(tm—l _tm—Z)
m—1
bty — )by (2, — tl)eXp[ 2 ej(tj)]
i=1
Xdt, dt,dt, |, (33)
and
P(:,)(T) =____1____ip(’:')(T)
(X (2)) OT
m - 1 © © o«
(2wt Ta)lad [ [ [ o+
/=1 (; io l]-ﬁ)lzloimegn;l:t7
Xhm—z(tm~l _tm-—Z)

m—1

hy(ty — L)t — tl)exP[ z gj(tj)]dtl dty-dt,, _ |

j=1

_fwrw...f:{hml(tml +7)

(m — 1)-fold integrals
J S J }
X — 0,(t;) + —h t T
aT,-ZH _1(])+8T m—l(m—l+ )
Xhm—Z(tm— 1 = Im 2)“'h2(t3 - tz)hl(tz - tl)
m—1
Xexp[ D ¢9j(tj)]dtl dty-dt,, |, (34)
j=1
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where

Q. (1) = [Eq. (13)],_ .
6,(t) =f°° hyir— 1)[exp(6,, 1 (r) — 1] d,

i=12,.m—1,
em—z(t) = ——hm—l,T(_ t)'

F. Counting statistics for the nonstationary case

In this section, we obtain the moment generating func-
tion for the counting statistics, together with its mean and
variance, for a nonstationary cascaded Poisson process (i.e.,
4 is a function of time).

A schematic diagram illustrating the generation of the
process can be obtained by replacing u by p(t) in Fig. 1(b).
The moment generating function for the m-stage integrated
rate process { W, (¢,T')} can be found by using a similar ap-
proach to that used in Subsec. A, giving rise to

Ow,wn8)= CxP[fj ult — 1) q.(g2(g5

A 26D = Sh {1 W) — 1] ], (39

where
g;() =exr>Ulh,-(t— L)) —1] dt].

Given the statistics of the integrated rate process
{W..(t.T)], we readily obtain the statistics of the mth stage
counting process. The mean and variance are, respectively,

Nt TD) =t b arle) s e 36

VarlN, (6 T) = ltJhy (0 5 B0}
7S )+ o 1alt) e mie)] L 07)
Here

« ht)=8(t) for j<i,

and the moment generating function is

Onrls) = eprw it — 1) gulaas

g _(exp(1 — exp( —s))
XA (=t ) — 1] dtl]' (38)

Note that (35), (36), (37), and (38) are identical to (13}, (21),
(22), and (15), where (¢ ) is not a function of time.

The L-dimensional multifold moment generating func-
tions of the integrated rate process and the counting process
at the mth stage are easily obtained, and they are, respective-

ly,
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Owrisi=ewp [ ui— [ afaa

L
G- 2(exp ( - z SR 11,

)

- 1] dt, ] s (39)
and

O =ewpf [ it~ 10| (ao
e, 2(exp< — i {1 —exp(—s;))

j=1

XA 11ty +7; ))))) - 1] dt,].

40
These equations correspond to (27) and (29), respectivel(y. )
We now consider an important limiting case in which
the rate (¢ ) has a time course 7, that is very short in dura-
tion, compared with the counting time 7, added to the total
linear filter correlation time (m — l)r. (r,<T + (m — 1)7,).
In that case, the quantity (¢ ) can be mathematically repre-
sented by the limiting distribution

plr) = Eb(t), (41)

where E is the strength of the excitation (number of points)
and & (t) is the Dirac delta function. Substituting (41) in (36)

oee. o . A
b4 / v /
1 \ar| /
v 1.2 A,
, // }::‘12/ He
1 /’ R
100. Z_l_ / S e
b4 / . 7
1 K /
T S Y
z /! / Yor|
7 Ve ///V;ﬂ: a0
t /
g
//
f/"-’ Vor
e
o N - TTeNTve
AN
\ =
© N\
ﬂ 1_' \ \\
N\
-—N>ﬂ_\g AN
N \ Var ‘ 2.8
\ N
.
2.01.L N \
\ N
N
N
N
N\
2. 201 + } N >4
5 19 20 3g 40 50

NUMBER OF STAGES (m)

FIG. 4. Count mean {N,,(T)), count variance Var(¥,,(T}), and variance-
to-mean ratio Var(N,,(T))/{N,,(T)}, vs number of stages m, with a as a
parameter.
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COUNTING DISTRIBUTION pmc
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®

FIG. 5. Counting distribution p,, (n) vs count number » for 7/7,» 1.0,

©

T=25,and m = 1,2,3,6,10, and 50. (a) @ = 0.8; (bja = 1.0; [c)a = 1.2.
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and (37} yields the mean and variance

m—2

(N, (t,T)) = Eh,, _,7t) * hle), (42)

2

Var(N,,(t,T)) = Eh,, _, 1(t) mf hy(t)

J

m—1k—1 m_2 2
+EY = "j(t)*[hm_l,r(t) * h,(t)]. (43)
k=1 J=1 r=k

The variance-to-mean ratio (Fano factor) is

m—1k—1 m—2

F,=1 +{ > o« hit)sjh, , olt) x h,(z)}2

Kk=1J=1

Jhnirit)s o). (44

IV. BEHAVIOR OF THE COUNTING STATISTICS

In this section, we discuss the behavior of the counting
distributions given by (17). For simplicity, we assume that
the impulse response functions for all stages are identical
exponential functions with areas a and time constants 7,/2,
so that

h(t) = (2a/7,)exp( — 2t /7,)u(t). (45)

Here u(t ) is the unit step function.

In Fig. 4, we plot the count mean {N,,(T)), the count

variance Var(N,,(¢)), and the ratio F,,

= Var(N,,(T))/{N,,(T)) versus the number of stages m,
with a as a parameter, when 7' /7,3 1.0. Fora = 0.8 (< 1.0),
(N,,(T)) and Var(¥, (T')) have exponentially decaying be-
havior for large m; however, the ratio F,, approaches a con-
stant as m becomes large, as is evident from (24). This is the
same as for the SNDP, or in fact for any two-stage multiplied
process in which the first stage is Poisson.®'” This is clearly a
result of the decrease in mean and variance at each stage.

For a = 1.0, (N,,(t)) is independent of m, but
Var(N,,(T')) and F,, are identical, monotonically increasing
functions of m, thereby transparently reflecting the broaden-
ing of the distributions as the number of stages increases. For
a = 1.2, the three functions, (N, (T'}}, Var(N,,(T}}, and F,,
are dramatically increasing functions of m, as expected from
(21), (23), and (24).

In Fig. 5, we exhibit the behavior of the counting distri-
butions at the output of the mth stage (m = 1,2,3,6,10, and
50), with T'/7,» 1.0, for three different values of a, with uT
constant. In Fig. 5{a) (@ = 0.8), the distributions move to the
left as the mean decreases, and the variance also decreases as
m increases. This is apparent from (21) and (23). In Fig. 5(b)
(@ = 1.0), the mean remains fixed, but the character of the
distributions changes dramatically as the number of stages
increases. This reflects the accentuation of the clustering in
the process by increasing m. If we consider the curves for
m = 10 and 50 in Fig. 5(b), small dips around n = 1 can be
observed. It can be shown that under certain conditions for
u, T,a,and m, p,.(1) <p,,(0) and p,, (1) < p,,.(2). In Fig. 5(c)
(@ = 1.2), the distributions move to the right, and the var-
iances increase as m increases (the case for m = 50 is not
shown). This can be understood from (21) and (23).

The counting distributions for a large number of stages
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FIG. 6. Counting distribution p,, (») vs count number n for m = 50,
T/7,>1.0,and (N,(T)) = 10.

(m = 50) is shown in Fig. 6, when T /7,>1.0. The mean of
the output count is fixed at 10, and a is a parameter. An
increasing multiplication parameter gives rise to an increas-
ingly flat counting distribution for n #0.

In Fig. 7, we display the counting distributions for large
T /1, with the output count mean (N, (T')) fixed at 5, and
with a as a parameter. Note that for fixed m, the distribu-
tions broaden as a increases. The distribution for large m
and large @ assumes a character resembling a delta function
at n = Q,together with a flat component.

In Fig. 8, we display the dependence of the counting
distributions on the ratio T /7,, the number of stages m, and
the area of the impulse response function a. For all cases, the
average number of counts (N,,(T)) is fixed at 5. In the limit
where aT /7,<1.0 and T /7,<1.0, the output of the first
stage will be Poisson'? so that, by induction, it is clear that
the output of the cascade is also Poisson. Because of cumula-
tive truncation and integration errors in the numerical calcu-
lations, it is quite difficult to obtain accurate counting statis-
tics for arbitrary T'/7,, for m > 4.

V. CONCLUSION

We have developed the statistics of a point process gen-
erated by a cascade of independent Poisson processes, and
have found the moment generating function, as well as the
counting and time statistics when dynamics are included.
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FIG. 7. Counting distribution p,, (n) vs count number # for T /7,> 1.0,
(N, (T))=5,and m = 1,2,3,6,and 10. (a) @ = 0.8; (b) & = 1.0; (c) a = 1.2.
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Both the stationary and nonstationary cases have been consi-
dered. A simple expression for the variance-to-mean ratio at
the mth stage has been obtained. We have carried out a para-
metric study of the counting distributions, by employing the
DEC PDP 11/60 and IBM 4341 computers.
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FIG. 8. Counting distribution p,, (n) vs count number » with 27 /7, m, and
a as parameters. The impulse response function 4 (¢ ) is exponential with
characteristic decay time 7,/2, and the mean count (N,,(T)) = 5.0 for all
cases. In the limit 7 /7,—0, the counting distributions approach the Pois-
son, independent of m and a, whereas in the limit 7 /7,— «, the counting
distributions approach those derived with instantaneous multiplication. (a)
a=08;bja=10;(c)a=12.

In some of the aforementioned applications of cascaded
Poisson processes, a statistically independent additive Pois-
son point process may also be present, representing for ex-
ample, broadband background light and/or thermionic
emission in a photomultiplier tube. The counting statistics
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for the superposition process can be simply determined by
the use of numerical discrete convolution. Qur approach
may be useful for describing the detection of light by the
human visual system at threshold.”>** We have applied a
similar analysis to branching Poisson processes, in which all
initiating events are included in the final point process. The
results of this study will be reported shortly.?
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APPENDIX A: DERIVATION OF THE MOMENT
GENERATING FUNCTIONAL FOR A FILTERED
POISSON PROCESS AT THE j th STAGE

Let {X;(z)] be a filtered Poisson process in which points
occur with intensity {X; _,(¢}}. The moment generating
functional in the interval (0,7} is given by*'

L, (s)é(exp( — J;Ts(t WX () dt )), (A1)

which is evaluated to be

Lo =(ex{ [ 2,
X[exp(—J; hj(T—Y)S(T)dT)— 1] dt}>. (A2)

Proof: By using the conditional expectation and the
property of the Poisson process, we have

Lx, X,_, (s)
= the moment generating functional of {X;(¢)}
conditioned on the driving process {X; _, ()}

— Prob(N, = 0)+ 3 Prob(N, =)

k=1
X(exp z

n=1

h(t—’)’ )s(t)dt”NT=k>,(A3)

where Prob(NV; = k) is the probability of having k events in
0 <t < T. The summation within the expectation is un-
changed by a random reordering of the occurrence times,

T 1T T - With this reordering, the occurrence times, given
N, = k, areindependent and identically distributed, and the
common density is

T
P (r)=X;_ l(r/f X,_\(t)dt, n=12. .k
0
Thus we obtain

e

n=1

- Uo Xj('r)exp( —fo hyt — r)s(t)dt) d7/J;Tva,(t)dt}k

Substituting this expression into (A3), and using a straight-
forward calculation with the Poisson distribution provides

h (t—r )s(t)dt”NT=k>
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Ly )= eprOTX,_ (1)

X [exp( — Lrhj(r — t)s(7) dr) — 1] dt l (A4)

To remove the conditioning of the process { X;(t}], we aver-
age (Ad) over {X,_,(t)}, to obtain (A2). Finally, setting

t = — oo (assuming the process starts at — «)and T = oo,
we have

Ly o= (exo| [ %0

X [exp( - jjwhj(r — 1)s(7) dr) — 1] dt ]> (AS)

APPENDIX B: DERIVATION OF THE COUNTING
DISTRIBUTION AT THE mth STAGE

Examining (13), we perform the following substitutions:

Op_1(68) = —sh,_17(—t), m>2 (Bla)
and
0,(t,s) = fw hi(r —t)[exp(d, , ,(7.5) — 1] dT,
j=12.m—2. (B1b)
Then (13) becomes
0w ) =explp| " lexpoes) - 11ac). @2

Taking the (n + 1)st derivative, with respect to s, on both
sides of (B2) yields

an+]

an—k
o Qu o = z() < Qw15
k+ 1 o
Xas" — f_ 0oexp(ﬁ,(t,s)) dt. (B3)

Using (16), together with the substitution
C’)k + 1 oc

W J; mexp(ﬁl(t,s)) dt

leads to a recurrence relation for the counting distribution at

the mth stage, given by

JE+Y

; (B4)

s=1

) k)](k+ll,

(1 + 1) pln + 1) = p z N, e

P (0= 0y 5], =exp[uf1 Lexployosl)— 11de || .

(B3)
Equation (B4) can be rewritten as
ak +1 ©
%N = prES f exp(0,(2,5) dt
© ak +°]° o
- f, areResdr|
= J D¢ dr. (B6)

We have assumed that the order of integration and differen-
tiation can be interchanged, and we have used the substitu-
tion
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K+ 1

a
D (]k “(I) = :
3s s=1

The (k + 1)st derivative of the exponential function of (B1b)
for j = 1 yields

exp(0,(t.5)) (B7)

Ko+ 1 K (kN gk—r
2 enbis) = 3 (£) L expioye)

ask +1 r=0 3Sk -
oo ar+ 1
X J, whl(T —t) F expl(6,(r,s)) dr. (B8)

Substituting (B8) into (B7) gives rise to

D11k+ 1)(,) — ﬁ" (f)p 'lk_’)(t)

r=0
XJ hiyr —t)D{+ V1) dr. (B9)
Similarly
(k+ 1) . k (k — 1) - (r+1)
D)= ZO . D (t)j hj(r—t)Dy 7 dT,
J=12,.m—2, (B10)
and

k

a
D(’l:lLl([) = Eg—;— exp(@m_ 1(t,s))

s=1

={—=lpn_1rl ——t)}kexp{ —h, (=t}
(B11)

APPENDIX C: DERIVATION OF THE
AUTOCOVARIANCE FUNCTION

From the Fourier transform (F.T.) of (30b) and (30c), we
obtain

Uilw.t) = [H*o)*Tgo,t), j=12, (C1)
where
Uglw,t;) = F.T. of Uy(t,z,).

Similarly, the Fourier transform of (30d) and (30e) yields
k—1

i-/k(w:tntz) = 2 Jr(w’tptz)[H*(w)]kfr, (C2)
where
blotnt) = U, (o) UKo

Taking the inverse Fourier transform of (C1) and (C2), and
substituting into (30a), results in (31).
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