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In this paper we investigate the photocount statistics of mixed coherent plus Gaussian light
that has suffered lognormal fading, such as produced by the turbulent atmosphere. The
Gaussian component need not be stationary, may have an arbitrary spectral distribution,
and the mean frequency of the coherent and Gaussian components need not coincide. The
first three cumulants of the phototelectric counts for a single detector and for an array of
detectors are obtained for arbitrary ratios of counting time to source coherence time, S,
while assuming the fading to be fully time correlated over the detection interval, In partic-
ular, the cumulants are evaluated for Gaussian light of Lorentzian spectrum. The varia-
tion of the cumulants with degree of turbulence and detector separation is exhibited graph-
ically, for several values of 8, and ratio of coherent to chaotic component, y. The effect
of increasing the degree of turbulence is shown to cause the ratio of the second-order
cumulant for Gaussian light to the same cumulant for coherent light to approach a nominal
value of 2, indicating the extent to which the fading dominates the counting statistics. As
the detector separation is varied, the twofold cumulant exhibits the spatial correlations of
the turbulence, when the source radiation alone is assumed to be approximately spatially
coherent at the detector array. Furthermore, the cumulants are shown to increase ex-

ponentially with the turbulence level o, the log-intensity standard deviation.

1. INTRODUCTION

The study of photoelectron counting statistics for light
that has propagated through atmospheric turbulence has
recently received considerable attention.!=* In partic-
ular, several authors have evaluated the photoelectron
counting distribution to be expected from optical sources
with a variety of statistics for both the single-detector
and multidetector cases.'~® Some aspects of the related
optical communication problem have also recently been
presented.® In work to date, the generally accepted as-
sumption of lognormal statistics for the scintillation in-
duced by the turbulence leads to problems which are
difficult to handle analytically. Only approximate re-
sults are available for the counting distributions, and
none for the generating function.!~* Because of this
difficulty, we investigate some aspects of the photo-
counting statistics which are exact, regardless of the
turbulence level ¢ and the ratio of counting time to
source coherence time, T/7.. In particular we in-
vestigate the first three cumulants of the photocounts
for asingle detector, and the twofold and threefold cumu-
lant for anarray of detectors, for a radiation source con-
sisting of a chaotic component mixed with a coherent com-
ponent. Asidefrom the exact nature of these expressions,
they give some indication as to the variation of the per-
formance of adetection scheme, as measuredbythe prob-
ability of error in making a decision, as the shape of
the counting distribution varies with the level of turbu-
lence and the detector separation, The variance and
the covariance of the photoelectron counts are presented
graphically as a function of o, and of detector separa-
*tion for several values of T/7.. The magnitude of the
variance and covariance of the photoelectron counts

is shown to increase exponentially with the turbulence
level 0. For moderate to severe turbulence the co-
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variance of the counts is also shown to reflect the
spatial covariance of the turbulent fluctuations.

II. THEORY
A. General

The source radiation is assumed to consist of a linearly
polarized coherent component with an additive chaotic
component represented by

v (T, 1) =V(r, )+ U(T, ), )

where V(r, ¢) is a complex zero mean Gaussian random
process with independent and identically distributed
real and imaginary parts, and U(F,¢) is the coherent
component, having constant amplitude and uniform
phase. After traversing the atmosphere, the field at
the detector is given by

Vi(E, )=V (T,0Z(F, ) =V(F,0)] 2(F,0) | 50, (2)

where Z(r,¢t) is a complex lognormal process.® That

is, Inz(¥,t)= In| Z(F,t) | +j6(T, ) is a complex Gaussian
process completely specified by its mean and covariance
functions.” This is a useful model for laser radiation
and for some forms of scattered radiation. -2

The photoelectron counting distribution for a field of
arbitrary statistics is given by®

wite™1
p(”l’tla Ty; Raslg, Tg; * 50y, by Tk)=<H 7! > ’
! w3

(3)
where the ensemble average is over the joint statistics
of the {W,}. The integrated intensity at the ;ith detector,
W;, is given by
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tiw’[‘{ 7 -
W, = i (7, t)dt dA, (4)
Adi ti

where 7 is the quantum efficiency of the detector,
LT ) =V,(T,,)VE(T,,1), Ay is the area of the jth
detector, dA is the differential area, and v is the
photon energy. If we assume A,; <A, where A, is the
coherence area for the detected process, then with
IO =I,(r;,t), we obtain

W,=a, f:m 1, dt, (5)

where «, is a constant proportional to detector area
and to the quantum efficiency. In other words, one
spatial mode of the field is intercepted by the detector.
Since the incident radiation is a product of the source
radiation process and the fading process, the effect

of integrating over an area greater than A is equiv-
alent to decreasing the variance of the scintillations, ®
while the statistics of W;, for an amplitude-stabilized
source, are shown to remain lognormal even for large
apertures.!? Thus, with little loss in generality, we
assume A,; <A, and therefore neglect spatial inte-
gration effects over the detector aperture. The intensity
function I,(#) is then given by

16 = 2,0 Pl V) | *= 101, 0. 6)

Furthermore, unless we talk about heterodyne detec-
tion, we need only consider the statistics of the ab-
solute value of the fading or the log absolute value
IniZ,1.

The statistical quantities that are of interest here are
the cumulants, in that these represent the true mth-
order correlations of the radiation with all lower-order
correlations removed.!! We first summarize some of
the general relationships between cumulants and moments
which will be used in the sequel'?!%;

Bylx)=<x),
Eolx)=(x® — () %,
Ralx) = (x) = 3(x?)(x) + 2x)>,

where k,(x) is defined as the ith-order cumulant of «,
and

kulxy, x9) = (x1x,) - <xé><xa>,

klu(xu xz,x3)= (x1x2x3> ‘E{ W{)(x/xﬁ + 2<x1><Xz>(xa>-

1#1%2

(7a)

(7b)

Here kyy,..1(xy, %3 **°, xp) is the N-fold first-order
cumulant of (xy,%5 ..., xy). The summation as in-
dicated in (7b) is defined as the sum over all integers
i, such thatj and & are filled by combinations, as
opposed to permutations, of the remaining integers
that 7 can assume. Therefore, for the above sum we
have for (i,j, k) the sets (1, 2,3), (2,1,3), and (3,1, 2),
The same definition applies in later sections. The
cumulant generating function is defined as the natural
logarithm of the moment generating function.® The
moment generating function of the counts M([]; [u]),
however, can be shown to be related to the moment
generating function for the integrated intensities by
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M([n]; [P =M([W]; [¢* - 1], (8)

where [x]=(x;, x5, ..., xy), and « is a parameter. A

similar relationship exists between the cumulant gen-

erating functions for [r] and for [W]. It can be shown'?
that

K([n]; ] =K(W]; [¢*-1]), (9)
where K is now the cumulant generating function.

The general expression for the relationship between
these cumulants is rather complicated, and we repeat
here only those expressions which are used explicitly.
The relationships between the cumulants of [»] and [W]
are, for the first-, second-, and third-order cases, as
follows:

kin) =ky(W), first~order onefold

ko) =k (W) +Ey(W), second-order onefold {10a)
Ean) =k (W) + 3k (W) +ky(W); third-order onefold
kll(nl, ng) = kll(Wl) Wz), tWOfOld (lob)
k11(ny, ng, ng) = k11 (Wy, Wy, W), threefold

Furthermore, for the first-order N-fold case, it is
always true'? that kyy _ y(ny,mp = *, na) =k, 2 (Wy,

Wy, *++,Wy). Exact expressions can be found for other
higher-fold cumulants, but these rapidly increase in
complexity for any product of two random variables,
such as the lognormal fading channel considered here.
Thus we limit ourselves to those cases given in (10).

The general expression for the twofold and threefold
intensity cumulants, for arbitrary radiation experienc-
ing lognormal fading, is given by

Fya (T4, I9) = L (I, (s DLy (D) 55(s))
~ T (DY (ST (O Lyals))
kyaa(ly, Io, I5) = T (Dol ) (0 N a ()L o) o5 p))
3
=L GO Ly (S PN Uy () en ()

i#i#h
+ 2y (DLl N UL s PN Ut (U8 N5 (p))

(11a)

This expression derives from (7b), where x; = I,,(¢)
xI4;(t). The cumulants for the integrated intensity are
then

tq + T to+ T
Ryy(Wy, Wo) = aya, ft: ! f,zz kel , Ip)dt ds,

Ein(Wy, Wa, Ws) = ayay0,

Xfthﬂ'l

1 ta t

t,+T

‘2072 [t gl 1y, I)dt ds dp.
3

11b
Using the above expressions, one can always obtain( )
lower-fold cumulants by setting variables equal to each
other. For example, in (11a) if we let I,=1I,, then
klll(Il ) Iz, IS) = klZ(Il y Iz), and Similarly if .[1:12‘—_13,
that is, a single space-time point is involved, then
kyally, I, Is)= Ry(I;). The reduction of the cumulants
for the integrated intensities follows in a similar man-
ner.
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B. Twofold Intensity Cumulant

In Sec. IIA we presented some of the pertinent rela-
tionships between the cumulants of the counts and the
cumulants of the integrated intensity. Since

t;+T
W‘=aift” 11,() dt,

we first evaluate the cumulants of the intensity, and
then perform the appropriate time integration to ob-
tain the cumulants for the integrated intensity.

From Egs. (1), (2), and (6) we have
1) = {7 () + IS Y1, (6) + 21,,(¢) Re[V, (DT} ()], (12)

where I7(¢) = V ,(t)V} (¢) represents the intensity contribu-
tion from the chaotic component and I$= U,{{) U} (¢) rep-
resents the coherent component. The twofold cumulant
of I,(t) and I;(s) is given by

ku(I{ ’ Ij): <I{(t)1j(s)> - (I;(t»(lj(S)), (13)

where the brackets indicate an ensemble average over
the joint statistics of the relevant quantities within the
brackets. The first quantity on the right-hand side in
(13) is, using (12), '

L) ={TTMT () +IFT + I KITEN+I§ (IT(sN}Cyyle, 8)
+2C,,(t, s) RelTy; (¢, 8) U (DU, (s)}, (14)

where the fading intensity corfelation Cy;le, s) =(1,,;(0)
X Igy(s)), and T',(¢, s) = (V(t) V; (s)) is the usual mutual co-
herence function.

From the Gaussian moment theorem, !*
CHOIACHER AT ACHES () RN
=Tylt, OTy,(s, 8) + | Ty, 8) | 2, (15)
and from the assumed properties of lossless fading
(T80 = {I;(s)) =1, combining (13)-(15) we get

kn(I, B Ij)= ’Pu(t,s) IZC“(t, S)+ ZC;,(t, S)
x Re[T'y;(t, s)U; (OU,(s)] +[Cy,lt,s) -1]

X{[L+T 4@, 1[I+ (s, 9T - (16)

The joint cumulant of the integrated intensities, W; and
W;, is then

i+ +
(W, W)= oy ! Tt ft:’ T3 by U (8), I(s)) dt ds.
(17)

In the absence of fading, this expression reduces to the
twofold cumulant for Gaussian plus coherent light given
by Cantrell in Ref. 15b.

Expressions (16) and (17) are valid for arbitrary values
of T,/7, and T,/7,, where 7, and 7, are the coherence
times of the source and the fading, respectively, and
reflect the space-time coherence of both the source
statistics and the atmospheric turbulence. For a single
detector, Eqs. (16) and (17) are still valid with the sub-
scripts dropped on all variables, and reduce to k(W).
The cumulant then represents the time correlations of
the combined source and fading statistics.

If, as in most cases of interest 7, < 7,, then the cor-
relation function for the fading is constant over the de-
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tection time interval of interest and (17) becomes

t.+T +
k(W W;)=aiajcufti' if:j" Tj{"rdj(tys)’z

+2 Re[Ty,(t, s)U; ()U,(s) | dtds
+a,0,(Cy5 - l)f,:{ T f;:j IS Ty, 1)

X [I5+Ty,(s, s)]} dt ds. (18a)

In(18a), the correlation function of the fading intensity
is given by

C;=exp[4C,(pj)=exp[Cyy )] ’ (180)

where C(p) is the log-amplitude covariance function
and Cy, o) is the log-intensity covariance function.”
For radiation that is cross~spectrally pure, the two-
point mutual coherence function can be written as a
product of two separate coherence functions, one
representing spatial coherence and the other time co-
herence.!® Thus, with

Ty;(t,8)=T;(0)y 5t - s), (19)
where
%
vult =)= LD 24 ) (20)
and with

U)=U)2exp[~j(wet-4)] , and T;=T; ,
the twofold cumulant is then given by
kaa(W,, W)= Coynn]) | 7,5(0) | * B,
+2C4, [(n)S 5 X(n§ X5} ® Re[r,,(0) Bz ]
+(Cy; = 1) [(&D) +{n)(n]) +<{ni)]. (21)

Here, y;(0)=T;(0)/({(IT){I7))*%. The mean count at
each detector due to the coherent and chaotic parts,

is, respectively, {(nS)=aJdST and (x¥) =a,{IT) T, and
B, and Bj are given by'’

1 T T
B,= e dty "+ / dt, vty —t)¥(ta—ts) ** Y(tn 1),
0 0
r 1 T T (22)
Bn=7 f by "+ / dtpexp[jwclty - tm)]
0 0
X Y(tl = tz)Y(tz"fa) tee Y(tm-]_ - tm) y (23)
with m = 2.

For chaotic radiation of Lorentzian spectrum of half-
width A=1/27, and mean frequency wy, Bz and B}
have been evaluated by others,!” and are repeated here
for convenience:

By=(e"®+28-1)/282, B=AT,
Bo=2(%+ Q9 Y [(B% - Q7 cosQ - 2802 8inQ]
- (8- @9+ A(E2+ ), Q= (w.-wr) T (24)
The twofold cumulant of the integrated intensity can be
written in terms of the twofold cumulant of the source

radiation in the absence of turbulence and a term con-
taining the twofold cumulant of the turbulence in the
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absence of source fluctuations. Letting (n;)=(n])
+{nj), then

Ry(Wy, W,)=Ciikyy (W, W) +kulle, L)) (i) ny,
(25)
where by (W, , W,), is the twofold cumulant for Gaussian
plus coherent light in the absence of turbulence, and
kyy{1,;,1,;) is the twofold cumulant of the fading intensity
alone. For a single detector, i=j, and {25) reduces to
the second-order cumulant for the integrated intensity:

Ra(W )= CiikolWy)o + (Cyy = 1)ny)?, (26)
where k,(W,), is the second-order cumulant of the
source radiation in the absence of turbulence. Thus,

for a single detector with T« 7,, the second-order cu-
mulant of the integrated intensity reflects time cor-
relations of only the source radiation.

C. Threefold Intensity Cumulant

We now obtain the threefold cumulant for Gaussian plus
coherent light in the presence of fading. Fkyyy (I, Ip, Is)
is given by

3 2
kunlly, Iy, Ig) =L 1.1y - Z It + 2101y, (27)
1475 .
where I, is given by (12). All the terms in (27) except
the first have been evaluated above, and thus we need
only obtain the first quantity, that is, (I;I,I3. Since
the complex Gaussian component has zero mean, only
terms containing products of an even number of V, V"}
will not vanish in the ensemble average. Therefore we

can write
Ilgly _ /2 c
<I:1 I:ZI:3> - < 1I=I1 (I’{+I i)> (28)

3
+ 20 (U TIYUXULY VE+ U;UEVEV))
ik
The first term on the right-hand side {rhs) of (28) re-
duces to

3 3

(ML uTern) =Gz e 1 15 (29)
i=1 =

3 3

§ 18Iy + ?1 ISt

i i# i#

which, with the help of the Gaussian moment theorem,

becomes

3 3 3 3 3
<II (1€+1‘§)>=Z) I Ty p+ LI+ 20 I5(TyTp + DpTy)
=1 Py i=l i=1 ii;ih

3

+ g ISICTy,, (30)
i#5#k

where 3, is the sum over all permutations of the in-

tegers {P,} €{1, 2, 3}. The second term on rhs of (28)

can be reduced using the following identities:

(I +ID2Re(U UV, V3 )= 2 Re UK ULV, VE) +IS(V,VE)D)
=2 Re{UU (T 0iTyp +T 1 L1) + 15 Ty T (31)

Then we have, for the second term on rhs of (28),

1259
3
§ 2Re{(USU,[T ;T + T3 + 15T T (32)
i#i%
and with Cy»=4I,,1,51,5, we obtain
3 3 8
<111213>=C123<Z nr;,,+II I+ 2
P, i=l oal i=1
i#jtk
8
XIT[T;; Do+ TypTysl + 2 ISI5T,,
R
3 *
+ 22 2Re{U U (T Ty + T T5) +I§rik]}) .
The second term in (27) is, from (14),
3 3
L UL = 2 Cul Ty + I [T, T+ TinTas ]+ 151
i;;lﬁk i;;ik
+IST,,+IST;;+ 2Re(U UL}, (39)
and the last term in (27) is just
3 3
2I1 1Ty +19)=2I1 (v, +I%). (35)
i=1 i=l

With the following identities:
Pua(I1,1%, I5)=2Re(Iy,0pTy) and kyy(I7, I5)=T1,0n,

we can write the threefold cumulant in the following
form:

Rually, Iy, I) = Cyogky1y U1, 1%, I5)

3
+Cia3 Z; ZRe[U}‘ Uk(riir]k+rikrli)]

13740
3
+ 2 (Cogg = C[IT) + 10U, I7)
ik
+ 2 Re(UT U T )]

3
- {Z_i 2C; RB(U}kUk(I%Fu)
i#i#n
3 3
+<Clz3+2_2 C]-,)H ITY+1). (36)
In the last term in (36), the sum Ef,m means the sum
of C,, over all combinations of j,%, from the integers

(1, 2,3). Inthe absence of fading, (36) reduces to (13)
in Cantrell (Ref. 15b). When the coherent component
is zero, this reduces in complexity to a more simple
form, given by

kanlly, 15,19 =CigkrnlI ], 13,19

3
+ 22 (Cras = Cy) (IR UT,IF)
ii‘ﬂ;ilfk
3 3
+(cm+2-2 c,k)n VS (37)
Recognizing that the coefficient of the last term,

3 . 3
C123 _E Cik +2= <121122113> - Z_ <I¢II:k><Izi> + 2’
A 1#1%
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is merely the threefold cumulant of the fading, ky,,(Z,,,
I321133), then

kagly,Ip,I3) = CrobynU T, 15,13)

3
+ izl (Cj_z; _Cjk)(liT>kll(I}|’IkT)

Y

3
+ R334y 5 Ieg, I og) HlufT), (38)

again for chaotic radiation alone. The threefold cumu-
lant of the integrated intensity is given by
11y (Wy, Wa, Wa) = 0y ap04

t1+T to+ T te+ T
x ftll ' c: 2f,33 8 kyally, I, I) dtds dp. (39)

I we consider the case where {7, }<« 7,, then, as in the
twofold case, C;p can be removed from the integral and,
for the usually assumed homogeneous fading, is given by

.y > e 3
Cin=exp(A" M+3ATA A)=exp(2 x,k) (40)
1

Fio
where

A'=[1,1,1], X;=Cralps)), pis= | 5 -1,
and M'=[~40%, —i0% -40%]. The quantity C,, is then
the twofold equivalent of (40) above. For a single de-
tector, and with a Lorentzian spectrum for the chaotic
component, setting i=j=% in (36) we obtain
R3(W)=2C(n")’By + 6Cs[(nT)? (n®) By + (n”)2 (n°)B; |
+3(C;3 - CI[D +n®) (n")2By+ 2(n®) Xn")B3
-B8C n")¥n%)By +(C3 —3C 4+ 2)(¢T) + (n%))3,
(41)
where Cy=exp[o®N(V -1)].

III. PHOTOCOUNTING CUMULANTS

Using the preceding results for the cumulants of the
integrated intensity, and the relationships of Sec. II
between the cumulants of the counts and the cumulants
of the integrated intensity, we obtain

alng, ng) = kyy(Wy, W), (42)
as derived in (18);
Ran(ny, ng ng) = kyyy (Wi, Wa, Ws)
as derived in (39); and
ko) =Caka(W)o + (C3— 1) (n)? +(n), 43)
Bgln)=ky(W) + 8k (W) + &y (W),
where k,(W) is given by (41).

We now evaluate (42) and (43) for a coherent component,
along with a chaotic component of Lorentzian spectrum,
with w,=wz. kyn) is then given by

kgn) = ® (u7)2B, + 26" Yn) B}
+(e2 = 1T + )2+ )+ (9. (44)

This expression is seen to contain terms proportional
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FIG. 1. Second-order photocounting cumulant for a single
detector k,(n) as a function of the degree of turbulence o, for
a chaotic source with Lorentzian spectrum. The ratio of
counting time to source coherence time is indicated by
B=T/27,, and the mean photoelectron count is (1) =4. The
lowest curve, B=«, corresponds to an amplitude-stabilized
source as well,

to the Gaussian component, a mixing term, a term
representing an effective coherent component of mean
value (27) + %, and the ordinary term that would appear
for a shot noise process alone, in the absence of all
other statistical fluctuations. Each of these terms,
then, can be viewed as an “excess correlation” due to
each of the contributing statistical fluctuations in the
detected field. Figure 1 exhibits the variation of k,(r)
for a chaotic source alone as a function of the level of
turbulence o, for several values of 8=7/27,, where T
is the counting time and 7, is the source coherence time.
As the value of g ranges from 8<<1to 8> 1, k,n) goes
from that of a source with Bose-Einstein statistics to
that of a stable source with Poisson statistics, in the
absence of turbulence. As the turbulence increases, the
cumulant increases exponentially from its quiescent
value. If we consider the ratio ky(n; B=0.01)/k,

(n; 8=) as a function of o, we note that it decreases
from 5 to 2 as ¢ increases from 0 to 1.4, thus indicating
that the fading rapidly dominates the excess fluctuations
regardless of the source statistics, as pointed out in
Refs. 1 and 2. Analytically this ratio is, from (44),
where By=1 for 8- 0 and B;=0 for g~ =,

kol ; 8=0) _ e 2+ (e —1)60% ()
Ron; B==) (e~ D% )

2
_ eu <n>2 .
RRR P e ron L 45)
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2
For values of o near saturation,’ (e% - 1) (n)? e (nz,é and
the ratio in (45) can be approximated as 1+[e° /(e - 1]].
At the saturation value of 0~1.5, this quantity ap-
proaches a limiting value of 2.1. Thus for severe tur-
bulence, and for (n) >2, the ratio of the cumulants con-
verges to a nominal value of 2, independent of the mean
count, whereas the same ratio can be shown to increase
linearly with {») in the absence of fading. Thus, the
over -all fluctuation of the counts becomes dominated by
the effects of the turbulence.

Curves for a chaotic plus coherent source lie below
those for the chaotic source, for corresponding values
of 3. They possess the same general variation dis-
played in Fig. 1. Recalling that k,(n) is just the variance
of the single-detector counts, the curves exhibit a
drastic broadening of the counting distribution for ¢ >0.
This has already been graphically presented both for

the single-detector and multidetector cases.!™3

In that k,(n) contains information from a single-point
detector, it cannot contain any information about the
spatial correlations of the field. The quantities that do
contain spatial information are the joint statistics as
expressed by the higher-fold cumulants; we examine
specifically the twofold case. In order to exhibit the
spatial variation due to the turbulence, we assume that
over the region of interest 1y,,(0) | ~1. That is, the
field is taken to be spatially coherent with respect to
the source statistics. For the spatial covariance of
the log-intensity, we choose for simplicity the expres-
sion due to Tatarski® for the plane-wave case. Over
the region of validity, {,<p<<(A\L)"2, this covariance
function is given by’

Crarl) | (1-2.36R*®+1.71R -0.024R%+-..), (46)
ClnI(O)
where R=2mp%/AL. Here, 1 is the optical wavelength,
L is the pathlength through the turbulence, p is the
detector spacing, and [, is the inner scale of the tur-

bulence. The expression for the twofold cumulant of the
counts is, from (42), (21), and (18b),

[ C.
Euln,ng=e ™ 0728, + 2 1 (T B
+(eC1rt®) _ 1)) (47)

where we have set (n])=®3), ®$)=®nY, and (n)=(nT)
+{n°.

In Fig. 2 the twofold cumulant given by (47) is ex-~
hibited as it varies with normalized detector spacing
p(2r/AL)?, and as a function of o, 8, and y ={n%/<n’).
When the turbulence is weak, as indicated by the curves
for 0=0.1, the effect of detector spacing is seen to be
minimal. This is to be expected because of our as-
sumption that the source radiation alone is fully cor-
related spatially. The values which ky,(n,, n,) takes

on as 8 and y vary correspond to those they would have
in the absence of turbulence. As the turbulence in-
creases to 0=1.0, the effect of the spatial covariance
of the fading becomes prominent. For a given value

of 8 and a given ratio of coherent-to-chaotic compo-
nent y, the curve decreases to and crosses below its
turbulence ~free value and then returns to its turbulence-
free value for larger values of p.'® This latter effect
is not shown because of the limited range of validity

of the expression for C,,;(p) given in (46), which was
used because of its simplicity. To exhibit the variation
of ky1(ny, ny) for a wider range of p would require the
exact evaluation of C;;(p), which is given by an integral
tha}t must be evaluated numerically, for every value of
p.'®

For various values of the coherent-to-chaotic ratio,
with all other parameters constant, kyy(n,,n,) ex-
hibits similar variation with v as does k,(n). This
statement also applies as g varies, the curves for
y = and =« being identical.

Finally, we present the threefold cumulant k,(x) vs
o in Fig. 3 for a chaotic source alone. In analogy with
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equal to 4. As in Fig. 1, the chaotic
component has a Lorentzian spectrum,
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FIG. 3. Third-order photocounting cumulant for a single de-
tector, k;(n), as a function of the degree of turbulence ¢, for
a chaotic source with Lorentzian spectrum. The ratio of
counting time to source coherence time is indicated by
B=1T/27,, and the mean photoelectron count is {n) =4, The
lowest curve, ==, corresponds to an amplitude-stabilized
source as well.

ks(n) as presented in Fig. 1, it has been assumed that
(n) = 4 and that the spectrum is Lorentzian. It is seen
that the behavior of k4(x) is similar to that of &,)

for the various values of 2. Again, the curves converge
as o increases, demonstrating that the strong log-
normal fluctuations arising from the atmosphere over-
power the less violent source fluctuations. Since the
curves represent nonnormalized cumulants, they are
larger in magnitude for k4{n) than for ky(n). The

finite value of 8 for the uppermost curve (§=0.01)
makes it just barely lower than the curve for 3=0 would
be; the two curves cannot be distinguished within the
resolution of the figure.

IV. SUMMARY

We have presented here exact expressions for the first
three cumulants of the photoelectron counts to be ex-
pected for arbitrary radiation that has suffered log-
normal fading, such as induced by the turbulent at-
mosphere. In particular, we evaluated the cumulants
for a radiation source consisting of a coherent com-
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ponent mixed with a chaotic component, such as is
representative of a noisy single-mode laser above
threshold, or of some scattered signals. The expres-
sions derived are exact regardless of the ratio 7/7,
and the chaotic-component spectral distribution. The
mean frequencies of the two need not coincide.

For light of Lorentzian spectrum, and for T <7,

the expressions were evaluated explicitly and then
presented graphically for k,(n), kyy(ny,n,), and

k3(m. The effect of increasing the turbulence level,

as measured by ¢, was shown to increase the mag-
nitude of the cumulants exponentially up to the satura-
tion value of ¢, where the ratio k,(n, chaotic)/

ks(n, coherent)~ 2. The effect of severe turbulence
makes the photoelectron counting distribution rela-
tively insensitive to the source radiation statistics.
Furthermore, for moderate to severe turbulence,
ky(ny, n,) shows the effect of spatial correlations in-
duced by the turbulence, as the detector separation

is varied. The behavior of k4(n) was found to be similar
to that of £,(n). It may be concluded that increasing

y and R, and decreasing o, results in a lowering of the
magnitude of all cumulants.
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