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The relation between the two-quantum photocounting distribution p(», T) and the intensity fluctuations
of the radiation incident on the detector is obtained and compared with the one-quantum results. The
actual statistics are evaluated for several cases of interest, including a chaotic source, an amplitude-
stabilized wave, and the output of a single-mode laser (Van der Pol oscillator). The two-quantum count
rate {n)/ T is found to depend on the mean-square intensity of the radiation, in contrast to the one-quantum
count rate which is proportional to the mean intensity. The effects of photon correlations in the radiation
beam become apparent since the two-quantum distributions manifest a distinctly more positive second
derivative than the corresponding one-quantum distributions. Both the low-and the high-count probabilities
are therefore increased at the expense of counts near the mean. The quantum-theoretical treatment is
found to be equivalent to the semiclassical treatment for density operators possessing a positive-definite
weight function in the P-representation. Some possible experiments to verify the theory are discussed

and shown to be feasible.

I. INTRODUCTION

Photoelectron counting statistics, and their relation
to the intensity distribution of radiation incident on a
photodetector, have been investigated intensively in the
past several years.!~1% Analyses of counting distributions
have served to verify proposed theories of the behavior
of the laser, particularly the changes in the statistical
properties of the emitted radiation as it ranges from
below to above the threshold of oscillation. Photo-
counting measurements can provide such further
information about the radiation source as its spectral
density and its higher-order correlation functions.™

For the ordinary single-quantum detector, the per-
turbation-theory formalism representing the photo-
electric interaction of radiation and matter is carried
only to first order. If this interaction is calculated to
second order, the theory predicts that the ordinary
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effect will be absent and that double-quantum photo-
electric emission will occur, provided that the incident
photon energy #w and the work function of the photo-
electric material e satisfy the relation

Lep <Fiw<eg. (1)

A discussion of this two-photon effect, which has been
observed in several materials to date, has recently been
given by Teich and Wolga.'* It is assumed that single-
photon emission from the Fermi tail” is negligible.

The present paper develops the relationships between
intensity fluctuations of a radiation source and the
resultant photocounting statistics for a two-quantum
detector, and compares the results with those of the
single-quantum case. For several cases of importance to
experiments with thermal sources and lasers, actual
photocounting distributions are presented. These
include narrow-band Gaussian noise, amplitude-sta-
bilized fields, combinations of these, and the output of a
Van der Pol oscillator.

Knowledge of two-quantum photocounting distribu-
tions is of intrinsic interest for understanding the
double-quantum detector. It can also provide informa-
tion about the correlation functions of the radiation
field;*® in fact the mth factorial moment of the
double-quantum photocounting distribution reflects a
2mth order correlation function, while for the single-
quantum case, it corresponds to only an mth order
correlation function. In particular, the one-quantum
counting rate is described by a first-order correlation
function, while the rate for a two-quantum process is
given by a second-order correlation function.’® Further-
more, when the density operator of the field* is not
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factorable into a product of single-mode density
operators, the two-photon process may provide in-
formation which can not be obtained from single-photon
counting.® It would therefore be of interest to compare
the results of the following two-quantum photo-
counting theory with experiment.

II. THEORY

Consider a quasimonochromatic, linearly polarized
beam of radiation, such as that produced by a laser or
by a thermal source, incident on a two-quantum de-
tector. If the radiation fluctuates in intensity, the
probability of emission will vary with time. Within
the framework of the semiclassical theory of the interac-
tion of radiation and matter, the probability per unit
time of photoemission is expressible as'® BI%(1), where
I(t) is the short-time average of the light intensity over
a few cycles of the optical frequency or, more rigorously,
the product of the analytic signal component of the
electric field with its complex conjugate.® This result is
obtainable through a calculation similar to that pre-
sented by Mandel et al.} but using second-order
perturbation theory. The quadratic dependence on
intensity for the two-quantum detector contrasts with
the usual detection probability «l(f) for a single-
quantum process.

The factor 8 in the detection probability is an
efficiency for the two-quantum process and includes an
area dependence. It is assumed that the radiation is

C. TEICH AND P.

DIAMENT

uniformly distributed over the photodetector area A.
To make correspondence with the two-quantum yield A
defined in an earlier publication,'® note that 3I2= AP/,
where P(f) is the radiation power, so that B=AA/el.

With 812 replacing the usual of, the argument that
the probability of emission of a photoelectron within an
infinitesimal time interval is independent of the
emission at other times’ applies as well to the two-
quantum detector, yielding

p(n, T, t)= <Mne—M/n )% (2)

with

M= / “ BI (V) dr, (3)

for the probability p(%, T, t) that # photoelectrons are
emitted within the time interval (¢, {+7T). This is an
ensemble average, over the intensity fluctuation
statistics, of the underlying Poisson process. It has been
assumed that the lifetime of the intermediate state of
the two-photon absorption is much shorter than the
coherence time, a condition that is generally well
satisfied.® Except for the replacement of the one-
quantum average [aldt by the two-quantum average
[BI*di, the expression for p(n, T, t) is the usual one.? 18

Correspondence with the quantum-theoretical treat-
ment may be made in terms of the factorial moments of
the photocounting distribution (2). For the two-
quantum case, these are

o/ n=m) )= )= (| [ )

=T +T
=[3m/‘ . ./ T ()T (B)I(ia)I(ty) T () I () Ydtyo = Al

(4)

where the average on the left is over the photoemission statistics while that on the right is with respect to the light
fluctuation statistics. The last form in (4) is presented for direct comparison with the quantum-theoretical ex-

pression for the mth factorial moment, given by

+T HT
(nl) (n—m) )= gm / - / GO (tyty- + bt b+ baby) Al » b
t t

(5)

Here, G is the 2mth order correlation function of the radiation field and is expressed by

Gem = Tr[pE~(t) E-(t1)+ + *E~(tm) E~(bm) E* (tn) E* (in) - < ET (h) E* (1) ].

The quantity p represents the density operator for the
field, and E~ and E* are the negative- and positive-
frequency portions of the electric field operator E,
respectively. Reference to the spatial coordinates in the
correlation function has been omitted since G®™ is
assumed to be constant over the surface of the photo-
cathode. It may be seen that the 2mth order correlation
function replaces the mth order one appearing in the

2 P, Lambropoulos, Phys, Rev. 168, 1418 (1968).

(6)

one-quantum expression for the factorial moments as
given by Glauber.!

If the electromagnetic field has a density operator
which possesses a P-representation with a positive
definite weight function, an analysis similar to Glauber’s,
but for the two-quantum case, produces a counting
distribution expressible in the form of (2, 3). The
attenuated form of a classical field,"* which is appropri-
ate for usual radiation sources, has such a weight func-
tion and the quantum-theoretical result corresponds to

Downloaded 08 Dec 2005 to 128.197.177.207. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



TWO-PHOTON COUNTING STATISTICS

that obtained from the semiclassical theory, as given in
(2,3).

The evaluation of the statistical mean in (2) requires
a knowledge of all the higher-order joint probability
density functions of the radiation in the general case.!
The extreme cases of very short and very long observa-
tion times T can, however, be treated readily. If the
counting interval T is short compared to the inverse
bandwidth of the light fluctuations, then the parameter
M of the Poisson process reduces to

t+T

M= BI}(¢)dr=BI*(t) T. (7)

For simplicity, we assume that the radiation field is
stationary and ergodic, so that the probability p(n, T, ¢)
is independent of ¢ and may be written as p(», T). The
counting distribution for the two-quantum detector then
becomes

pn ) =L(BT)"/n1] [ P exp(—pTI) P(D)aI,

[2Q1 (8

where P(I) is the probability density function for the
light intensity. This result is to be compared with the
one-quantum counting distribution, given by

p(n, T) =[(@T)/n!] / " I" exp(~aTT) P(I)dI.
0

[1Q1 (9

The bracketed symbols [1Q7], [2Q] are used throughout
to distinguish the one- and two-quantum cases.

For purposes of calculating the two-quantum photo-
counting statistics to be expected for various intensity
distributions, we normalize to some convenient in-
tensity I; and introduce a frequency » to characterize
the quantum efficiency of either the one- or two-photon
detector at that intensity:

y=BI. (10)

This frequency will shortly be related to observable
quantities in counting experiments. The photocounting
statistics (8, 9) for the two types of detector become

r=al; or

pn, T)=[(T)/n!] fw an exp(—vTx) P(Iix) [1dx
0

[1Q1 (1)
and
p(n, T)=[(T)"/n1] / ” a2 exp(—»Ta2) P(Iix) L,
Q
[2Q] (12)

where x=1/1, is the normalized intensity and P([yx) =
P(I) is the distribution of radiation intensity.

4G . Bédard, J. C. Chang, and L. Mandel, Phys. Rev. 160,
1496 (1967).
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It is simpler to consider the generating function® for
p(n, T), which describes the counting statistics through
a continuous parameter s, rather than the discrete one
#, and also yields observable parameters of the statistics
more readily than does p(n, T') itself. The generating
function, for which several definitions are in common use,
will here be taken simply as the average of s* over the
counting distribution:

(s*y= 2 p(n, T)s™ (13)
=0
Consequently, the counting distribution p(n, T') can
always be recovered from {s*) by expanding in powers
of s.

Introducing this definition into (11,12), the gen-
erating function of the counting statistics is found to be
related to those of the light fluctuations for the one-
and two-quantum detectors by

(s7y= /m exp(—ox) P(Ix) [idz  [1Q] (14)
0

(%)= / " exp(—oa) P(Iw) Idx, [2Q] (15)
0

where the quantity
o=vT(1—5), (16)

replaces s as the primary parameter. The relation
between the generating function of the photocounting
statistics and the distribution of light intensity is seen
to be a Laplace transform for a single-quantum de-
tector and a Gaussian transform for a double-quantum
detector.

Besides simplifying the mathematical relation be-
tween the radiation and the counting statistics, the use
of the generating function permits observables such as
the factorial moments of the counting statistics to be
displayed explicitly by merely expanding (s"), which
emerges from (14) or (15) as a function of o, in a power
series in ¢. Termwise comparison with the series

()= g [(—1)m/m OLe™/ G T) "W Y (n—m) 1),

(17)

obtained by substituting ¢ for s through (16) and apply-
ing the binominal theorem, yields the successive
factorial moments (n!/(n—m) !) directly.

In particular, the first factorial moment or mean
count is, for the two types of detector,

m)=1T{x)=a({)T  [1Q] (18)
(m)=yT{@)=p{I)T.  [2Q] (19)

This basic result is in itself significant, for it shows that

and

2 E. Parzen, Modern Probability Theory and its Applications
{John Wiley & Sons, Inc., New York, 1960), p. 215.
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THERMAL SOURCE
wT=12)

pin, T)

-2
10
TWO-QUANTUM DISTRIBUTION

F16. 1. One- and two-quantum photoelectron counting distribu-
tions for a Gaussian source. Arrows indicate mean counts. The
count rate for the two-quantum detector is twice that for the
one-quantum detector, with »T'=12 in each case.

the count rate measures different moments of the
intensity distribution in the two types of detector. If the
source statistics, in particular the variance, can be
varied without changing the mean intensity, the count
rate will respond to the variation when the two-
quantum detector is used, but only higher moments
than the mean will be affected in the case of a one-
quantum detector. This property will be made more
explicit below, after the photocounting statistics
corresponding to various light intensity distributions
are considered in detail.

III. PHOTOCOUNTING STATISTICS

The photoelectric counting statistics to be expected
from both a single- and a double-quantum detector
illuminated by radiation of various intensity distribu-
tions P(I) may be obtained by evaluating the Laplace
and Gaussian transforms (14, 15). We consider below
several cases of interest, which have already been
treated in the one-quantum case,® and give the results
for both cases for comparison.

A. Narrow-band Gaussian Noise

Chaotic sources, including thermal radiators and the
output from a laser below threshold, are characterized
by a Gaussian amplitude distribution of the electric
field, and hence an exponential distribution of the
intensity. 418 If I, is the mean intensity, then

LP(Ix) =, (20)

and the generating functions of the counting distribu-
tions for one- and two-quantum detectors are, from
(14, 15),

[1Q]

(s"y=1/(140) (21)

M. C. TEICH AND P. DIAMENT

and
(sm)=n"2(3071") exp[1/(4o) ] erfc(3071?).  [2Q]
(22)
The factorial moments are hence given by
Y/ (n—m) H=(T)™m!  [1Q] (23)
and
Y/ (n—m) H=(T)"(2m) . [2Q] (24

The actual photocount statistics for the two detectors
are correspondingly,

p(n, T)= D)/ (1+oT)~  [1Q]  (25)
and
p(n, T)=[(2n) l/n Q[x12/2(:T) 2]
X expl{ 1/ (4vT) Jitrerfe{ 1/2(xT) 1], [2Q7 (26)

The function i*erfc x is the nth repeated integral of the
error function,® the salient properties of which are
indicated in the Appendix. The photocounting statistics
for both cases are plotted in Fig. 1. The former, (253) is
the well-known Bose-Einstein or geometric distribution.

B. Amplitude Stabilized Source

If only phase fluctuations are present in the radiation,
so that the intensity is strictly constant at I, then the
intensity distribution is

P(I)=6(I-1n), (27)
and both the Laplace and the Gaussian transform yield
(28)

corresponding to a Poisson distribution for both the
single- and the double-quantum cases. The factorial
moments are then

(=€,

(nl/(n—m) )= (T)™ (29)
The counting statistics,
pln, Ty=e"(vT)"/nl, (30)

differ from a one- to a two-quantum detector only in
that their different efficiencies assign them different
values of ». The Poisson counting distribution should be
observed when the source is a well-stabilized laser very
far above threshold.

C. Amplitude Stabilized Signal Plus Narrow-Band
Gaussian Noise

A possible model for radiation from a laser operating
above threshold is Gaussian noise superimposed on a
signal of stable amplitude.”#2 This model is a good
approximation to the nonlinear oscillator representation

28 M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematicai Tables
(National Bureau of Standards, U.S. Govt. Printing Office,

Washington, 1964), p. 297. .
24 P, J. Magill and R. P. Soni, Phys. Rev. Letters 16, 911 (1966).
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for output intensities which are at least five times
threshold.* Provided that the detector bandwidth
overlaps both the signal and noise spectra, the resultant
intensity distribution, normalized to the noise intensity
Iy, is®

InP(Iyw) = exp[— (x+9) To(2Lxy]™).  (31)

Here y=1I¢/Iy is the ratio of the average coherent
signal and noise intensities, and I,(x) is the modified
Bessel function. The corresponding counting statistics
for the single-quantum detector are expressed by

(s")= exp[—yo/(1+0)]/(1+0)
=§(—1>"a"f:n<—y>, [1Q1  (32)

where the expansion in terms of Laguerre polynomials
L,(x) is given for comparison with the two-quantum
case, which yields

()= §=:0 (—1)%[(2n) YnJLan(—3).  [2Q]

(33)
The factorial moments are given by
(nl/(n—m) Y= (T)™m L.(~y)  [1Q] (34)
and
(nY (n—m) )= (T)™(2m) Lsm(~y).  [2Q] (35)

Note that although the normalization has here been
made to Iy, so that y=aly or BIy?% for large S/N
ratios the results revert to those of the noiseless case,
with normalization to I¢, since the leading term in
[m !L.(—2»)] is y™ The counting distributions are

p(n, T)=L(T)/ (140T) ]

X exp[—wT/(14»T)JLL—y/(14+T)]  [1Q]

(36)
and

p(n, T) = (ev/n ) [72/26:T) 1] exp[ 1/ (4:T) ]
X 35 [(2ntm) \m m Jivmeric[1/2(:T) 2]
m=0

XLy/ )T [2Q] (37)

D. Amplitude Stabilized Signal Plus
Independent Noise

If the Gaussian noise superimposed on the stable
signal is well separated in frequency from the signal,
and the beat frequency does not lie within the detector
bandwidth, then only the noise fluctuations contribute
to the intensity variations. This case arises when radia-
tion from nonlasing modes, at frequencies far from
those of the lasing mode, is incident on the detector.t The
effective intensity distribution is then

P(I)=(1/Iy) exp[— (I=Ic)/I), I>Ic, (38)

629

and zero otherwise. The corresponding generating
functions for the counting statistics are
(m=ev/(140)  [1Q] (39)
and
(s%y=ev(n1#2/26%) exp[1/ (40) ] exfc(yolt+3o~1%),
[2Q] (40)

with y and o defined as in the previous case. The factorial
moments are, respectively,

(nl/(n—m) )= (T)"eT(m+1, y) [1Q] (41)
and
(nY/(n—m) )= (T)"eT (2m+1, y), [20] (42)

where I'(#, x) is the incomplete gamma function. The
counting statistics are given by

p(n, T) =L (T)"/ (A+oT)](e/n1)

XT[n+1, 14+T)y]  [1Q] (43)

and

p(n, T)=[(2n) YnJe[72/2(:T)¥2] exp[1/ (4 T) ]
X 3 (yn/m ) Ermert Ty (7Y 3GT) ],
m=0

[2Q] (44)
The availability of the parameter y, the S/N ratio,

" for fitting theoretical statistics to observations make

this and the preceding model a significant improvement
over the single-parameter models of laser radiation.

E. Nonlinear Oscillator

Armstrong and Smith,* and more recently Chang
et al.® have shown through photocounting experiments
that the behavior of a single-mode laser is well described
throughout the range from well below to near to well
above threshold by Risken’s intensity distribution,?

P(I) = (2/w'") {exp—[(I/I) —w]/I;(1+ erfw) }.
(45)

Since I >0, this is a truncated Gaussian. The parameter
w describes the state of excitation of the laser; it is
negative below threshold, zero at threshold, and
positive above threshold.#% The normalization is such
that, far above threshold, the average intensity is wl:.
Throughout its range of excitation, the average laser
output is given by .
_ 1/2

exp(—w?) /v ] ()

(14 erfw)

Far above threshold, for large positive w (w>2), the
intensity distribution is Gaussian, with mean wl; and

D=1 [w+

% H. Risken, Z. Physik 186, 85 (1965); V. Arzt, H. Haken,
H. Risken, H. Sauerman C. Schmid, and W. Weidlich, Z. Physik
197, 207 (1966).
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{LASER SOURCE}

p{n,T)

we-6.0
vT =1821

a1 il 1 1
o ‘s 10 15 20 2% 30
n

F16. 2. Double-quantum counting distributions for a laser
source (Risken intensity distribution) ranging from well below
to well above the threshold of oscillation. The curves are nor-
malized to the same mean intensity. Arrows indicate the mean
counts, which vary with changing radiation statistics.

standard deviation Iy/vZ, At threshold (w=0), the
distribution is the positive-argument half of a Gaussian
peaked at I=0, with a mean intensity of Fi/#'2. Far
below threshold, for large negative w (w<—3), the
distribution reverts essentially to the exponential
intensity distribution of Gaussian noise, but with a
slight correction factor introduced by the nonlinear
source; the average output is then [1/2(—w). The
Risken distribution, derived from a nonlinear Fokker—
Planck equation,®® accounts for the nonlinearity of the
lager, applies near threshold as well as at extremes of
its state of excitation, and has the particular virtue of
describing the intensity variations through a single
parameter w.

The generating functions for the counting statistics
to be expected from a nonlinear source so described are,
for the single- and double-quantum detectors, re-
spectively,

(s*)= exp[(s/2) —w JPerfc[ (6/2) —w]/[exp(w?)
X erfc(—w) ] [lQ:I 47

and
(s*)=u exp(#?) erfc(—u)/w exp(w?) erfc(—w),
u=w/(1+0)*2  [2Q]
The factorial moments are, correspondingly,
Y/ (n—m) H= (uT)™m ! i®erfc(—w) /erfc(—w)
[1Q] (49

28 R. D. Hempstead and M. Lax, Phys. Rev. 161, 350 (1967).

(48)
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and
1/ (n—m) )= T)™(2m) ! imerfc(~w) /erfc(—w).
[2Q] (50
The actual photocounting distributions are given by
exp[ (»T/2) —w P irerfc[ (vT/2) —w]
exp(w?) erfc(—w)

[1Q] (1)

p(n, T)=(T)"

and
p(n, T)=L(2n) Y/ JT/(1+T) I
X [v exp () itrerfc(—v) /w exp(w?) erfc(—w) ],
[2Q] (52)

v=w/(1+»T)", (33)

Representative two-quantum counting distributions are
presented in Fig. 2 for a range of laser excitation from
below to above threshold. Figures 3 and 4 present
comparisons of one- and two-quantum counting dis-
tributions for parameters selected as explained in the
next section.

with

IV. DISCUSSION AND CONCLUSIONS

For all the radiation sources investigated, with the
exception of the wave of perfectly stabilized amplitude,
the two-quantum photocounting distributions have been
found to be broader and flatter than the corresponding
one-quantum distributions. This is expected, since two
photons are required for each absorption in the double-
quantum detector. The consequences of photon bunch-
ing will therefore be accentuated, giving rise to a

LASER SOURCE
(w=2.0)

:

pln, T)

r TWO-QUANTUM DISTRIBUTION
r / (v T=3.00)
ONE-QUANTUM DISTRIBUTION

y (vT=6.00) \

| - $ 1 1
[¢] 15 20 25 30
n

1
5

F16. 3. Comparison of one- and two-quantum photocounting
distributions for a laser somewhat-above threshold.
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heavier representation of intervals of time containing
either fewer or more photoelectrons relative to the
mean. The curvature (second derivative) of the two-
quantum probability distribution is therefore more
positive in all cases than for the corresponding one-
quantum cases. This may be seen in Figs. 1, 3, 4, where
the single- and double-quantum distributions are
compared for the thermal source and for the Van der
Pol oscillator. For third-# or higher-order photoemission,
this effect would be even more pronounced.

It is observed that the two-quantum distribution
approaches the one-quantum distribution as the non-
linear oscillator is driven far above threshold. With
increasing laser excitation, represented by larger w in the
Risken distribution, the intensity fluctuations of the
radiation source become smaller, and the two dis-
tributions become more alike, as may be seen in Fig. 4.
For the case of the ideal amplitude-stabilized wave,
there is neither intensity fluctuation nor ' photon
bunching, and the probability distributions of both
become Poisson. Far below threshold, the two-quantum
distributions from a laser and a thermal source become
identical, as is shown by a comparison of Figs. 1 and 2.

In plotting the results for the laser source, we have
fixed the single- and double-quantum mean counts at
the same value ()= 12 with the laser far above thresh-
old (#>1), and have maintained the average laser
output intensity at a constant value (in an experiment
this may be done by external means, e.g., attenuators)
as the excitation parameter w is varied. This procedure
manisfests the change in the two-quantum count rate
resulting from the variation in radiation statistics as w
is varied, by countering the differences between the
single- and double-quantum count rates arising from the
I vs I? dependence. For this purpose, the value of »T
must vary and is indicated for each curve in the figures.
The arrows indicate the mean of the distribution, which
is seen to vary with the radiation statistics, as men-
tioned previously.

Figure 5 presents the ratio of two-quantum to one-
quantum count rates for a laser source as a function of
the laser-excitation parameter w, under conditions that
maintain a constant mean intensity, as above. In terms
of the radiation statistics, this ratio is the reduced
second moment {x?)/(x)%. In terms of the observable
photocounting statistics such as those obtained in
Sec. II1, {(x?)= (n)/»T for a two-quantum detector and
(x)={n)/»T for the one-quantum case; i.e., the first
factorial moments normalized to »7". Physically, the
ratio reflects the changes in the form of the intensity
distribution P(I), independent of effects due to
variations in the intensity level. For large negative
values of w, i.e., far below threshold, the count rate is
seen to be a factor of 2 greater than that for the ampli-

* E. M. Logothetis and P. L. Hartman, Phys. Rev. Letters
18, 581 (1967).
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Fig. 4. Comparison of one- and two-quantum photocounting
distributions for a laser well above threshold. The distributions
are similar to a Poisson distribution.

tude stabilized wave, as it is in the case of the Gaussian
source (see Fig. 1). This has been described previously
as arising from correlated photon arrivals.”® For w1,
the count rate is the same as that for the amplitude
stabilized wave, for which photon arrival times are
uncorrelated.

Furthermore, the ratio plotted in Fig. 5 precisely
gives the dependence of Titulaer and Glauber’s coher-
ence parameter® ! g, (for sources possessing first-order
coherence) on the laser excitation parameter w for the
Van der Pol oscillator. The curve is similar to the
reduced second factorial moment of the one-quantum
distribution, Hs, used by Smith and Armstrong,® but
only count rates are involved here, not higher moments
of the photocounting distribution. It may be noted
that the semiclassical theory yields mth factorial
moments normalized to (vT)™ for the two-quantum
case equal to the identically normalized 2mth factorial
moments of the one-quantum case. In principle, there-
fore, the statistics of the radiation are contained in the
full set of moments of the single-photon counting dis-
tribution, to the extent that the semiclassical treatment
is adequate.

For counting intervals 7 much longer than the
coherence time of the intensity fluctuations, and for
low-brightness sources, the counting distribution will be
Poisson, independent of the radiation probability
density. As in the case of the one-quantum detector, the
fluctuations average out to some constant value and no
further ensemble average is necessary. Thus a broad-
linewidth thermal source and a well-stabilized laser far

7. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676
(1965).
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F1G. 5. Ratio of two-quantum to one-quantum count rates vs
laser excitation parameter w, with mean intensity fixed. The
curve is therefore the reduced second moment of the radiation
intensity distribution. The enhancement over the stabilized
laser reaches a factor of 2 well below threshold, as for a thermal
source.

above threshold will both give rise to a Poisson dis-
tribution for the two-quantum detector, as well as for
the single-quantum detector. For the two-quantum
detector with T large compared to the coherence time,
however, the fluctuating component will contribute to
the mean-square intensity, while the single-quantum
detector ignores the fluctuations over long periods.

It may also be pointed out, as did Wolf and Mehta®
for the one-quantum case, that the complete probability
density of the fluctuating radiation intensity can, at
least in principle, be determined by observing the
counting distribution of two-quantum photoelectrons.
For the one-quantum case, the well-known inverse
Laplace transform is required to obtain the intensity
distribution from the counting statistics. In the double-
quantum case, an inversion of the Gaussian transform
is to be performed. This can, however, be reduced to the
familiar inverse Laplace transform as well, by a simple
change of variable from [ to 7Y% Although the in-
versions will often not be feasible in practice on the
basis of a reasonable number of experimentally ob-
tained moments,* the theoretical invertibility indicates
that, in this restricted sense, the two-quantum photo-
electric counting statistics faithfully reflect those of the
fluctuating incident radiation, provided that the
counting intervals are short compared to the coherence
time.

Finally, we should point out that experiments to
verify the theory and distributions set forth in this paper

2% E. Wolf and C. L. Mehta, Phys. Rev. Letters 13, 705 (1964).

M. C. TEICH AND P.
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are presently feasible. Values for the double-quantum
photoelectric yield A range from ~10~%5] A/W for
metals to ~107%] A/W for some organic single crystals.'s
Here, I is the incident radiation intensity in W/cm?
The output of a single-mode He-Ne laser operating at
1.15 pm, focused to a 10 um spot, can provide an
intensity /~10° W/cm? near threshold. If this radiation
impinges on a CsySb photocathode®®3 which has a
work function e¢=~2.05 eV and a yield of ~10~1] A/W,
a value y=BP?=AP/e~10® sec! results. We observe
that the condition expressed by (1) is satisfied. There-
fore, with a counting interval of 7'~1 psec, sufficiently
short compared to the coherence time, an experiment
may easily be performed. Alternatively, a stable beam
from a laser operating above threshold could be sub-
jected to random scattering,® and a chaotic source of
much narrower spectral width than occurs in any
natural source coulc be o*tained thereby. This would
permit observation times short compared to the
inverse radiation bandwidth for the source, and yet
still realistic for measurements.

APPENDIX

The function iterfc x appears repeatedly in expres-
sions for two-quantum photoelectron distributions and
moments, and also for the one-quantum case when the
intensity fluctuations may be described by a Van der
Pol oscillator model. The properties of this function
which are most useful for utilization and interpretation
of the results presented in this paper are summarized
here.

The function, which is tabulated,? is the nth iterated
integral of the familiar complementary error function:

irerfca= / ” i1 erfct dt (A1)

cerfca= erfcx,  ilerfcx= (2/7V%)e=% (A2)

Tt is also expressible as a single integral,
irerfex=[(2/n') /n 1] / T (—x)rexp(—2)dt (A3)

and satisfies the recurrence relation

2n iterfca—-2xi"terfca=i*2erfcx, (A4)
as well as the differential equation
(y/dx?y+2x(dy/dx) — 2ny=0. (A5)

% H. Sonnenberg, H. Heffner, and W. Spicer, Appl. Phys.
Letters 5, 95 (1964).

3 R. A. Soref (unpublished).

32°W. Martienssen and E. Spiller, Am. J. Phys. 32, 919 (1964);
Phys. Rev. Letters 16, 531 (1966).
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Generally, iterfcy is a rapidly decaying function of »
for any #, and of » for any x. Many of the attendant
computational difficulties can be avoided by dealing
instead with the function exp(«?) i"erfcx, which appears
naturally in the counting statistics.

To assist in interpreting the results quoted in certain
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limiting cases of interest, we note the following limits:
(A6)
(A7)
The corresponding limits for the higher-order functions
are easily obtainable from the recurrence relation (A4).

i%erfcx— exp(—a?) / (x12x), xr—ro

ierfcx—2, X—— 0
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Surface and Bulk Waves on Axially Magnetized Plasma Columns*
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The dispersion relation and field solutions of slow electromagnetic waves propagating along a cold, col-
lisionless, cylindrical plasma in an axial magnetic field of finite magnitude are studied numerically. Field
distribution and gradual metamorphosis of surface waves into bulk waves along the dispersion characteristics
are investigated. It is shown that both surface waves and bulk waves belong to the same set of plasma
modes. Criteria concerning conditions under which surface waves occur are extended in include transitional
situations. Power-flow density along the plasma may in certain cases be in opposite directions inside and
outside of the plasma, both for forward surface waves as well as for backward cyclotron waves, implying

transfer of energy between propagation media.
I. INTRODUCTION

Waves propagating in a cylindrical, cold, collisionless
plasma in a finite axial-magnetic field have been treated
numerically by several authors.*~® In these studies, the
more appropriate dynamic analysis*® has been applied
in preference to the quasi-static approximation.”-?
Other geometrical configurations such as plasma slabs
of infinite extent have also been investigated.® The
principal objective of these papers has been the deter-
mination of dispersion characteristics of discrete modes
in the slow-wave (subluminous phase velocity) region,??
and of perturbed waveguide modes.! In considering this
problem, a question arises whether it represents any
essential variation from the more exhaustively treated
problem of magnetized plasma completely filling a
metalic cylindrical waveguide,®™8 since changes in

* This research was supported by the U.S. Air Force.

1P. O. Berrett and C. C. Johnson, IEEE Trans. Nucl. Sci.
NS-11, 3440 (1964).

* M. Camus, in Proc. Sth Intern. Congr. Microwave Tubes, Paris,
1964 (Academic Press, Inc., New York, 1965).

#G. L. Yip and S. R. Seshadri, Can. J. Phys. 45, 2889 (1967).

4¢W. C. Hahn, Gen. Elec. Rev. 42, 258 (1939).

5A. A. Th. M. Van Trier, Appl. Sci. Res. B-3, 305 (1954).

S H. Suhland L. R. Walker, Bell System Tech. J. 33 579 (1954).

7A. W. Trivelpiece, Slow "Wave Propagation in Plasma Wave-
guides (San Francisco Press, San Francisco, 1967).

8 L. D. Smullin and P. Chorney, in Proc. Symp Electron. Wave-
guides (Interscience Publishers Inc., New York, 1958) p. 229,

? A. J. Weil, Pennsylvania State Umv Sci. Rept 314, NASA
Grant NsG, 134 (February 1968).
~ V. Beve and T. E. Everhart, Univ. of California Electron.
Res. Lab., Berkeley, Rept. 362, AF 33(616)-6139 (July 1961).

1V, Beve and T. E. Everhart J. Electron. Control (GB) 13,
185 (1962).

12 M. Camus and J. Le Mezec, in Proc. Symp. at Copenhagen,
on Electromagnetic Theory and Antennas, 1962 (The Macmillan
Company, New York, 1963), Pt. I, p. 323.

18R, Likuski, Rept No. AL-TDR- 64-157, Univ. of Illinois,
Elec. Eng. Res. Lab Urbana, Illinois (1964).

geometrical configuration are not expected to introduce
new effects. Analysis of the situation shows that there
are indeed important differences. First, the plasma is
now assumed to be bounded by vacuum, and the bound-
ary is allowed to become rippled under the influence of
the high-frequency electromagnetic field. This effect
is represented by a surface-charge layer that causes
a discontinuity of the radial electric field.* Second, the
plasma column in vacuum is an open structure, and as
such may support in addition to discrete modes a
continuous eigenvalue spectrum of the radiation field.*
It is thus quite reasonable to expect some field solutions
and dispersion characteristics for this configuration
to be different from those in a plasma-filled waveguide.
Moreover, the configuration under study is a better
model for a physical situation likely to exist in a
laboratory experiment.”'5% As is seen below, the field
components of slow waves outside the plasma column
decrease rather rapidly, and the influence of any wave-
guide wall removed from the plasma boundary by a
distance comparable to the plasma radius does not
modify significantly the field distribution; the surface
rippling from a discontinuity of the radial electric field
at the plasma boundary is the dominant effect of the
boundary in this model.

“R. E. Collin, Field Theory of Guided Waves (McGraw-Hill
Book Co., Inc., New York, 1960), Chap. 11.

15 . Bittner, Z. Angew. Phys. 10, 117 (1958).

16 A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784~
1793 (1959).

17 H, Riedel, Z. Angew. Phys. 13, 360 (1961).
( 18 R). L. Ferrairi and A. Reddish, Nachr. Fachberichte 22, 2

1961).

1% C. B. Wharton and J. H. Malmberg, Proc. Seventh Intern.
Conf. on Phenomena in Jonized Gases, Beograd, 2, 256 (1965).

20 A, Bouchcule and M. Weinfeld, Fighth Intern. Conf. Phe-
nomena Ionized Gases, Vienna, Contributed Papers (1967), p. 381.
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