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Investigating the Nonlinear Dynamics of Cellular 
Motion in the Inner Ear Using the Short-Time 
Fourier and Continuous Wavelet Transforms 
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Abstract-The short-time Fourier transform (STFT) and the 
continuous wavelet transform (CWT) are used to analyze the time 
course of cellular motion in the inner ear. The velocity responses 
of individual outer hair cells and Hensen’s cells to sinusoidal 
and amplitude modulated (AM) acoustical signals applied at the 
ear canal display characteristics typical of nonlinear systems, 
including the generation of harmonic and half-harmonic com- 
ponents. The STFT proves to  be valuable for following the time 
course of the frequency components generated using sinusoidal 
and AM input signals. The CWT is also useful for analyzing these 
signals: however, it is generally not  as effective as the STFT when 
octave-hand-based CWT’s are used. For the transient response, 
the spectrogram (which is the squared magnitude of the STFT) 
and the octave-hand-based scalogram (which is the squared 
magnitude of the CWT) prove equally valuable, and we have 
used both to study the responses of these cells to step-onset tones 
of different frequencies. Such analyses reveal information about 
the preferred vibration frequencies of cells in the inner ear and 
are useful for deciding among alternative mathematical models of 
nonlinear cellular dynamics. A modified  Duffing oscillator model 
yields results that bear some similarity to the data. 

I. INTRODUCTION 

I‘ I the process of hearing, sound waves  travel  to  the eardrum 
(tympanic membrane)  through  the  external  ear  and  ear 

canal. The sound  pressure  acting  on  the  tympanic  membrane 
produces  mechanical  yibrations that are  transmitted via the 
ossicular  chain in the  middle ear to the inner  ear  (cochlea). 
The  cochlea, which is encased in a  bony  shell,  consists of 
three fluid-filled canals: scala  vestibuli,  scala  media,  and  scala 
tympani. A thin  membrane (Reissner‘s  membrane) running  the 
length of the  cochlea  separates  the  scala  vestibuli from the 
scala  media  (middle canal). The basilar  membrane  forms  the 
base of the middle canal, separating i t  from  the  scala  tympani. 
The  cochlea is coiled:  there  are 4; turns in the guinea pig 
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cochlea.  The coil diameter is widest at the base of the  cochlea 
and narrowest at the apex. There  are two  openings in the bony 
shell near the base: i)  the oval  window, through  which  the 
stapes  drives the fluid in the  scala  vestibuli, and  ii) the  round 
window, which is covered by a thin membrane  that  accom- 
modates the movement of fluid i n  the  cochlea. The sensory 
organ of hearing (the organ of Corti) is located  on  the  scala- 
media  side of the  basilar membrane. It consists of several  types 
of specialized  cells that are  organized in precise  transverse 
and  longitudinal  arrangements. The transverse  morphological 
arrangement  is the same  from base to apex, although the  width 
and  stiffness of the  basilar  membrane  and the dimensions of 
most of the  cells change  from base to apex [l], [ 2 ] .  

In the  past, i t  has been  possible  only  to  measure  vibrations 
at the  basilar membrane.  More recently,  however,  the use of 
a slit confocal  microscope  has made it possible  to conduct 
vibration  measurements at arbitrary  positions  within  the  organ 
of Corti [2] in the third and fourth  turns of a  special  guinea pig 
temporal-bone  preparation. This preparation is excised  from 
the  animal and kept  alive by immersion in an  oxygenated 
tissue culture medium [3].  The velocity of vibration of indi- 
vidual  cells,  selected as desired, is measured  with a specially 
designed  confocal  heterodyne  interferometer in response to 
sound applied to the ear canal.  The details of the measuring and 
stimulus-generation  techniques have been previously  described 
P I .  

This  measurement  technique  elucidates  the role of indi- 
vidual cells in the complex mechanical  transduction  process 
carried  out in the organ of Corti. The measurements  show that 
sensory  cells (outer and  inner  hair cells) play an important role 
in this  process. Measurements at the reticular  lamina  (which 
contains  the  tops of the sensory cells) display two types of 
response: 

i~  Cells  vibrate at frequencies that are related to the fre- 
quency of the  applied  signal with no net displacement. 
This is the ac response. The magnitude of the vibration 
velocity is frequency dependent, displaying  a  band-pass 
characteristic. The frequency of maximum  velocity is 
defined as the  characteristic  frequency (CF) of the  cell. 
The  CF is highest at the base of the  cochlea  and  lowest at 
the apex [ 2 ] .  In the third turn of the  guinea pig cochlea, 
the  cells  respond  maximally  to  frequencies in the  range 
500-900 Hz, whereas in the  fourth turn, the  maximum 
response  occurs for frequencies  below 500 Hz. 
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ii) The outer  hair  cells change their  length  when  a  tone is 
applied to the  ear  and retain that length  as  long as the 
tone is  present. This  length  change is called  the  motile 
or dc  response. The magnitude  of  the  motile  response is 
dependent  both  on  signal level and signal frequency.  For 
a  constant  signal level,  the length change  is largest at the 
same frequency at which  the  ac  response is maximum 
(the CF);  however, the  frequency  bandwidth over which 
a motile  response is observed is  far narrower  than  the  ac 
passband [2], [4]-[8]. 

A  suitable  method for studying  the  motile  response is to use 
amplitude  modulated (AM) acoustic  waves  with  a  sinusoidal 
carrier and low-frequency  modulation. This provides an oppor- 
tunity  for  studying  the change in the  cell  length over a  broad 
range of carrier  levels as the envelope increases  and decreases. 
The use of  an AM format is called for because  the  heterodyne 
interferometer  can  measure  the  velocity of an  object  but not 
its  absolute  position. 

An AM stimulus is a  time-varying  signal;  accordingly, 
special analysis  techniques  are  required  to examine the  re- 
sponse. This paper  describes  the  application of time-frequency 
and time-scale  representation  techniques for the  analysis  of 
cellular velocity data such as that described above.  The relative 
advantages of the  two  techniques are compared  for  several data 
sets. Two types of input  stimuli  were  used: i) an  AM  acoustic 
signal  with  a  modulation  depth  of  unity and a  modulation 
frequency fixed at  2.44 Hz.  the  carrier  frequency  ranging  from 
24 to 1800 Hz and  the  total  duration of each collected  data 
set fixed at 0.4096 s (representing  2048  samples at 200 ps 
intervals) and ii)  a  sinusoidal  acoustic  signal. with a  frequency 
that ranged from 24 to 1489 Hz, turned  on at its positive 
zero crossing for a  duration of 41 ms (1024 samples  at 40 
ps intervals). These stimuli are well suited for investigating 
nonlinear  dynamical  behavior. 

To provide  a complete analysis of these  signals, we have 
examined  three  representations (magnitude, squared  magni- 
tude, and phase) of both  the  short-time  Fourier  transform 
(STFT)  and the  octave-band-based  continuous  wavelet  trans- 
form  (CWT). We have  compared  the transfomx for  the dif- 
ferent  representations on selected  data  sets  and  found that 
the STFT magnitude was most  effective in discriminating  the 
various  frequency  components  elicited by AM stimuli. For 
transient  responses,  the  spectrogram  (which is the  squared 
magnitude of the STFT) and the scalogram  (which is the 
squared  magnitude of the CWT) both  proved  equally  effective. 
Phase  maps of the STFI  and CWT were also examined  over 
a  small  section of one of the A.M responses.  The  resulting 
CWT phase map proved more readable than the  magnitude 
or squared  magnitude of the CWT. However,  the STFT phase 
map provided  information that was essentially  equivalent to 
that offered by the  magnitude or squared  magnitude  of  the 
STFT. In the  Discussion  (Section IV), we consider  some of 
the  differences  between  the  two  transforms  and  identify  cases 
where one transform  might be preferred over the other. 

We clearly  ascertain that the  nonlinear  dynamical  character- 
istics of cellular  motion in the cochlea [9] can be elucidated by 
using  both STFT-  and  CWT-based analyses. The character of 
the  cell’s  nonlinear  response is found  to depend  significantly 

on  the  carrier  frequency of the  applied AM signal,  relative to 
the  innate tuning characteristics  of  the  cell. We show that a 
simple  nonlinear system (the  negative-stiffness  Duffing  oscil- 
lator)  exhibits some of the  features  seen in our  experimental 
data, although  it is clearly too idealized  to  serve as a  model 
for cellular dynamics in the  cochlea. We have previously 
reported  preliminary  results  pertaining to the  use  of the STFT 
in the analysis of cellular  velocity  data [lo]-[ 121, and we  have 
also  presented a preliminary  version of our  octave-band-based 
CWT analysis  [13]. 

11. ANALYSIS TECHNIQUES 

An AM tone  with  a  low  modulation frequency  is a wave 
of slowly  varying  amplitude. The AM  stimulus is useful in 
investigating  nonlinear dynamics because  it permits us to 
observe, in a  single  experiment,  the  cell’s  response for a 
continuous  and  large  range of acoustic  intensities. The AM 
tone  is,  however.  a  nonstationary  stimulus over the  time  scale 
of the  experimental  recording;  a  suitable  representation of 
the  response in the  spectral  domain  must  therefore be used. 
Although it is useful in highlighting  the  broad  spectral  features 
of  the  response,  the averaged periodogram for the  entire  signal 
duration is an incomplete  representation for such a signal. 
Similarly.  the  response to the step turn-on of a  sinusoidal  tone 
is clearly  nonstationary. 

Accordingly, we have made use of various  time-frequency 
representations (TFR’s) and time-scale  representations to cap- 
ture  the  time-varying  spectral  character of the  cellular re- 
sponse. A commonly used TFR  is the  spectrogram (SPEC) 
[14], [15]. which is defined as 

SPECZ(t, f )  = ISTFTqjt. , f ) 1 2 ,  (1) 

with the STFT defined as 

S T F T ~ ( ~ .  f) = J_, z(u)g*(u - t )exp(- jaafu)du (2, 
00 

where 
z ( t )  time  waveform  being  analyzed 
s i t )  window function in time 
t time variable 
f frequency  variable 
* complex conjugation. 

A Gaussian  window [ g (  t )  = exp( - t 2 ) ]  provides  a  reasonable 
choice  for the  window  function since it minimizes the  time- 
frequency  uncertainty  product [14]. Specifically,  a sampled 
version of the STFT, which is often  referred to as  the  discrete 
STFT, was  calculated  using  a  summation  approximation of (2): 

L-1 
STFT:[n,. I C ]  = z[n + rn]g*[,m] 

r n  = 0 

where 
n discrete  time  index 
IC discrete  frequency  index 
g[m] sampled Gaussian window with t ranging from  -2 to 

2: 



HEKEGHAK el ni: INVESTIGATING NONLINEAR  DYNAMICS OF CELLCLAR MOTION 3337 

The formulation  presented in (3) reminds us that  the  discrete 
STFT  is simply  a  sequence of discrete  Fourier  transforms of 
the windowed  signal  segments. Once a  window  length L is 
chosen, the  time-frequency  uncertainty  product is fixed-a 
good  rule  of  thumb is to  choose  the  window  length so that the 
signal  appears  ‘relatively stationaq’ within it. For example, 
in the  analysis  of  AM  responses,  as  discussed  subsequently. 
a  window  length L = 128 samples was appropriate.  This 
corresponds to 25.6 ms at the 5-kHz  sampling  rate used in 
recording  our  data. The value of N (which sets  the number 
of discrete  frequencies at which the STFT is sampled in the 
frequency domain) was  chosen  equal  to L.  The STFT was 
not evaluated  for all values of n ;  moving  the  time  window 
through 32 time samples for successive  evaluations of the 
STFT provided  a sufficiently detailed  picture for our purposes. 

We present  the STFT magnitude  and the spectrogram in 
two visual formats. The first is a 3-D representation,  which is 
often  referred to as a 3-D spectral  plot. In this  format, time 
and frequency  form  the  bottom plane and  the STFT magnitude 
or spectrogram is represented  on  a  linear  axis in the  third 
dimension. The second  format  provides 2-D contour  plots on 
which contours of equal STFT magnitude or spectrogram  are 
traced on a  time-frequency plane.  The  choice of whether  to 
examine  the STFT magnitude or the  spectrogram is signal 
dependent. The magnitude of the STFT allows  both  strong  and 
weak components to be effectively  shown  on  the  same plot; 
this is generally  desirable for our  class of signals. For  other 
types of signals, however, plotting  the  spectrogram  allows  a 
weak  signal component to be readily distinguished  from  the 
noise floor. 

The  CWT provides  an  alternative  representation with the 
flexibility of  trading  time  and  frequency  resolution.  This 
flexibility can provide a more useful representation for certain 
signals, e.g., those with a mix of short-term  impulsive  events 
and  long-term  harmonic  components [16]. We analyzed our 
data using the  basic  wavelet h( , t )  = exp(jct)esp(-t2/2), 
which is often  referred  to as the  Morlet  wavelet  [17].  Although 
strictly  speaking  this is not an  admissible  wavelet  basis (since 
H ( 0 )  # 0, where H ( f )  denotes  the  continuous-time  Fourier 
transform of h . ( t ) ) ,  for  a  suitable  choice of the  constant c 
(e.g., c 2 5.0). this  wavelet  basis is practically  admissible 
and  progressive  [17]: and its implementation is straightforward 
since an analytic  expression for the  wavelet  basis is at  hand. 
The  CWT for continuous variables is defined  as 

where 
: r ( t )  time  waveform  being  analyzed 
h. ( t )  wavelet  basis  function 
T time variable 
r scale variable 
* complex  conjugation. 

Scale is inversely  related to the  frequency  variable used in ( 2 ) .  

We approximated  a  sampled  version of the CWT using the 
form 

where hi[m] represents  a  sampled  version of the  continuous 
function 1 ~ 1 - ~ / ~ h * ( t / r )  at a scale r corresponding  to the 
scale  index a, and z[m] represents  the  time  waveform  being 
analyzed.  The  scale  index a is defined as being  proportional  to 
the  logarithm  of the scale r. The exact  relation is u = V log, T ,  

where V’ is a  quantity  known  as  the  voices  per  octave. 
Accordingly,  scale  index a = 0 corresponds  to  scale r = 1. 
Explicitly, h,[m] is calculated by sampling  the  Morlet  wavelet 
in the  range -3 to 4 with c = 5.0, as  used in [17]: 

where 

Here. L is the number of  samples of h ( t )  taken  and is defined 
as 

L = A’. 26 rounded to the  nearest integer (9) 

where 
IV integer sufficiently large  to  provide  good  sampling of 

the  basis  function at the  smallest  scale used (a = 1) 
a scale  index 
V number of voices per  octave. 
The choice of c = 5.0 for the  Morlet  wavelet  gives 

an  analysis  wavelet  that is octave-band in nature, i.e., the 
frequency  width of the wavelet’s Fourier  transform at a  given 
frequency f o  is of the order of f o  itself. Such octave-band 
wavelet  bases arise naturally in wavelets  derived using two- 
scale  equations or from orthogonal  perfect-reconstruction filter 
banks [ 161. 

By choosing  a  fixed number of voices  per octave,  we  can 
consider  frequency  increments  expressed  as  fractions of an 
octave.  For example. if we  decide  to examine  four voices  per 
octave, that is equivalent to considering  the  set of frequencies 
f o . 2 a f o . 2 2 f o , 2 i f 0 .  and 2 2 f 0 ,  which  correspond  to  the 
fractional  octave  frequencies  defined above. 

From (9), it is apparent that L, which is the number 
of samples of the  basis  function.  increases  with a. This 
is equivalent  to  saying  that  the  wavelet  basis  function is 
stretched by increasing the scale (Le., by increasing a) .  These 
longer  basis  functions  correspond to filters with lower center 
frequencies  and  narrower  bandwidths  (maintaining  constant 
relative  bandwidth  however), reflecting the fact that  the loss 
in time  resolution is accompanied by an increase in frequency 
resolution at larger  scales. We have  adopted  the  convention 
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that an increase in scale corresponds to a  decrease in fre- 
quency. Explicitly, the scale  index a is related to the  logarithm 
of inverse  frequency by 

n = Vlog, ( 7 )  
where 
V number of voices  per octave 
K a  constant 
f frequency. 

For a  given CWT, we  can find the  exact  relation  between 
scale and frequency by analyzing  a pure sinusoid  of known 
frequency so that the  proportionality  constant K can be 
determined. This allows us to  label CWT's with frequency 
values. as well as  with  the  scale  indices a that we use. 

The scalogram (SCAL)  is defined  as  the  squared  modulus 
of  the CWT: 

Sc.AL;[n, b] = 1CWT;[a:b]('. 

The  CWT magnitude and scalogram  are  also  presented in both 
3-D and contour formats, as described  earlier  for  the STFT 
and  spectrogram. The phases  associated  with  the STFT and 
the CWT of a data  set  provide  additional  representations,  as 
will be illustrated  subsequently in one of our examples. 

111. RESULTS 

A. Response of n Third-Turn  Outer Hair Cell to AM Stimuli 
To examine  the  behavior of the velocity  response of cochlear 

sensory  cells  for  stimuli of different  frequencies,  AM  acoustic 
signals  (with unity modulation  depth and a fixed modulation 
frequency of 2.44 Hz) were  applied to the ear  canal, using 
different  stimulus  carrier frequencies. This  allowed us to 
examine the  nonlinear  velocity  response of a  given  cell as the 
carrier  frequency  was  altered from well below to well above 
the CF. The  sampling  frequency  was fixed at 5 kilosamples/s 
in recording the responses to AM stimuli. 

Fig. I shows the velocity tuning curve of a  second-row  outer 
hair cell in the third turn of the guinea pig  temporal-bone 
preparation.  The  measured peak velocity of the  cell per unit 
applied  sound  pressure is shown  over frequencies  ranging from 
70 to 2000 Hz. This tuning curve displays  a  peak at 850 Hz. 

Fig. 2 shows the  response of this  cell  when  an AM tone 
with a  carrier  frequency f c  = 415 Hz  (below CF) is applied 
to  the  ear. The velocity response of the  cell during  one 
cycle of the  modulation envelope is displayed in Fig.  2(a). 
The response does not follow  precisely  the shape of the 
input envelope:  a  slight  flattening is apparent  near  the  center 
of the  time  waveform. In this  and  other such curves, the 
reconstructed  waveform has been upsampled by a factor of 
64  and interpolated by sinc  functions  to  reduce  the  artifact 
known  as "false modulation." The velocity-response STFT 
magnitude,  which is shown in 3-D  and 2-D formats in Fig.  2(b) 
and (c). respectively.  reveals  the  time  behavior of the  spectral 
components. The  STFT  shows six spectral components  at 
multiples of the  carrier frequency. At the  beginning and  end of 
the  modulation  cycle,  when  the  magnitude of the  envelope is 

5 
i. 
-1 

> 

- 
3 
i: 100 1000 

FREQUEYCY (Hz) 

Fig. I .  Velocity  tuning curve for a second-row  outer  hair  cell (Ob061422.dt3) 
in the  third  turn of the  guinea  pig  temporal-bone  preparatlon.  The  ordinate 

of I pba r  ( I  dyne/cm2). The CF for this cell is 850 Hz. 
displays  the peak velocity in centimeters per  second  per  unit  sound  pressure 

low, the  response closely follows the input.  and  the  response 
is mainly at the  carrier  frequency  (this is most clearly seen 
in Fig. 2(c)). As the  magnitude of the envelope increases, 
spectral  components at f c ,  2f , ,  3f,. 4fc. s fc ,  and G f ,  appear. 
The higher  spectral components  do not follow  the  time  course 
of the  input envelope precisely. 

The STIT magnitude at the  carrier  frequency  and at three 
of its harmonics  is plotted in yet another way in Fig. 2(d). 
The magnitude of the  second  harmonic is generally  greater 
than  that of the third or fourth harmonic. Harmonic  generation 
clearly  indicates  the  presence of nonlinearity in the  cellular 
response. The generation  of  multiple  harmonic  components 
for carrier  frequencies  below CF  is typical of the 24 cells we 
have  examined. 

Fig.  3 shows the  response of the same cell when an AM tone 
with a carrier  frequency fc = 706 Hz  (near  CF) is applied. 
The velocity response of the cell  over  one modulation cycle is 
displayed in Fig. 3(a).  Its  magnitude is substantially  greater 
than that shown in Fig. 2(a) since  the  carrier  frequency is 
now near the CF of the  cell. The response  envelope  does not 
follow the  shape of the  input envelope.  The central  portion 
of the  time  waveform is highly  irregular in appearance. The 
STFT magnitude of the  velocity  response (Figs.  3(b)  and  (c)) 
again shows the  presence of multiple  spectral  components,  but 
the  behavior is far more  complex than  that  seen in Fig. 2(b) 
and  (c).  At low  magnitudes of the  modulation envelope, the 
response is only at the  carrier  frequency, as in Fig. 2 .  At higher 
magnitudes of the  modulation envelope, harmonic  components 
are clearly  visible at fc. 2fc, and 3f,. 

At the  highest  values of the stimulus envelope, however, 
something  unusual occurs.  Components are seen  at three  half- 
harmonic  frequencies (3fc/2, 5fc/2, and 7 fc /2 ) ,  as  reported 
previously [lo],  [12],  [18]. [19]. In some cells,  there is also  a 
component present at f c / 2  [ 121, but  this feature  is more-or- 
less  absent in this  particular  data set. It is of interest  to note 
that  Davis er al. [20]  and  Dallos et al. [21]. [22]  observed  the 
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Fig. 2.  Velocity response of an outer hair cell in the third turn of a  guinea pig temporal-bone preparation to an  AM  stimulus with carrier  frequency f,. = 413 
Hz (below  CF)  and  modulation frequency 2.34 Hz. The velocity tuning  curve for this cell is shown in Fig. 1. The highest  sound  pressure  level  occurring at 
the center of the input envelope was % 123 dB: re 0 .002 d y n e i d :  la)  Time  waveform of the velocity response  (in c d s )  of the cell; (b) 3-D spectral plot 
of the STFT magnitude of the velocity response shown in (a).  The x and y axes  represent  time (ms) and frequency (Hz), respectibely, and STFT  magnitude 
is plotted on a linear scale on the f axis.  This plot shows spectral components at the  carrier frequency f p  and at five higher  harmonic  frequencies;  (c)  same 

contour curve represents 0.0064 units of STFT magnitude.  The magnitude  correspondlng to a given contour line  can be determined by counting  the number 
STFT magnitude as  shown in ib) but now plotted in 2-D with 20 equally  spaced (in STFT magnitude) contour lines  joining  points of constant  magnitude. Each 

of contour  lines  to that curve  (including the curve  itself) and multiplying by 0.0064: (d) STIT magnitude as a  function of time at the  carrier  frequency fe 
(indicated I ) ,  and at ils second,  third, and fourth harmonics (indicated 2 ,  3, and 4, respectively).  The  shape of the carrier and each of  the  harmonic  curves is 
quite  different.  The  carrier-frequency  curve is symmetrical in time  around 205 ms, but the harmonic  curves  show  a  symmetry  around  approximately 216 ms. 

presence of half-harmonic  components in guinea pig cochlear- 
microphonic  potentials and in the sound field in front of 
the  tympanic  membrane when high-intensity  pure-tone  stimuli 
were  applied  to  the ear  canal. Dallos et al. [23] also  showed  the 
presence of odd-fractional  harmonics  (which  they  determined 
to be rare in guinea pigs). 

A component at dc (or possibly at nearby low  frequencies) 
can also be clearly  seen in the STFT magnitude in Fig. 3(b) 
and (c) near the center of the AM waveform.  The  dc  com- 
ponent corresponds to  the  nonvibratory  tnotile  behavior of 
the  cell in response to the  envelope of the AM stimulus, as 
discussed  earlier.  Related  observations  have  been made both 
in isolated  outer hair cells  and in the guinea pig temporal-bone 
preparation by Brundin et al. [5] - [8] .  

The STFT magnitude for the  carrier,  the  second and third 
harmonics, and four half-harmonic frequencies is  shown in 
Fig. 3(d) as a  function of time. The amplitude of the  second 
harmonic  no  longer  increases  monotonically with the arnpli- 
tude of the  stimulus. The magnitude of the third harmonic is 
greater  than that of the  second  harmonic. This  is opposite to 
the condition  observed at a  lower  frequency (Fig.  2(d)).  The 
harmonic curves are  asymmetrical in time.  Furthermore,  the 
half-harmonics  appear at times  delayed  with  respect  to  the 
peak of the input waveform; as the  amplitude of the  stimulus 
is decreasing. 

Fig. 4 shows the  response of this cell  when an AM tone with 
a  carrier frequency fc = 1013 Hz (above CF) is applied to the 
preparation. The overall  velocity  response of the  cell over  one 
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Fig. 3. Velocity response of the  same  outer hair cell as shown in Fig. 2 but now to an A.M stimulus with carrier frequency fc = 706 Hz (near CF) and 
modulation frequency 2.44 Hz. The highest sound pressure level,  occurring  at  the  center of the input envelope, was F: 137 dB: re 0.0002  dyne/cm2: (a) Time 
waveform of the velocity response  (in c m i s )  of the  cell; (b) STFT magnitude of the velocity response  shown in (a).  This  plot  shows  spectral  components at the 
carrier frequency fc. at two  harmonic  components of the  carrier (a t ,?  and 3f,), at three  half-harmonic  components of the canier  (3fC/2,5  fc/2.  and 7f r /2 j ,  
as well as  at  dc; LC) same  STFT  magnitude as shown in (b), but in contour  format  with 20 equally spaced (in  STFT  magnitude)  contour  lines  joining points of 
consrant magnitude. Each contour  curve represents 0.0634 units of STFT magnitude;  (d)  STFT  magnitude as a function of time at the  carrier  frequency fc, its 
second and third harmonics, and at four  half-harmonics,  which  are  denoted j f , / 2  (fC/2-solid curve,  3fC/2-dash-dot  curve, 5 fr/2-dashed  curve, i f,/%dotted 
curve).  The shapes of the  carrier and each of the harmonic and half-harmonic curves are  quite different. They  also differ from  those  observed in Fig. 2(dj 
If,. = 415 Hz). There,  the  second  harmonic was greater in magnitude than the  third; this condition is now reversed  for fc = 706 Hz. The  half-harmonics 
are present principally between 200 and 300 m$  asymmetrically with respect  to  the  time of the peak input stimulus. 

cycle of the  modulation envelope is displayed in Fig. 4(a). and 13 Hensen's  cells) that we  have  examined thus far using 
The response follows the shape of the input envelope with  time-frequency  representations. We have  previously  presented 
little  distortion. The  STFT magnitude of the  velocity  response  similar  plots  for other third-turn  outer hair cells [10]-[12] and 
(Fig.  S(b)  and  (c))  shows the  presence  of  only two spectral for a  fourth-turn  Hensen's  cell [12]. In all cases, the  response 
components: at f c  and at 2 f , .  Both of these  components  follow is reasonably, but not  entirely,  symmetric in time about the 
the time course of the  input envelope rather  faithfully. The center of the stimulus  envelope,  indicating  the  presence of 
STFT magnitudes for the  carrier and its  second  harmonic  limited  memory  effects [ l l ] .  
are  shown  as  a  function of time in Fig.  4(d).  The second The  CWT of a  signal  will in general  display  the  same 
harmonic curve  is asymmetrical  around  the  time  axis. As we information  as  the STFT  but with a  different  distribution 
move to  yet  higher camer frequencies  (which  are not shown), of time-frequency  resolutions [16]. Depending on  the  nature 
the component  at the  carrier frequency becomes  increasingly of the  signal  and  the  choice of analysis  wavelet, however, 
dominant.  information  may be easier  to  discern from one or the  other 

The results  presented in Figs. 2-4 are  typical of the 60 of these  transforms. The magnitudes  and  phases of the STFT 
AM data sets associated with 24 cells  (1 1 outer  hair  cells and CWT for data  taken from the central  portion  of the time 
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Fig. 4. Velocity response of the same outer  hair cell as shown in Figs. 2 and 3 but now to an AM stimulus  with  carrier  frequency f< = 1013 Hz  (above 
CF) and  modulation  frequency 2.44 Hz. The highest  sound  pressure  level,  occurring at the center of the  input envelope, was z 132 dB:  re 0.0002 dyne/cm': 
(a)  Time waveform of the velocity  response  (in crnis) of the  cell,  The  slight scalloping  apparent in this  time  waveform is due to false modulation; (b) STFT 
magnitude of the velocity  response shown in (a). This plot shows spectral  components only at the carrier  frequency f,. and at the second  harmonic 2f,.. Higher 
harmonic  components  may have been present but remained  undetected  because the sampling  rate  and filtering of the  measuremenr apparatuq restricted the 
maximum  observable  frequency to 2500 Hz; ( c j  same STFr magnitude as shown in (b) but in contour  format  with 20 equally  spaced (in STFT magnitude) 
contour lines joining  points of constant  magnitude.  Each contour  curve represents 0.0502 units of STFT magnitude;  id) STFT magnitude as a function of time 

curve is asymmetrical in time.  This response \%as recorded  with an upper  frequency limit  of 1500 Hz so that  third  and  higher  harmonics could not be obsened. 
at the carrier  frequency f c  and  at its second harmonic. The shapes of the  carrier and the second  harmonic  curves are  quite  different. The second harmonic 

waveform  shown in Fig. 3(a) (.fc = 706 Hz) are  compared in 
Fig. 5 .  The particular  segment of the  time  waveform  analyzed 
is shown in Fig.  5(a). 

The  STFT magnitude for this  time  series is shown in a 
3-D plot (Fig.  5(bj)  and in contour format (Fig.  5(c)).  The 
STFT shows energy primarily at the  carrier  frequency and 
at two  harmonics (Zfc and  3f,j, but discernible  spectral 
components are also  present at 3f, /2.5fr/2,  7j,./2. and 0 
(dc).  The  component at sfc is considerably  larger than that at 
2f,, but the component at 2f, is seen to  increase  significantly 
during  the  time course of the signal. 

The octave-band  based CWT magnitude  for  the  same  time 
series is shown in Fig.  5(d) and (ej in 3-D and contour  format, 
respectively. The frequencies  on  the  right  ordinate of Fig.  5(e) 

correspond  to  the  linear  scale-index  axis  on  the  left  ordinate  as 
determined by the  logarithmic  relation  between  frequency and 
scale  index  given in (10) (for this  plot If = 4 and K = 3841 
Hz). The components at fc and S f c  are clearly  visible in the 
3-D plot (Fig.  5(d))  as two  ridges  of  approximately  constant 
magnitude. Because of the  poor  frequency  resolution of this 
CWT at high  frequencies, however, the component  at Z f c  is 
masked by the  stronger components at f c  and sf,. The  CWT 
contour plot in Fig.  5(e) is difficult to interpret  because of the 
jagged nature of the contour lines.  This  situation  arises when 
the  duration of the  wavelet  basis  function is of the same order 
as the period of the  sinusoidal component. It  should be noted 
that the peak in the CWT of this  signal  occurs at a  scale  index 
of 10, corresponding  to  a  frequency of 679 Hz, rather  than 
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Fig. 5 .  Comparison of the STFT and the octabe-bnnd-baaed  CWT  for  analyzing  cellular velocity responses  to  an AM stimulus.  The signal is  the central 
portion of the velocity response  shown in Fig. ?[a): (a) Time  waveform of a  ponion of the velocity response (in centimeters per second) for times  between 

spectral components at seven  frequencies: 0 .  f,:. 3 f r / 2 , 2 f , .  5f,./P.3fC, and 7f , /2 ;  (c) same  STFT  magnitude as shown in (b), but in contour  format with 
180 and 250 ms; (b) STFT  magnitude of the velocity response shown in (a).  This  plot,  which is an expanded view of the central portion of Fig. 3(b), shows 

20 equally spaced contour  lines,  each representing 0.0615 units of STFT  magnitude; rd) CWT  magnitude of the velocity  response  shown in (a).  The .r and 

components  centered at scale indices of IO and 3; (e) sxne  CWT magnitude as shown in (d) but now in contour  format with 20 equally spaced contour 
y axes represent time (ms) and  scale  index,  respectively, and CWT magnitude is plotted on B linear  scale on the : axis. This plot shows two significant 

shown in a  gray-scale  format.  The phase is mapped to  the  range [-x. a]. Corresponding to the transition from  absolute black (-n) to  absolute white (a). 
lines joining points of constant  magnitude. Each contour line represents 0.85 units of CWT  magnitude; (f) phase of the C W T  of the velocity response 

In areas  where  the  CWT magnitude falls below a certain threshold.  the  phase is not plotted. This  appears  as gray areas on the figure. Comparison with 
the  CWT-magnitude  contour plot in (e) reveals that the thresholded  phase  map  provides  a  crisper  representation for this data set; (g) phase of the STFT of 
the velocity response  shown in a  gray-scale  format. A5 III cf). the phase i s  mapped to the range [-T, x], which again corresponds to the transition from 
absolute  black (-x) to  ahsolute  white (a). In areas where  the STET magnitude falls  below a certain threshold,  the phase is not plotted.  These  appear  as 
gray areas on the figure. The thresholded STFT phase map shown here contains essentially the  same  information  as the STFT  magnitude  contour plot shown 
in (c),  clearly illustrating the time  course of the seven  frequmcy  components  present. 

706 Hz. which is the  applied  carrier  frequency.  This  difference 
arises  because  the  scale  index is quantized  to  integer  values, 
and  a scale index of 10 corresponds to the  frequency  nearest to 
the actual  frequency of the  signal (a scale index of nine  maps 
to a frequency of 807 Hz, which  lies  farther  from  the  carrier 
frequency  than 679 Hz). The use of more voices  per  octave in 
calculating  the CWT would  allow a more  precise  estimate of 
the  frequency of vibration  to be obtained but at the expense 
of added  computational complexity. 

The  discriminability  provided by the  octave-band-based 
CWT magnitude  plots in Fig. 5(d)  and  (e)  is clearly  seen 

to be inferior to that provided by the STFT magnitude  plots 
presented in Fig.  5(b) and (c), respectively. This issue will be 
discussed  further in Section IV. 

Since we  have used a complex wavelet for calculating  the 
CWT, it is also of interest to examine what  information  may be 
discerned from the  phase of the CWT for this time  series. The 
phase is  shown in Fig. 5(Q,  with -T plotted as absolute black 
and T plotted as absolute  white.  Only  regions of the  transform 
with CWT magnitude  greater  than  a  selected  threshold are 
plotted,  thereby  eliminating  clutter  arising  from  the  phases 
of nonsignificant  signal  components. The  component  at fc  
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shows up clearly at a scale index 01 = 10. It  registers  as a 
set of bands  spaced at time  intervals  equal  to  the  period of the 
carrier  component. For smaller scales (higher frequencies), the 
component at 3 f c  is also  readily  visible  (scale  index u = 3), 
with a  periodicity that is one third of the fundamental period 
(i.e., there  are  three  phase  transitions  from -T to T at this  scale 
for  every transition at the  carrier frequency).  Components  at 
frequencies  between f c  and 3fc are also discernible, starting 
at a  time of about 230 ms. This  feature,  corresponding  to 
the appearance of components  between f r  and 3 f c ,  was not 
readily visible in the  octave-band-based CWT magnitude  plots. 
Indeed,  the CWT phase map is more useful than the CWT 
magnitude  alone,  inasmuch as it combines  some magnitude 
information  (determined by the  chosen  threshold) with phase 
information.  Nevertheless, we cannot  clearly  distinguish  the 
three  separate  frequency components at 3 f c / 2 .  Zf,., and 5 f , / 2 ,  
which are  evident in the STFT's shown in Fig.  5(b)  and 
( C h  

In Fig. 5(f)? the  bands in the  phase  map  corresponding  to 
the  fundamental component  at fc  are seen to be spread over 
five scale indices.  ranging from 8 to 12. At any fixed time, 
the  phase of this  signal  transform  remains  essentially  constant 
across  these five scale indices. To understand  why  this  occurs, 
(5) is recast in the form of an inverse  Fourier  transform: 

(12) 
where X ( f )  and H ( f )  are the continuous-time  Fourier  trans- 
forms of x ( t )  and h( t ) .  respectively. The  CWT of a pure 
sinusoid of frequency fo can be readily calculated from 
(12)  and shown  to be equal  to f i [ H * ( f o r ) e x p ( j h f o r )  
- H'(-forjexp(-j27ifo7)]. If 'H"(for)l >> IH*(-for)l. 
then the phase of the CWT  is essentially  the  phase of the 
dominant component H * ( f o r )  exp(j2~fo.r). For the  Morlet 
wavelet  we  have  used, H ( f )  is purely real; therefore,  the 
phase of the CWT for a single  sinusoid of frequency fo 
is well approximated by 2 ~ f " r  in the  regions  where  the 
approximation I H * ( f o r ) l  >> lH*(-for)l  holds  (this is the 
case  for f o  = 706 Hz and r corresponding  to scale indices near 
10).  However, the  relatively high threshold used for  the  display 
in Fig. 5(f)  limits our view of the  constant phase behavior to 
a  range of scale  indices  between 8 and 12. 

It should be noted  that  the  data used to  calculate  the CWT 
was upsampled  and  interpolated in order  to  stretch out the 
scale  axis. This is permissible  since the original  signal was 
well bandlimited at 2500 Hz. 

For  completeness,  we  display  the  phase  associated with 
the STFT of the same time  series in Fig. 5(g). Again, --7i 

is plotted  as  absolute  black  and T as absolute  white,  and an 
STFT-magnitude  threshold is selected.  below  which the phase 
is not  plotted. The  STFT phase plot retains  the  behavior of 
the STFT-magnitude contour plot  shown in Fig.  5(c), clearly 
distinguishing  and  exhibiting  the  time  course of the  seven 
significant frequency  components. The presence of the  white 
bar at zero frequency  indicates that the dc component of this 
signal  has  a  phase of x. reflecting the  negative  mean of the 
time  waveform in Fig.  5(a) 

I 
l o o  1000 

FREQUEYCY (Hz) 

Fig. 6. Velocity tuning curve for a Hensen's cell (06051530.dtl) in the  third 
turn of the guinea pig temporal-bone  preparation. The ordinate  displays  the 
peak velocity in centimeters per second  per unit sound pressure of I pbar (1 
dyneicm'). The CF for this cell is 550 Hz. 

The phase shifts between  adjacent  time  bins and frequency 
bins in the STFT give  rise to a  checkered  pattern in place 
of the  banded  pattern  associated with the CWT phase  plot in 
Fig. Xf), for  which  the phase changes  only  along  the  time  axis. 
The origin of the phase changes in frequency  for  the STFT  can 
be understood by rewriting ( 2 )  as an  inverse Fourier transform: 

STFT:(t.fj = e - J 2 i T f t  X( 'U)G*(U - f ) e x p ( j Z ~ u t ) d 7 ~  

(13) 
where X ( u )  and G ( P I )  are  the  continuous-time  Fourier  trans- 
fornu of x ( t )  and g ( t ) ,  respectively. The prefactor e - J Z T f t .  
which is present in (13) but not in (12), shows that the phase 
of the  transform  varies  linearly with frequency at any fixed 
time t .  

From all of the  measures  presented in Fig. 5, it is apparent 
that  the STFT  is superior  to  the  octave-band-based CWT that 
we have used. as is explained  further in Section IV. 

-E 

1, 

B. Response of a Third-Turn  Hensen's  Cell 
to the Step Turn-On of n Tone 

To examine the  behavior of the  transient  velocity  response 
of  cochlear  sensory  cells  for  stimuli of different  frequencies, 
step-onset  tones  were  applied  to  the ear canal. The response 
of a  nonlinear  system  to  a  transient  stimulus  provides com- 
plementary  information to that provided by the  response to an 
AM tone. The sampling  frequency was fixed at 25 ksamplesls 
in recording  the  responses  to  step-onset stimuli. 

We proceed  to  detail  the  response of a Hensen's cell in the 
third turn of the  guinea  pig  temporal-bone  preparation  using 
both CWT and STFT analysis  techniques.  Fig.  6 shows the 
velocity  tuning  curve  for  this  cell. It is broadly  peaked with 
its maximum  value at 562  Hz (CF). The three  frequencies  for 
which  the  time waveforms are  shown are  as follows:  below CF 
( f s t i m  = 122 Hz:  Fig. 7(a)), at CF (fstio, = 562 Hz; Fig.  8(a)), 
and  above CF ( f S t i m  = 1489 Hz; Fig. 9(a)). The transient 
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Fig. 7 .  Velocity response of a  Hensen's cell in the third turn of a guinea pig temporal-bone preparation to the step turn-on of a  sinusoidal  stimulus of 
frequency .fh,,,,L = 1 2 2  Hz (below  CF). The tuning curve  for this cell is shown in Fig. 6. The  sound  pressure  level of the sinusoidal  stimulus was 0 105 dB: 
re (1.0002 dyneicm': (a) Time waveform of the velocity response  (in  centimeters per second) of the cell: (h) scalogram (3-D plot) of the velocity response 
shown in (a). The T and y axes represent  time  (ms) and scale index. respectively,  and  scalogram  magnitude is plotted on a linear scale on the = axis; ( c )  same 

This plot reveals the presence of an initial component at z 300 Hz, which dies away to leave a steady-state  component at the stimulus frequency. 
scalogram as shown In (bl but now plotted in contour format with 20 equally spaced contour lines, each representing 0.0195 units of scalogram  magnitude. 

STIMULUS FREQUENCY = 562 Hz 

(a) (b) (c) 

Fig. 8. Velocity response of the  same  Hensen's cell as shown in Fig. 7 but now to the step turn-on of a sinusoidal  stimulus of frequency fstlrn = 662 Hz 
(at CF). The bour~d pressure le%el of the sinusoidal stimulus was E I14 dB: re 0.0002  dyne/cm2:  (a)  Time  waveform of the velocity response of the cell; 

representing 1.87 units of scalogram  magnitude.  This  plot principally shows a steady-state  component at the stimulus frequency. 
(h) scalogram of the velocity response  shown in (a): (c) same  scalogram as shown in (b) but in contour  format with 20 equally  spaced  contour lines. each 

response time of the sound-generation  system is negligibly 
short at these  low frequencies. 

As we  have  reported  previously [24], the  qualitative char- 
acteristics of the  transient  response change with  frequency. 
When  the  stimulus  frequency is below  the CF of the  cell, 
the  transient  vibration  amplitude  monotonically  approaches 
its final value,  while  its  instantaneous  frequency  decreases 
toward  the  stimulus  frequency.  When  the  stimulus  frequency is 
well above  the CF, there is a  substantial  amplitude  overshoot, 
while  the  instantaneous  vibration  frequency  starts out low  and 
then increases  to  the  stimulus frequency. Finally, for stimulus 
frequencies in the vicinity of CF,  there may be either a  slight 
overshoot or a  steady  approach  to  the final amplitude (both are 
observed). and the  instantaneous  frequency  remains  relatively 
constant. 

These observations  can be made clearer by examining 
the CWT magnitude,  the CWT phase, or the  scalogram of 
the  transient responses,  Since there is little  difference in 
these  representations for the  transient data, we chose the 
latter for diversity. The octave-band-based  scalograms  are  dis- 
played in 3-D format in Figs. 7-9(h) and in contour format in 
Figs. 7-9(c) [ 131. In these  figures,  the  scalogram is constructed 

over six octaves  with V = 3 voices  per  octave so that an 
increase of 4 in the  scale  index is equivalent  to  a  halving 
in frequency. The value of AV (the length, in samples, of the 
lowest-scale  wavelet  basis function)  was set  equal  to 40. We 
use the same scale-index  axis as in Fig. 5(d)-(f),  as  the same 
parameters  are used to calculate  the CWT in both cases. 

The scalogram  clearly shows how energy is diverted into 
frequencies that are pulled  toward the CF at the  onset of vi- 
bration before reaching  steady-state  behavior when the  energy 
remains  concentrated at the  stimulus frequency. In Fig. 7(b) 
and  (c), for example, the  stimulus  frequency is  at 122 Hz, 
but there is an initial  concentration of response at &OO Hz. 
This corresponds to the  decrease in instantaneous  frequency 
observed in the time  waveform. A similar  pattern is observed 
in Fig.  9(b) and (c), in which  the  early  transient  displays 
a  concentration of the  response  close  to 750 Hz (again in 
the  vicinity of the CF) for a  driving frequency of 1489 Hz. 
The substantial  magnitude of the  scalogram for this  peak, in 
comparison with its  eventual  steady-state value  at the  stimulus 
frequency, reflects the  overshoot evident in the time  waveform. 
It is also  apparent from the  tuning curve in Fig. 6 that the 
steady-state  response at 750 Hz far  outweighs that at 1489 
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Fig. 9. Velocity response of the same  Hensen's cell as shown in Figs. 7 and 8 but now to the step turn-on of a sinusoidnl stimulus of frequency fStlm = 1469 

centimeters  per  second) of the cell; ib,l scalogram of the velocity response  shown in (a); (c)  same  scalogram as shown in (b) but in contour  format with 20 
Hz (*ell above CF). The  sound pressure level of the sinusoidal stimulus was FS 109 dB: re 0.0002 dyndcrn': (a) Time  waveform of the velocity response (in 

equally spaced contour  lines,  each  representing 0.012 units of scalogram  magnitude.  This  plot  repeals  the  presence of an initial  component at % i 5 0  Hz, which 
dies away to leave a steady-state  component at the  stimulus  frequency;  (d)  spectrogram of the velocity response  shown in (a).  The 1' and u axes represent time 
(ms) and frequency (Hz), respectively. with spectrogram  magnitude plotted on a linear scale on the 2 axis.  The  spectrogram closely resembles the  scalogram 
shown in (b); [e)  same  spectrogram  as  shown in (d) but in contour  format with 20 equally spaced contour  lines,  each  representing 0.000094 units of Spectrogram 
magnitude. Like the scalogram  shown in (c),  there is B response at Z i 5 0  Hz, which dies away to  leave a steady-state  component  at  the  stimulus  frequency. 

Hz. Finally,  the  response  to  a  stimulus of 562 Hz, which is 
shown in Fig. 8(b) and  (c), reveals  only  a  response at the 
stimulus  frequency with no apparent  initial  transient at any 
other  frequency  since 562 Hz is at  CF. 

It is of interest  to compare the  scalogram  and  the  spec- 
trogram of  the  transient  response. For a  stimulus  frequency 
of 1489 Hz, this  comparison is provided by the  spectrogram 
shown in Fig. 9(d)  and  (e).  These figures are quite  similar 
in character to the  scalogram  shown in Fig.  9(b) and (c); both 
display an initial  burst of energy  at a  frequency  pulled  towards 
the CF. Although  the scalogram  and spectrogram provide 
approximately  equivalent  performance for this example, the 
scalogram  provides  a more compressed view of the signal's 
behavior  because of the  manner in which  frequency is mapped 
to  a  logarithmic scale. Nevertheless, from Fig. 9(cj  and  (e), it 
is clear that in this case, both yield a  good  estimate of the 
center  frequency of the cell's initial  vibration (750 Hz). For 
the  particular  octave-band-based  wavelet that we  have used, 
the scalogram  has  slightly  better  frequency  resolution  (and 
slightly worse time  resolution)  than the  spectrogram. 

There is an  important  distinction  between  the CWT (or 
scalogram) and the STFT  (or spectrogram) in mapping  sinu- 
soidal  signals.  Unlike  the STFT, the CWT does not map equal- 
magnitude  sinusoidal  components of different  frequencies to 
transforms of equal  magnitude. For instance,  comparing  the 
ratio of the  roughly  steady-state  sinusoidal  waveforms in 
Fig. 8(a) and 9(a) (which is zU.35/0.(11 = 35)  to the  ratio of 

the scalograms of these  steady-state  components in Fig.  8(b) 
and  9(b)  (which  is ~ : 4 @ / 0 . 0 1  = 4000) illustrates  that  the 
scalogram  magnitudes do not reflect the square of the  time- 
waveform  magnitude  ratio  (since 3000 # (35)') .  This  can be 
understood in terms of the scale-dependent  prefactors in ( 5 )  
and (12). 

The attentive  reader will notice  the absence of the  harmonic 
and half-harmonic frequencies in the  transient  response. These 
were observed  when AM stimuli  were used (see  Section III- 
A). The reason is straightforward:  the  sound  pressure  levels 
used in recording the transient  responses were considerably 
lower  than  the  values used in the AM experiments.  Nonlinear 
effects  are more pronounced at higher  acoustic  intensities. 

C. The Negative-Stiffnem Dufing Oscillator 
as a Model of Cochlear Dynamics 

In an attempt to  characterize  the  nonlinear  mechanisms 
responsible  for  the  unusual  behavior  detailed above  and else- 
where [9]-[12], [18],  [19],  [25],  we can consider  analogies  to 
other well-studied  nonlinear  systems.  Keilson et al. [26]-[28] 
have already analyzed the  responses of a class of bilinear 
oscillators and compared  the  results  with  experimental  findings 
P I .  

Here. we  consider  a  negative-stiffness Duffing oscillator 
model [29]-[31] defined by the  equation 

i[i) + a.i:(t) - O z ( t )  + yz'((t) = F(t) (14) 
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where 
z ( t )  position 
t time 
12) 3 .  :: constants 
F ( t )  arbitrary forcing  function of time 

and the  overdot  indicates  differentiation with respect  to  time. 
This  equation  represents an oscillatory  system with two  sym- 
metric potential  wells. Since the  potential  energy is a  quartic 
function of position,  this  equation  models,  for example, the 
motion of a  ball  subject  to an arbitrary  driving force oscillating 
in two valleys  separated by an  energy bamer. 

Small  motions within either of these  wells  have  a  clearly 
defined CF.  the  value of which is determined by suitable  choice 
of the parameters a.  8. and 3 .  Motion  between  the wells gives 
rise to another, lower, characteristic frequency.  For comparison 
with the  cellular  velocity data considered in Sections 111-A 
and B, we choose F ( t )  to be  either a  slowly  modulated  AM 
signal or a  tone with step turn-on  (with  suitably  chosen  initial 
conditions). 

Fig.  10fa) shows the  velocity  response ;C for  such  a  system 
driven by a unity modulation-depth AM signal with carrier  fre- 
quency 706 and modulation  frequency 2.44. The driving func- 
tion was of the  form F ( t )  = F,,[1 - cos(2.irft,,t)] sin(2afct), 
where fc. and fm are  the  carrier  and  modulation  frequencies 
of the Ah1 signal,  respectively,  and Fo is a  constant. The 
characteristic  frequency  of  the (small-amplitude,  undamped) 
velocity response for the system  was set at 850 (as  suggested 
by the  experimental  tuning curve of Fig. 1) by choosing 
u = 2000. ,3 = 1.43 x lo’, and -, = 7.13 x lo’, Fo was 
set  equal to 4.6 x lo6. 

The response  does not follow  the  shape  of  the  input very 
closely, and a  sudden  irregularity  appears in the  time  waveform 
at time t = 210. Indeed.  the model response  shown  here 
bears some qualitative  similarity to the  corresponding data 
shown in Fig. 3(a).  The  STFT magnitude of this  velocity 
response (Fig. IO(b), (c),  and  (d))  shows the  presence of 
multiple  spectral  components, not unlike  those seen in the data 
(compare with Fig.  3(b),  (c), and (d)).  The time development 
of the  fundamental  and  harmonic  components  are  particularly 
similar.  However. in the  vicinity of time t = 210. the  model 
response jumps  somewhat suddenly and briefly to encompass 
a large range of frequencies  particularly  centered about the 
half-harmonic  frequencies at f J 2 ,  3 f C / 2 ,  and 5 fJ2. This is 
a  consequence of the  subharmonic  cascade  (period-doubling 
[32]) route to chaos that the Duffing oscillator  system  exhibits. 
As the  magnitude of the driving force increases  further,  the 
spectrum  broadens.  and  the  system is driven  towards  chaotic 
behavior. Similar features  are  also  present in the  cellular 
velocity data at very large acoustic  intensities (see  Fig. 3(b) 
and (c) and [9],  [lo].  [12], [18]. [19]). However,  the data  do 
not generally  exhibit  quite  as  broad  a  range  of  frequencies 
as  the  model, at least  for  the  model  parameters  illustrated. In 
addition.  the  data  exhibit  a dc displacement in response  to  the 
stimulus envelope that is absent in the Duffing model. 

The behavior of the Duffing model was studied  over  a 
range of carrier  frequencies and driving  intensities. For carrier 
frequencies well below  the CF, multiple  harmonic components 

are generated that are  similar to those seen in Fig. 2. For  carrier 
frequencies  well above the CF, the response is mostly at the 
carrier  frequency as in Fig.  4. 

Fig. 1 l(a) shows the velocity response x of the model 
system  to  the  step  turn-on of a  tone with frequency f s t i m  = 
1489. The driving  function  was of the form 

F ( t )  = Fo s i 1 1 [ 2 ~ f ~ ~ ; ~ ( t  - tO)]u(t - to) 

where 
f i t i m  stimulus  frequency 
,u(t)  unit step function 
t o  measured  time  delay  for the production of experi- 

Fo a constant. 
mental  data ( 1  ms) 

The characteristic  frequency of the  (small-amplitude, un- 
damped) velocity response  was  set at 562 (as suggested by the 
experimental  tuning curve of Fig. 6) by choosing a = 2000, 
3 = 6 x 10‘. and ^v = 3 x 10‘. Fo was set equal to 4.6 x 11)”. 
Except for  the  driving  frequency.  these  parameters  are not too 
different  from  those  used  to  generate Fig. 10. 

The scalogram of this  time  waveform is shown in Fig.  1 l(b) 
and (c). Fig. l l ( c )  shows  an  initial peak of energy at a 
frequency of about 700. which is pulled substantially  away 
from the  stimulus frequency of 1489 toward t h e  CF.  These 
plots  should be  compared with  those in Fig. 9(b) and (c). 
Some features  are  shared in common; however,  the  principal 
distinction is that in Fig. l l (b)  and (c), the  scalogram  mag- 
nitude of the  initial  low-frequency  transient peak is far  lower 
than at the  stimulus  frequency.  whereas in Fig.  9(b) and (c). 
the  opposite is true.  This reflects the  significant  overshoot in 
the  time  waveform shown in Fig. 9(a), which is absent in the 
model  response shown in Fig. l l(a).  This feature is a result 
of the  broader  bandwidth of the model’s tuning in comparison 
with the  cellular  system. 

The modified Duffing oscillator  does not seem  to be a 
terribly  good  model  for  cellular  dynamics in the  cochlea; it 
is clearly  too simple and  too  idealized.  Kevertheless,  some 
features of its behavior,  such as the presence of harmonic and 
half-harmonic  spectral  components  and  spectral  broadening 
at high  acoustic  intensities,  suggest that a  reasonable  model 
of cochlear dynamics may  contain some of the  features of 
the Duffing system, but then again, many other  nonlinear 
systems with quite  different  characteristics  also share these 
features. More work is clearly  needed to describe in detail 
the  nature of the  nonlinearities in the cochlea and  to  develop 
more appropriate models. 

IV. D ~ s c r s s ~ o n -  

We have already  seen in Fig. 5 that the STFT and  the 
octave-band-based CWT  have quite  different  frequency-  and 
time-resolution  characteristics. It is these  characteristics that 
determine  the  relative  advantages of their use for the analysis 
of a given  signal. 

In the STFT analysis of the AM responses  presented  here, 
the  frequency  resolution  (which is defined as  the  full  width 
at l/e-maximum of the  window’s  Fourier  transform)  was 
99.5 Hz at all  frequencies  from 0 to 2500 Hz (the Nyquist 



HENEGHAN era / . :  ItiVESTIGATING  NONLItiEAK DYKAhlICS OF CELLULAR hl0TIO.U 3347 

CARRIER FREQUENCY = 706 

'1 
1.54 

0 100 200 300 40C 
TIME 

Y 

FREQUENCY 

ia )  (b) 

2500 2 - .. ": 1 
a 

2000- 
1.5- 

, .  
. .  

2. 

u 

- 
1500- - cs 

3 z 1  t -  : 1000- 
LL 

2 

500- 
0.5- 

0 
100 200 300 O b  200 300 4( 

TIME 
100 

TIME 
I 

Fig. 10. Velocity response of a model system babed  on the  negatike-stiffness  Dufhng  oscillator  (as  described  in  Section 111-Cj to  an A M  stimulus with carrier 
frequency f,. = 706 (near CF) and modulation frequency 2.44. The charactenstic  frequency of the model system has been set at 850: (a) Time waveform of the 
velocity response of the model system: (bl  STFT magnitude of the velocity response  shown in (a).  The x and y axes represent time and frequency,  respectively. 
both in  arbitrary units. and STFT magnitude is plotted on a linear scale on the 3 axis.  This plot shows spectral components at the  carrier  frequency .ft, and at 
two harmonic  frequencies (2f,. and .3f,). In addition, at the time of the sudden irregularity in the waveform  shown in (a),  spectral  broadening  appears briefly. 
centered about the half-harmonlc  components at f,./?. 3 f C / 2 .  j f r / 2 ,  and if,./2.  There is no displacement  component at dc;  (c)  same STF? magnitude as 
shown in (b) but in contour format with 20 equally  spaced  contour lines, each  representing 0.087 units of STFT magnitude: (d) STFT magnitude as a function 
of time at the carrier frequency fc, its second and thlrd harmonics, and at four half-harmonics, denoted ~ f ~ / 2  (fC/2-solid curve. 3fC/2-dash-dot curve, 
jfC/2-dashed curve, if,/?-dotted  curve). The  shapes of the carrier and each of the  harmonic and half-harmonic  curves are different.  The  half-harmonics 
occur in a narrow time Rsindow between 200 and 270, cotemporally with the notches in the STFT  magnitudes of the harmonic  components. 

frequency),  whereas  the  time  resolution  (which is defined  as 
the  full  width at l/e-maximum of the  window  function in 
time) was 12.8 ms at all frequencies.  Consequently, events 
taking  place within a time scale  shorter  than  this  resolution 
time  could not be clearly distinguished. The  spectrogram  also 
has a  characteristic  time-frequency  resolution. 

The time  and  frequency  resolutions of the CWT  do, in 
contrast, vary with scale,  though,  as for the STFT, the product 
of the time and frequency  resolutions  remains  fixed. The 
frequency  resolution is worst at small scales and  improves 
(i.e., decreases in width) with increasing  scale (whatever 
the choice of wavelet basis).  Since scale is proportional  to 
inverse  frequency (see ( IO) ) .  this means that CWT frequency 
resolution is best for low frequencies. 

This is, of course, the  fundamental  difference  between the 
STFT and the CWT.  For the STFT, the  time  and frequency 
resolutions  are constant  for all frequencies,  whereas  for the 
CWT, the  time  and  frequency  resolutions  are  continuously 
changing as  functions  of frequency.  The  choice of window 
length is critical when implementing  the STFT, inasmuch as it 
fixes the  time-frequency  resolution  thereafter.  For  a  particular 
data set, there is usually  an optimum  choice, which  can 
generally be found by trial and error. For  the Morlet wavelet- 
based CWT, on  the other hand, the critical  choice is the 
frequency at which  a  desired  time or frequency  resolution is 
achieved,  as  governed by the choice of the  parameter c in (7). 

For an  octave-band-based CWT, we  can estimate the mag- 
nitudes of these frequency resolutions by considering  the 
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Fig. 11. Velocity response of a model system  bared on the  modified Duffing oscillator (as described in Section 111-C) to the  step turn-on of a sinusoidal 
stimulus of frequency fstirn = 1489 (well  above CF). The  characteristic  frequency of the model  system  has  been  set at 550: (a) Time  waveform of the 
belocity  response of the model  system; (b) scalogram of the velocit) responbe shown in (a). The .r and y axes  represent  time  and s a l e  index. respecti\ely, 
both in arbitrary units, and  scalogram  magnitude is plotted on a linear  scale on the 2 axis: (c, same scalogram as shown in 1.b) hut in contour format with 
20 equally  spaced contour  lines,  each representing 0.0034 untts of scalogram  magnitude. This plot reveals  the  presence of an Initial component at 2700,  
which  dies  away  qulckly to leave a steady-state  component at the  srimulus  frequency. 

relation  between  the CWT and  its  discrete counterpart, the 
discrete  wavelet  transform (DWT). In the DWT. a  signal 
is divided into octave  bands  using  filter  banks  composed 
of high-  and  low-pass  half-band filters [16]. The  lowest 
scale of the  transform  corresponds  to  extracting  those  sig- 
nal components  whose digital frequencies lie in the  range 
[ ~ / 2 .  T ] .  Successively  higher  scales  correspond  to the fre- 
quency bands [T/4,7r/2]. [ n / 8 . ~ / 4 ] .  . . . . [7; /2"+' ,  ~ / 2 ' ~ ]  . . .. 
The frequency  resolution at the  lowest  scale is essentially ~ / 2  
(which is the width of the  corresponding  frequency  band at 
the  lowest  scale),  the  frequency  resolution at the next  highest 
scale is ~ / 4  (the width of the band [ ~ , ' 4 ,  ; r / 2 ] ) ,  and so on. 
Since an octave-band-based CWT interpolates  between  the 
octave  scales  of  the DWT, the  frequency  resolution of the 
CWT improves in a similar manner, but gradually  rather than 
i n  discrete jumps as for  the DWT. Not surprisingly  then, 
the  frequency resolution of an octave-band-based CWT is 
essentially one spectral component per  octave of frequency, as 
implied by the  name. The scalogram  also has a characteristic 
time-frequency  resolution. 

The effect of the  diminished  frequency  resolution at high 
frequencies is  evident in our analysis of the  cellular velocity 
responses  to .4M stimuli,  where  there are multiple  spectral 
components present  within  the same octave hand. Consider 
the  results  presented in Fig. 5.  where we have  explicitly 
compared  the STFT and CWT for the  same data.  The  STFT 
magnitude (Fig.  S(b) and (c)) clearly  shows  the  presence 
of three  significant  spectral  components (at 706. 1412,  and 
21 18 Hz) since  the  separation of these  components is much 
larger than the 99.5-Hz frequency  resolution of our  STFT 
analysis.  The  octave-band-based CWT of the  same  data, which 
is shown in Fig. 5(d)  and  (e). does not clearly  distinguish 
between the  components at 1412 and 21 18 Hz. This is because 
the  frequency  separation of these spectral  components is 
comparable with the  frequency  resolution of the CWT at these 
scales (the full  width at l/e-maximum of the  wavelet  basis 
function's Fourier  transform is IS90 Hz at a scale index  equal 
to 4. which corresponds  to a frequency of 1920 Hz according 
to (10)). Of course, the benefit of the CWT  is that the  time 

resolution at low scales is greatly enhanced.  For instance, the 
time  resolution  (which is defined as the full width at Ilr- 
maximum of the wavelet  basis  function) at scale index 4 is 
0.8 ms,  which is a substantial  improvement over the 12.8 
ms for the STFT at the  same frequency.  For AM responses, 
however, this  increased  time  resolution  provides no significant 
advantage since it turns out that there  are  no brief events in the 
observed  time  waveform within those time scales.  Note that the 
product of the frequency  and time  resolutions is 4 / ~  = 1.27' 
for both  the  Morlet  wavelet-based CWT and  the STFT. 

As we show  elsewhere,  the  usefulness  of  the CWT analysis 
technique for our class of AM responses can be enhanced 
enormously by relaxing  the  restriction  that i t  be based on 
octave-band wavelets.  This  approach  turns out to be par- 
ticularly useful for  investigating low-frequency subharmonic 
components that emerge as the  cell is driven  harder, and 
its vibration  undergoes  period-doubling  behavior  en  route  to 
chaos [33]-[35]. 

For the  analy>is of transient  responses,  the  scalogram will 
often  provide  a  superior  measure  to  the  spectrogram  because 
of its  improved time resolution. In our examples,  nevertheless, 
the  performance of both is rather  similar  since only one 
impulsive event  (the initial  transient  response to the  step tum- 
on) occurs within the  time  resolution of the spectrogram. If 
the response  featured  two or  more impulsive  events  separated 
by less than  the  time  resolution  of  the  spectrogram,  the  ability 
of the  scalogram  to provide finer time  resolution  would  make 
it particularly  useful. It is worthy of mention that both the 
scalogram and the  spectrogram  provide  a  good  estimate of 
the  characteristic  frequency of the initial response of the  cell, 
which is something that could not he readily  discerned  from 
the time waveform alone. 

V. CONCLUSION 

The different  time-frequency  resolution  characteristics  for 
the STFT and  the  octave-band-based CU'T  make the STFT 
more  suitable  for  analyzing  the  responses  to AM signals, 
which change relatively slowly in time. In this paper, we 
have  restricted our comparison to octave-band-based CWTs; 



HENEGHAN ef a 1 .  IliVESTIG.4TING KONLISEAR DYKAMICS OF CELLULAR MOTION 3349 

CARRIER  FREQUENCY = 415 Hz CARRIER  FREQUENCY = 706 H Z  CARRIER FREQUENCY = 1013Hz 
0.04 

_' 

'STFTl AT CARRIER ISTFT ATCARRIER ISTFTI ATCARRIER 

(aj (b) (C) 

Fig. 12. Relationship  between  the  STFT  magnitudes of harmonics of the response and chat  at the  carrier  frequency f,. for the velocity responses below, 
near, and above CF. Arrows indicate the direction of increasing time: [a) STFT magnitude of the second. third, and fourth harmonics  (denoted 2 ,  3. and 
4, respectively) as a function of the STFT magnitude at f c ,  for f c  = 41; Hz (data  obtained  from Fig. 2(d)); (b) STFT  magnitude of the second and third 
harmonics as a function of the STFT magnitude at fc, for fc = TO6 Hz (data  obtained  from  Fig.  3(d));  (c) STFT magnitude of the second harmonic as 
a function of the STFT  magnitude  at fc,, fur f L ,  = 1013 Hz (data obtained from  Fig.  4(d)). 

we consider  elsewhere  the use of more  general  wavelet  bases 
in analyzing  this  class  of  data [33]-[35]. 

For transient  responses,  the  scalogram is generally  a superior 
tool to the  spectrogram.  although in the  examples  we  have 
illustrated, they are about equally  useful. The response to the 
step turn-on of a  tone  allows us to  generate  a  scalogram that 
acts as a 'signature'  for the  system  under  investigation. We 
have also used the  scalogram  as  a  visual tool for  comparing 
various model responses. We conducted  a  preliminary  investi- 
gation  comparing  the  scalograms of transient  responses from 
different  driven  oscillator  models  with the scalograms of the 
observed  transients. We have found that the damped linear 
oscillator  produces  scalograms that are  markedly  different 
from those we have  observed  experimentally. The behavior of 
a damped nonlinear  oscillator, such as the modified Duffing 
model, also differs from our  measured  results but matches 
them far  more closely  than  the  damped  linear  oscillator, 
particularly at frequencies  above  the CF. 

Analysis of the AM velocity  responses with the STFT  has 
allowed us to  both confirm and extend  earlier  findings  based 
on the FFT analysis of pure-tone  responses [ 2 ] ,  as  detailed 
below. These observations  are  based  on 60 AM data  set  taken 
from outer  hair  cells and  Hensen's cells in both the  third and 
fourth  turns  of  the  guinea pig cochlea. 

For carrier  frequencies  below  the  CF,  multiple  harmonic 
components are present in the  response  waveform [ 2 ] ,  
[9]-[12], [33]-[35]. In both  third- and fourth-turn  mea- 
surements, the component  at the stimulus frequency usu- 
ally  has  the  largest peak magnitude:  however, in many 
data sets, harmonic components  above the  carrier  fre- 
quency  achieve  higher peak magnitudes. 
For  camer frequencies near the CF, the spectrum is once 
again  dominated by the component at the  stimulus fre- 
quency,  and  multiple  harmonic components are  present. 
We previously  showed that in the  fourth  turn,  for  pure- 
tone  stimuli at sound  pressure levels of the  order of 100 
dB,  even  harmonic  components are usually  greater than 
their neighboring odd  harmonics [36]. The  STFT analysis 
of our  AM responses augments this  earlier  result. At 
lower  sound  pressure  levels (where the  AM envelope 

is small), even  harmonics  are  indeed more pronounced, 
but at higher  sound  pressure  levels,  the odd  harmonics 
become  dominant (see  Figs.  3(b)-(d),  Fig. 2 in [ l l ] ,  and 
Figs. 2 and 5 in [12]). Additionally, in the third turn. we 
have seen numerous  examples of the  appearance of half- 
harmonic  components (see, e.g.,  Fig. 3(b)-(d) and  Fig. 5 
in [ 121) and quarter-harmonic  components at the  highest 
peak  acoustic  intensities for both  outer hair cells and 
Hensen's cells [33]-[35]. 
For carrier frequencies  above the CF, the spectral com- 
ponent at the  carrier  frequency is  dominant  for both 
third- and fourth-turn cells.  Harmonic and  half-harmonic 
components generally  diminish  as  the camer frequency 
increases  relative to the CF. 
In some sensory cells, in both  the  third and fourth 
turns,  low-level  steady components  can sometimes be 
discerned. These  components arise  from  spontaneous 
cellular  vibrations  that occur both in the absence of a 
stimulus [12], [37]. [38], and in its presence [25]. 

In addition to confirming earlier pure-tone results. the STFT 
offers  a  dramatic  picture  of  both  the  time-  and  level-dependent 
dynamics of these  cells,  which  remain  hidden  when using more 
conventional  FFT-based  analyses.  Fig.  3(b)-(d)  provide  clear 
examples of the  power of the STFT in illustrating  the  cellular 
dynamics. The magnitudes of the  harmonic components are 
seen to vary in complex ways with time. This cannot be 
discerned with FFT analysis,  which  averages over the  time 
course of the  response. 

The data in Figs.  2(d),  3(d),  and  4(d) can  be converted  into 
plots  of STFT magnitude  for  various harmonics  as a  function 
of STFT magnitude  for  the  carrier, as shown in Fig. 12(a)-(c). 
respectively. The magnitude  of  the  harmonics  for  the  same 
carrier  level  differs,  depending  on  whether the AM envelope 
is increasing or decreasing,  i.e.,  there is considerable  hysteresis 
in the  response.  Furthermore,  the STFT magnitude of a  given 
harmonic, for a fixed value of the STFT magnitude at jC, 
is  dependent on the value  of fc. For  example, for an STFT 
magnitude of 1 at fc. the second-harmonic magnitude is 
slightly  higher for f c  = 706 Hz  (Fig. 12(b)) than for fc = 
1013 Hz  (Fig. 12(c)). 
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Fig. 13. STFT magnitude of the  second  and  third  harmonics as a function 
of the STFT magnitude  at fc, for  the  model  reponse  shown in Fig. 10(d) 
( f c  = 706). The third  harmonic  curve  lies  below  the  second  harmonic curve, 
unlike  the  cellular  response  shown in Fig. 12(b) (fc = 706 Hz). 

The  same sort of plot  for the Duffing oscillator  model  shown 
in Fig. 13 differs  from  the  cellular  results in that  the third 
harmonic curve lies below  the second harmonic curve,  and it 
exhibits  hysteresis  principally at high  signal  levels. 

As a final indication of the  value of the STFT, we  reiterate 
that the four half-harmonic components illustrated in Fig.  3(d) 
do not appear  symmetrically in time with  respect to the  peak 
of the  envelope but rather  appear just after  the  peak  acoustic 
intensity  has been reached. This  shows the  time-dependent 
nature of the  response and rules out the  possibility of a  static, 
memoryless  nonlinearity  as  a  suitable  model for understanding 
cellular  nonlinear dynamics. 

In short.  time-frequency  and  time-scale  techniques  provide  a 
powerful  set of tools for observing  the  spectrum of the  cellular 
velocity  response as a  function of time  for different  acoustic 
intensities and carrier  frequencies. This in turn helps us achieve 
an  increased  understanding of cochlear  dynamics and places 
constraints  on  the  types of systems  that  can  be used to model 
cochlear function. 
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