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Multiplied-Poisson  Noise in Pulse,  Particle, and 
Photon  Detection 

I. INTRODUCTION 
ENTION THE  TERM point process and the  electrical 
engineer is likely to imagine highly localized events of 
a  particular kind occuning along a  time axis: the emis- 

sion of electrons  from  a  cathode  or  perhaps the registration of 
nuclear particles  in  a  detector. But such processes form an 
intimate  part of our daily lives as well. Few of us think of 
walking  along the sidewalk or driving down the road  in  mathe- 
matical terms,  yet to  the  operations researcher studying  traffic 
flow,  these  acts  are  representable  in  terms of important  point 
processes. Every field of scientific endeavor boasts its  own 
examples. 

Probably  the simplest and most widely occurring  point process 
is the one-dimensional homogeneous Poisson process [ 11 4 3 1 .  
It plays the role that  the Gaussian process does  in the theory of 
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continuous  stochastic processes. The homogeneous Poisson 
point process (HPP) is characterized by a single quantity,  its 
rate, which is constant. One of its distinguishing features is 
that  it evolves in  time  without  aftereffects. This means that 
the  occurrence times and number of events before an arbitrary 
time have no bearing  on the  subsequent  occurrence  times  and 
number of events. It is said to have zero  memory. 

Because of its simple properties,  the HPP turns  out  to be a 
suitable building block for more complex  point processes that 
appear to resemble the Poisson process little, if at all. We all 
recall, no  doubt, a very important  property of this process: 
pass an HPP through  a lined filter and out comes shot noise. 
This result is probably  just  a shade younger  than  electrical 
engineering itself. 

There are many generalizations of the H€T. One  case that 
has  been studied extensively is the  doubly  stochastic Poisson 
point process (DSPP), which diffels from the HPP  in that  the 
rate is no longer constant.  Rather, it takes  on  a  stochastic 
nature of its own. This process was f i t  examined by  Cox 
(and by Bartlett  in  the discussion to Cox’s paper) [41. Cox 
provided an example of its use in textile  technology.  The 
designation DSPP w a ~  introduced to emphasize that  two kinds 
of randomness occur: randomness associated with the Poisson 
point process itself and an independent randomness associated 
with its  rate.  The earliest connection of the DSPP with elec- 
trical engineering appears to be in  the  work  of Darling and 
Siegert [SI and Siegert [61.  The DSPP subsequently became 
the basis for  understanding the photodetection of light, and 
many of the early papers in  this area [7] -[ 151  drew  heavily 
on  results derived  in connection with classical radio receiver 
communications and noise [ 161 -[ 181. At the same time, the 
DSPP arose in the  context of the  detection of acoustic noise 
in  the  auditory  system [ 19 I . , A number of excellent  secondary 
sources, detailing the  history and properties of the DSPP, are 
available [3] ,  [201-[271. 

In  certain areas of study,  multiplication  effects in point 
processes play an important  role; in most such cases, a given 
(primary)  point process is multiplied  in some fashion to give 
rise to a second (subsidiary)  point process. Cathodolumines- 
cence 128 I , [ 29 I , which is responsible for  the television, oscil- 
loscope, and radar images, provides a simple but i m p o p t  
example. Each eiectron  incident  on  the  phosphor in the screen 
releases a random number of photons, which form the image 
that we observe. Multiplication can also occur  in successive 
stages, so that each generation of particles  produces  a new 
generation, and so on. Such branching (cascade) processes 
can be  used to describe the noise properties of devices like 
avalanche detectors  and  electron  multipliers [ 301 , [ 3 1 ] . 

There have  been many theoretical  characterizations of the 
multiplication of events. In  the  mathematical-statistics com- 
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munity,  the formulations have  been complete but  often  too 
general [321 to be directly useful in electrical engineering. In 
the electron-device  noise community, on  the  other hand, 
effective formulations have  been  developed, but  they have 
been framed almost  exclusively in  terms of the lowest-order 
properties of  these  processes: the mean, variance, and spectrum 
[ 3 1 1 ,  [ 331 ; the multiplication, furthermore, has been assumed 
to be instantaneous  in most of these treatments. Additional 
information  about the physical nature of a process can be 
gleaned from  its higherarder properties. Measurements of  the 
probability density of the  time between consecutive  events, 
for example, or  the  number of events  registered  in a fixed 
counting time, can  provide  valuable  clues about underlying 
physical  mechanisms. 

Indeed, subsidiary events are often  not generated instan- 
taneously, and the multiplication properties alone  are insuf- 
ficient to  characterize such a process. In many physical situ- 
ations,  there will  be  delay  relative to the primary event in 
accordance with a particular probability law, so that  the time 
behavior of the multiplication process comes into play. 

In this paper, we examine the. properties of a particular 
multiplication model that  incorporates time effects, and is 
both mathematically tractable and useful in electrical engineer- 
ing and physics. The subsidiary  process is taken to  be a Poisson 
point. process  whose rate is a linearly filtered version of the 
primary process,  which is assumed to  be  an  HPP. Since an 
HPP passed through a linear fiter yields shot noise, we call our 
process a shot-noisedriven  doubly stochastic Poisson point 
process  (SNDP). It is a special  case  of the DSPP. Each primary 
event is multiplied into subsidiary  events, but with a time 
course  prescribed by the linear fiiter impulse  response function. 
Thus event multiplication and dynamics  are combined into 
one model. Bartlett [34] proposed a similar twodimensional 
model for use in  plant ecology some time ago, whereas  Vere- 
Jones and Davies constructed this kind of formulation (they 
called it a “trigger” model) in connection with the  study of 
earthquake occurrences [ 35 I .  Bartlett explicitly showed that 
the SNDP is a special but  important example of a cluster point 
process  developed  by Neyman and Scott  [36],  [37]  to de- 
scribe the distribution of galaxies in space. This identity is 
explored by  Lawrance in his excellent contribution to  the 
point-process book edited by Lewis [ 21 1.  

In Section 11,  we describe random events  arising from multi- 
plication processes. The properties of the SNDP, including 
the counting statistics and time statistics, are  provided in Sec- 
tion 111. In Section IV, we treat  the multifold statistics and 
spectrum. A number of important applications of the SNDP 
are  considered in Section V, including scintillation detection, 
photomultiplier noise induced by  ionizing radiation, cathodo- 
luminescent emission, electronography, and  X-ray radiography. 
The conclusion is provided in Section VI. 

n. RANDOM EVENTS ARISING FROM MULTIPLICATION 
PROCESSEs 

A. Instantaneous  Multiplication 
Consider the primary point process  whose events are  illus- 

trated  in Fig. l(a). The  number of events (counts) within a 
time interval [0, TI is a discrete random variable m having a 
moment-generating function  (mgf), e,($) = (exp (-sm)). The 
angular brackets represent an ensemble  average. Let each 
primary event produce independently A subsidiary events (as 
illustrated in Fig. l(b)), where A is a discrete random variable 
that has an mgf QA(s) = (exp (-SA)). The total number of 
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Fig. 1. Random  multiplication of events. (a) Primary events. (b) Sub- 
sidiary events. (c) Randomly  delayed subsidiary events. 

secondary events n is given  by 

n =  x A k  
k = 1  

where A& are independent values of A .  If A and m are statisti- 
cally independent, then  it can be shown [ 1 1, [ 3 11, [ 331 that 
the rngf of n, Q,(s) = (exp ( - s n ) ) ,  is given  by 

Q n b )  = Qm(-ln QA(s)). (1) 

This equation can  be  used to relate the  moments of n to 
those of m and A. The means  are related by 

( n )  = ( A )  (m), (2) 

the second factorial moment obeys the equation 

(n (n  - 1)) = (A)2(m(m - 1)) + (m) U(A - l)),  (3) 

and the variances  are  expressed as 
var ( n )  = ( A > ~  var (m) + (m) var (A).  (4) 

Equation  (4) is known as the Burgess  variance theorem [38], 
(391. 

When the primary events constitute a Poisson point process, 
the random variable m has a Poisson distribution with mgf 

Q,(s) = exp [(m) ( e -S  - 1) l  ( 5 )  

which, when combined with ( l ) ,  gives rise to  

QAs) = exp [(m) ( Q A ~ )  - 111. (6) 

The count variance  associated with (6) is then 

var ( n )  = (1  + a l )  (n ) ,  (7) 

where 

a1 =- var(A) +(A)- 1. 
(A) 

Equation  (7) demonstrates that  for a Poisson primary process, 
whatever the distribution of the multiplication factor A ,  the 
variance of n is always proportional to  the mean (n).  The  ratio 
var (n)/ (n> is known as the dispersion ratio  or  the  Fano  factor 
[31]. We denote parameter a l  as the excess Fano  factor. 
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When the  multiplication  factor A also has a Poisson distribu- 
tion, ( 6 )  yields 

Q,(s) = exp (%{ exp [ ( A )  (e-’ - 1)l - 1 , (9) 1) 
which  is the mgf for the Neyman Type-A distribution [401, 
[41],  [2],  [19],  [26],  [371.  The variance is obtained  from 
(7)  and (8) : 

a1 =(A). (10) 

The Neyman Type-A distribution has a variance larger than 
that of a Poisson distribution of the same mean. 

When the  random variable A is describable instead by a 
Bernoulli distribution, which associates the values 1 and 0 with 
the probabilities (A) and (1 - (A)), respectively,  the  factor a1 
equals 0 and n is Poisson. The Poisson distribution  is  therefore 
invariant against Bernoulli random  multiplication or deletion 
[ 1 1 .  It should also be noted [ 241 that all DSPP’s are  invariant 
under Bernoulli Selection (in  the sense that  the random  inte- 
grated  rate W is reduced to ( A ) W ,  see Appendix A). WhenA 
has a  geometric (Bose-Einstein) distribution, a1 = 2 (A) ; this is 
sometimes called the Polya-Aeppli distribution. Values of a1 
for  other  distributions can be  easily obtained [2],   [3 1 1 ,  [33]. 

B. Multiplication  with  Random  Dehy 
In  the previous subsection (Fig .  l(a),  (b)),  a  primary event 

was assumed to instantaneously  excite  a  random  number of 
subsidiary events. In many physical systems,  a  time delay will 
be inherent  in  the  multiplication process, and that  time delay 
will  itself be random, as illustrated  in Fig. l(c). The primary 
events may or may not be included in the final  point process. 

The  nature of the  randomness of the delay times that sepa- 
rate subsidiary events from  their  primary event can take dif- 
ferent  forms.  In  the  Neyman-Scott model [361,  (371,  the 
primary process is taken to be an HPP, which is excluded  from 
the final process. The  multiplication  factor can assume an 
arbitrary  distribution, and the delay times, ~ 1 , 7 2 ,  * * * , TA , 
measured from  the  primary  event,  are assumed to be statisti- 
cally independent  and  identically  distributed. This process has 
been  used  by  Neyman and Scott  to describe a  broad  variety of 
phenomena  from  the  distribution of  larvae on small plots of 
land to the  distribution of galaxies in  space. It has also been 
used  by Vere-Jones [42], in connection  with  the  occurrences 
of earthquakes in  New Zealand. In  the Bartlett-Lewis model 
1431,  1441,  primary events are again described by an HPP, but 
they are included  in  the  final  point process. Again, the multi- 
plication  factor has arbitrary  statistics.  In  this case, time 
intervals between successive subsidiary pulses that belong to 
a  common  primary  event,  AT^, A72, - * - , A ~ A ,  are assumed 
statistically  independent and identically  distributed, Le., they 
form  a segment of a renewal process. This process has been 
used  by Bartlett [43]  for traffic  studies and  by  Lewis [ 4 4 1  for 
the  distribution of computer  failure  times. 

C. The  Shot-Noise-Driven  Doubly Stochastic Poisson  Point 
Process 

We characterize  the  randomness of both  the multiplication 
factor and the delay times by assuming that an inhomogeneous 
Poisson process produces  the  secondary events. The  occur- 
rence of a primary event (at t = 0 ,  for  example) is considered 
to.  generate  a  continuous  (usually decaying) function h(r) 
which acts as the  rate of the  inhomogeneous Poisson process. 

Fig. 2. Production of SNDP  events. (a) primary Poisson  events.  (b) 
Filtered Poisson wents (shot noise).  (c) Subsidiary doubly  stochastic 
Poisson events  whose rate is shot noise. 

Fig. 3. Model for generrrtion of the SNDP. 

The  multiplication  factor has a Poisson distribution of mean 

a 

(A) = h(t)   dr.  (11) 

The delay times 71,72, - * - ,7,g are statistically  independent 
and identically  distributed  with  a  probability  density  function 
[11-[31,  [271 

P ( 7 )  = h(7) exp [ -6’ h ( t )   d t ] / [  1 - e - rh( f )a t ] .  (12) 

This process is therefore  a special case  of the Neyman-Scott 
model-a case in which A is Poisson with  a mean  given  by (1 l), 
and with  a  delay-time  distribution given by (12).  The  inter- 
event times are not  identically  distributed because of the  non- 
stationarity of the  rate;  therefore,  this process is not  a special 
case  of the Bartlett-Lewis model. 

It will  be useful to consider  matters  from an alternative  point 
of  view. The sum  of the functions associated with  primary 
events that occur at the times ( t i )  

X(t) = h(t  - ti) 
i 

constitutes  a  filtered Poisson process, or shot noise (as illus- 
trated in Fig. 2). If the primary events are stationary, this will 
also be a  stationary  stochastic process The subsidiary events 
now form  a DSPP whose stochastic  rate is the  shot noise X(t); 
this provides the  rationale  for  the name SNDP. The  structure 
of the model  is  schematically  illustrated  in the block diagram of 
Fig. 3, which shows its multiplicative Poisson nature. Physical 
systems that are describable by an SNDP model will exhibit 
a physical structure  characterized by these three cascaded 
blocks. Several examples are  presented  in  Section  V. 

In. PROPERTIES OF THE SHOT-NOISE-DRIVEN DOUBLY 
STOCHASTIC POISON POINT PROCESS 

A block diagram for  the SNDP is  presented  in Fig. 3.  A 
homogeneous Poisson point process of rate p is filtered by a 
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time-invariant linear  filter,  with  a nonnegative impulse response 
function h(t), resulting in  a  shot noise process h(t). The pro- 
cess h(t)  forms  the  stochastic  rate for a DSPP,f ( t ) .  An impor- 
tant  parameter is the average number of secondary events 
produced  per primary event 01). For simplicity we shall use 
the  symbol a = (A) ,  so that (see (1 1)) 

00 

a=  1 h(f) dt .  (14) 

The process is completely described by the  parameter p and 
the function  h(f). We assume, also for  simplicity, that t is the 
only  important variable in  the  stochastic process h. In certain 
applications, e.g., photocounting  detection,  spatial variables 
may also play a  role,  and  this can be incorporated into  the 
model  without  difficulty. We are interested  in  determining 
the  statistical  properties of the SNDP, including 1) counting 
statistics,  i.e.,  the  statistics  (probability  distribution and 
moments) of the  number n of events (counts) registered in 
the  time  interval [0, TI ; 2) time  statistics, i.e., the  probability 
density  functions  for  the forward recurrence  time and the 
interevent  time; and 3)  multifold  statistics,  including  the  joint 
probability  distribution of the numbers of counts n l ,  n2 ,  * * in 
multiple  adjacent  time  intervals, and their  moments. This task 
can be achieved  by a  straightforward  application of the  statis- 
tical properties of a general DSPP [3],   [4],   [24],   [26],   [27],  
and of shot noise [ 11, [ 161,  [451-[471. These properties are 
reviewed  in Appendexes A and B, respectively. In  this  section 
we discuss the singlefold statistics; in Section  IV,  the  multifold 
statistics  are  presented. 

As indicated  in Appendix A, it is useful to define  the  random 
variable 

W = lT h( f )  d t ,  (15) 

which represents  the  integrated  rate of events of the process 
over the interval [0, TI .  Once the moment-generating func- 
tion of W, Qw(s) = (exp (-sW)), is determined,  the singlefold 
statistics of a DSPP can be directly  determined by use of the 
simple formulas  presented  in Appendix A. These include the 
mgf &(s) for  the  number of counts n, the probability  distri- 
bution p ( n ) ,  and the  factorial  moments Fim). Also included 
are the  probability  density  functions P ~ ( T )  and P ~ ( T )  for  the 
forward  recurrence  time  (time  from an arbitrary  point to the 
first  event)  and  for  the  interevent  time, respectively. 

To  determine  the mgf  of the  integrated  rate W, we require 
knowledge of the  statistics of the  rate h(t). In our case, fortu- 
nately, X(t) is a  shot-noise process whose properties are well- 
known (see Appendix B). In  particular  the  momentgenerating 
function is 

00 

Q ~ ( s ) = ( e - ~ ) = e x p { p  11 d t } .  (16) 

The  random variable W is the  integral of a  shot noise process 
h(t) over an interval [ O ,  T I .  We note that  the integral of a 
shot noise is simply another  shot noise. Thus we can regard 
W as a sample of a  shot-noise process, generated by a  homo- 
geneous Poisson point process of rate p,  and filtered by a linear 
filter of impulse response hT(t), which is simply a convolution 
of h ( t )  with an integrator over the  time  interval [0, TI. This 

LINEAR FILTER h-, [ I 1  

Fig. 4. Model for generation of the  integrated  rate W. 

is shown schematically in Fig. 4, whence 

hT(t) = dT h(t + t ' )  dt' .  (1 7) 

Thus the mgf for W becomes 

Qw(s)= exp [e { 1: -s* T 0 )  - 1 ] d t  }. (18) 

An alternative  route to deriving (1 7)  and ( 18) is to write W = 
h(iAt)At and use the  multifold mgf for (h ( f i ) } ,  presented 

in  (B9),  in  the  limit (s i }  = s. 
Given the mgf  of W, represented  in  (18), we now proceed to 

determine  the  statistics of n, as a  function of p,  T, and h(t) by 
using (A4) and (A5), and the  probability  density  functions for 
the  forward  recurrence  time and the  interevent  time, by  using 
(A71449). 

A .  Counting  Statistics for  the  SNDP 
The SNDP is a special DSPP whose integrated  rate W is  de- 

scribed by the  momentgenerating  function given in  (18).  In 
this  section we use (A4)-(A6) to determine  the  statistics  (mo- 
ments and probability  distribution)  for  the  number of counts 
n registered in  the  time  interval [ O ,  TI .  We consider several 
limiting and special cases. 

1 )  The Moments of n: Using (1  8) and (A4) we  have derived 
the following recurrence  relation  for the mth-order  factorial 
moment of n : 

where the  coefficients al are 
. I-- 

and the mean number of counts (n) is 
OD 00 

(n )  = p j- hT(t) d t  = pT h(f) d f  = p a r  

The first four  factorial  moments  are  explicitly  written as 
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An important property of any DSPP, and therefore of the 
SNDP  in particular, is that  it is over-dispersed  relative to  the 
HPP. This means that  the  count variance,  var ( n ) ,  is greater 
than  that  for an HPP of the same mean, as is evident from  (22). 

An equally important property of the SNDP is the  fact  that 
the variance  is proportional to  the mean. This is the property 
discussed  previously, in connection with a Poission primary 
process and instantaneous multiplication with arbitrary statis- 
tics (see (7)).  The parameter al  (the excess Fano  factor) is, 
for  the SNDP, 

a1 = alf 9 (23) 

where 

with 

[(TI = JW h( t )h( t  + r )  d t  / [ J m  h ( t )  dtj’. (25) 

The excess Fano  factor, which determines the excess multipli- 
cation noise, is therefore directly proportional to  the multi- 
plication parameter a (the average number of secondary events 
per primary event), and inversely proportional to  the param- 
eter f ,which we refer to as the number of degrees of freedom. 
It will  be shown subsequently that  in  the limit of long counting 
times, i.e., T >> r p ,  where rp is the characteristic time scale 
of h ( t ) ,  R approaches 1. In  the  opposite  limit, i.e., T << r p ,  
f approaches r p / T ,  a large number. 

Another parameter of interest is the coefficient of skewness, 
S, which is given  by 

S=(An3)/[(AnZ)I3/’  =(n)-’I2 ( 1 + 3 ~ ~ + a ~ ) / ( l + a ~ ) ~ / ~ .  (26) 

For an HPP, S = (n)- lI2.  
2 )  The  Probability  Dism‘bution of n: Using  (AS), together 

with (1 8), we obtain the following recurrence relation for  the 
counting distribution p ( n ) :  

--OD 

n 

I=O 
( n  + l ) p ( n  + 1) = (n) 2 Clp(n - 2 )  

where the coefficients CI are determined by the shape of the 
impulse response function h T ( t )  through 

Equations (27) and (28) are  derived by forming the  nth deriva- 
tive of both sides of (18), applying the Leibnitz rule, and using 
(A5). 

3) Counting  Statistics in the  Limit of Long  Counting  Time: 
When the counting time T is much longer than the character- 
istic time scale of the impulse response function h( t ) ,  we can 

replace ( 17) by the approximation 

t a, - T < t < O  

0, elsewhere. 
h d t )  = 

Consequently, ( 18) yields 

where ( n )  = p T .  Examination of (29) shows that W has a 
fiied-multiplicative Poisson distribution, i.e., it takes on  the 
values 0, a, 2a, - * , ka, * * where k has a Poisson distribu- 
tion  [48]. This is, of course, to be expected because of the 
assumption that h ( t )  is  very  narrow.  Using (A2) we obtain 

which is precisely the mgf  of a Neyman TypaA distribution 
of parameter a (see (9)). This  is avery  important result because 
it demonstrates that  there is a unique SNDP counting distribu- 
tion  for arbitrary h( t ) ,  in  the limit of long counting time, and 
it is the Neyman  Type-A [401,  [411,  [481,  [491. Various 
properties of this distribution are  provided in Appendix C.  We 
note  that  in this case the excess Fano  factor a1  is equal to  the 
parameter a, i.e., the degrees-of-freedom parameter kl = 1. 

4 )  Counting  Statistics in the  Limit of Short  Counting  Time: 
For a counting time T much shorter  than  the characteristic 
time scale of the impulse response function h( t ) ,  (17) can be 
approximated by 

h d t )  = Th(t )  (3 1) 

and (1 5 )  becomes 

W = TX(t) .  (32) 

Substitution  in  (1 8) results in 

00 

Qw(s) = exp { pJ-OO - 11 d t  }. (33) 

The parameters { a l } ,  which determine the moments of n (see 
(19)-(22)), are then approximated by 

00 

a1 = f [h ( t ) ]”   d t .  (34) 

In particular, the excess Fano  factor a1 , which determines the 
excess  variance, is 

(11 =“TITp (35) 

where 

rp = [lm h ( t )  d t ] ’ / I -  h z ( t )  dt  (36) 

is the width of the function h( t ) .  Therefore,  in  this limit, the 
number of degrees  of freedom becomes 

R = rp /T ,  (37) 
which  is  large as mentioned earlier. The excess  variance is 
reduced in  the limit of short counting time [SO]. Examples of 
counting statistics in this limit, for a number of filters of differ- 
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( 0  I ( b )  ( C )  

Fig. 5. (a) k( t )  for a rectangular  filter. (b) hT(t) for a rectangular  filter 
when T < T ~ .  (c) h T ( f )  for a rectangular filter  when T > T~ 

ent shapes, are given in Appendix D. It is shown that when 
the  fiiter is rectangular,  the  distribution becomes Neyman 
Type-A  of parameter a1 = aT/rp. 

It should be noted when a1 + 0, corresponding to vanishing 
T or a, the  counting  distribution  eventually  approaches  the 
Poisson limit. 
5) Counting Statistics for Special Cases with Arbitrary 

Counting Time: 
a) Rectanguhr  filter: When h ( t )  is  rectangular, h d t )  be- 

comes trapezoidal as shown in Fig. 5 .  Substitution in (18) 
results in 

where 8 = T/rp. In the limits of short  counting  time (8 << 1) 
and long counting  time (8 >> l),  (38) leads to  the Neyman 
Type-A counting  distribution  with  parameters 4 and a, 
respectively. 

The factorial  moments of n are computed by  using the re- 
currence  relations provided in (19)-(21). The  coefficients a~ 
are now 

The excess Fano  factor a1 = a/t, where the degrees-of-freedom 
parameter k is now given by [SO]  

The  dependence of k on 8 is presented in Fig. 6. Note that 
whenfl >> l,M+ 1. Whenfl<< 1, I = l/S. 

The  three  parameters Ol, a, and r p )  that  characterize  the 
SNDP can be determined by measuring the mean (n> and the 
variance var(n) at two counting  times T. From  a  measurement 
of a1 for T >> r p ,  a can be determined, so that  a subsequent 
measurement of a1 for  T << rP will yield rp .  Using (n) = paT 
provides p. 

0.1 IO 

Fig. 6. Dependence of the degrees-of-freedom parameter t on  the ratio 
p =  ThP.  The exceaa Fano  factor a, = a/R.  Filter is rectangular. 
Observe that 'I = rp/T f a  T/rp << 1 and 'I = 1 for T/rp >> 1. 

( 4  cb) 
Rg. 7. (a) k( t )  for an exponential flter. (b) hT( f )  for an exponential 

filter. 

The  probability  distribution p ( n )  can be obtained by using 
the recurrence  relation provided in  (27), where now 

(40) 

and where r(m + 1, x) is the  incomplete gamma function speci- 
fied in (D8).  The  zero-count  probability p ( 0 )  is determined 
from (38) by setting  p ( 0 )  = Q w ( 1). 

b) Exponentially decaying filter: Whe,n the  fiiter  is expe  
nential, h ( t )  = (2a/rp) exp (- 2t/rp), and as illustrated in Fig. 7, 

[I - e-'p) e - ' * h ,  0 < t 
h T ( t )  = a i l  - e-2pe-2f/Zp], -T < t G o (41) 

t < -T, 

where  again 0 = T/T~. A rather complex expression for Qw(s) 
can be obtained by substitution  in  (18).  The  moments  of n 
are obtained  from (19)-(21), which lead to 

The excess Fano  factor a1 = a/k(, where the  degreewf-free- 
dom parameter R is now given  by [SO] 

k = 2P/(e-'@ + 20 - 1). (43) 
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lo[\ 5 

1 
0.1 1.0 10 

8.1 
r P  

Fig. 8. Dependence of  the degrees-of-freedom parameter 9 on  the  ratio 
p =  TITp. The  excess  Fano  factor a1 = a a. Filter is exponentid. 
Observe that = Tp/T for TITp << 1 and c = 1 for TITp >> 1. Note 
the  similarity to  Fig. 6. 

The behavior of shot-noise light and thermal  light has recently 
been contrasted in the case  of an exponentially decaying corre- 
lation [ S O ] .  As with the rectangular case (or with  arbitrary 
h ( t ) ,  for  that  matter), when T >> r p ,  f + 1.  When T << r p ,  
f = rp/T. The  dependence of f on T/rp is presented in Fig .  8. 
The value of R decreases montonically  from T ~ / T  to 1. Again, 
we can make effective use of a mean and variance measure- 
ment at two  different  counting times to extract all of the 
pertinent  parameters. 

The  counting  distribution p ( n )  can be determined by use of 
the  recurrence  relation  in ( 2 7 )  together  with  the  coefficients 
Cl determined  from ( 2 8 ) ,  which are 

where - ,(I + 1, x )  is  given  by (D8) and 

The  initial value p ( 0 )  for  the  recurrence  relation is computed 
from (27) : 

- qo(ae-28)1 - 2 H 1 -  e - & ) ] } .   ( 4 7 )  

Fig. 9 illustrates  the  effect of the  parameters 01 and 6 = T/rp on 
the  counting  distribution  for  a  fixed overall mean count ( n )  = 5 .  
For vanishingly small 6 and a& the  distribution  approaches 
the Poisson [ 501. For very  large f i  (solid curves), the  distribu- 
tion is Neyman Type-A of parameter a. As a increases, the 
Neyman Type-A distribution becomes substantially  different 
from the Poisson and begins to exhibit scallops as illustrated 
by the solid curves in Fig.  9 [ 4 1 1 .  For completeness, we note 
that  the  counting  distribution  for an inhomogeneous single 
decaying exponential was obtained previously for  arbitrary 
T [ 5 1 ] .  

EXPONENTIAL  FILTER 
<”> = 5  

,..-.., 

NUMBER OF COUNTS ( n l  

(a) 

EXPONENTIAL FILTER 
< o >  = 5  

NUMBEROF COUNTS ( n l  

(c) 
Fig. 9. Counting  distribution  p(n)vwsud  count  number n for  the SNDP. 

with  time  constant T / 2 .  In all cases the  mean  number  of  events in 
The impulse  response  function of the  shot-noise  fdter is exponential 

ratio ~ T / T ~  takes on  the values 0.1 (dotted  curves), 1 (dashed  curves), 
the  counting  time #IS ( n )  = 5. Distributions are shown when  the 

and 10 (solid  curves). (a) Multiptication parameter a = 1. (b) a = 2. 
(c) a = 10. For TITp large,  the  counting  distribution  approaches  the 
Neyman  Type-A. 

6 )  Counting  Statistics in  the Limit of Dense  Shot  Noise: It 
is well known  that a shot-noise process approaches  a Gaussian 
process [ 4 6 ]  in  the  limit  in which its pulses overlap consider- 
ably, i.e.,  when p P  >> 1. In  this  limit,  the  stochastic driving 
rate A(t)  of our SNDP is Gaussian, and consequently its integral 
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W will also be  Gaussian, with mean ( n )  and variance 01 ( n  ). The 
counting  distribution p ( n )  for this case  can be determined by 
finding the Poisson transform (A6) of a (truncated) Gaussian 
distribution. Recurrence relations for this p ( n )  have been 
obtained by Risken [521, in the course of evaluating the pho- 
ton statistics of laser light. Risken showed that when the mean 
is much larger than  the square root of the variance, p ( n )  itself 
approaches a Gaussian distribution. For the SNDP, this means 
that when prP >> 1 and ( n )  >>al ,  p ( n )  becomes Gaussian, 
independent of 0 and the form of h( t ) .  For large 8, we already 
know that the counting distribution is  well described by the 
Neyman Type-A; this latter distribution does indeed converge 
in distribution to  the Gaussian as ( n )  + 00 [41]. 

B. Time  Statistics for the SNDP 
In this section, we determine  the  statiitics of the forward 

recurrence time and the interevent time, for the SNDP.  Be- 
cause the SNDP is a special case of the general DSPP, the 
probability densities P1(7) and Pz(7) can be determined from 
the mgf  of the integrated rate W by using the formulas pre- 
sented in (A7)-(A9). Since we have already obtained explicit 
expressions for Qw(s),  the calculation of Pi(7) and Pz(7) is a. 
straightforward exercise. Using (17) and (18), we readily 
obtain 

It can be shown that  for 7 = 0, 

(7)P1(0) = 1 

where ( 7 )  = l/(X) = 1/pa is the mean value  of 7. The deviation 
of (r)Pz(O) from 1 determines the-degree of bunching of the 
point process. By using (B1) and (36) we can write ( 5  1) in the 
form 

Therefore the parameter prP, the average number of primary 
events within the relaxation time of the frlter, determines the 
degree of bunching of the SNDP. 

1 )  Rectangular  Filter: When h ( t )  is a rectangular function 
of width rP and area a, we can directly insert (38) into (A7)- 
(A9) to  obtain Pl(7) and Pz(7). The  outcome is provided in 

FORWARD RECURRENCE TIME 1 

EXPONENTIAL FILTER 

< r >  = 1 

FORWARD RECVRRENCE TIME I 

(b) 
Fig. 10. Forwardrecurrence-time probability density  function P,(?) for 

the  SNDP. The impnlse  response  function  of  the  shot-noise Nter is 
exponential  with  time  constant 7 /2. In dl cases the  mean forword 
recurrence  time is (7) = I. (a) F ~ L  time  constant r /2 = 1, multipu: 
cation parameter u = 0.1, 1, 10. (b) a = l;rP/Z = O . f ,  1, 10. P,(O) is 
always  equal to 1 / ( A  

Appendix E, (El) and (E2). The most interesting general con- 
clusion that we can draw from the results is that for r > rP,  
both PI (7) and Pz (7) are exponentially decaying. This is ex- 
pected because for 7 > T ~ ,  most events are associated with 
different primaries. 

When T~ << ( r ) ,  7 is more likely to be much greater than rP,  
so that the  entire  distributions P1(7) and PZ (7) become expo- 
nential  (with decay time (7)a/( 1 - e-u)) ,  as is the case for a 
Poisson point process. Similarly, when a << 1,  the exponential 
term in (El)  can be linearized, and P1(7) and Pz(7) become 
approximately exponential. 

2 )  Exponential  Filter: We can similarly obtain expressions 
for PI(T) and Pz(7) for an exponential filter. These are also 
provided in Appendix E, (E3) and (E4). 

In Figs. 10 and 1 1, we plot P1(7) and Pz(7) versus 7, for dif- 
ferent values  of T~ and a when ( 7 )  = 1.  Fig. 10 represents 
curves for P1 (T), where 7 is the forward recurrence time, whereas 
Fig. 1 1 represents curves for Pz(7), where 7 is the interevent 
time. When a is verysmd,  both  distriiutions, Pi(7) and P2(?), 
are approximately exponential. As a increases, the probability 
densities become skewed toward the 7 = 0 axis, which is a 
manifestation of bunching. When the mean time interval and 
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l o ’  - is given  by 

INTER-EVENT  TIME 1 

EXPONENTIAL  FILTER 
< r > = l  

INTER-EVENT  TIME I 

@) 
Fig. 11. Interevent  (pulseinterval)  probability  density function P2(7) for 

the  SNDP. The impulse response function of  the  shot-noise filter is 
exponential  with  time  constant rP/2. In all cam the mean interevent 
time is ( 7 )  = 1. (a) Time  constant rP/2 = 1, multiplication parameter 
c r = O . l ,  1, 10. ( b ) a =  1,7p/2=0.1 ,1 ,   10 .  

(Y are held fixed, decreasing rP similarly  skews the densities 
toward  the T = 0 axis, as is evident from the figures. 

IV. MULTIFOLD STATISTICS FOR THE SNDP 
A.  Counting  Statistics 

The  joint  statistical  properties of the  number of counts { n i }  
in N time intervals [ t i ,  ti + T i ] ,  j = 1, 2, - * - , N ,  for  an SNDP 
can  be determined by  using the  properties of doubly  stochastic 
Poisson  processes. Once the multifold mgf of the integrated 
rates 

tj+Tj 

wj = I, X(t) d t ,  j = 1, 2, - . , N (53) 

is determined, the multifold  factorial  moments <IIi,,ni!/ 
(ni - m i ) ! )  and the  joint counting  distribution p ( n l ,   n 2 ,  * . , 
nN) for { n i }  can  be determined by  using (A12)  and  (A13). 
To determine the mgf of { W j } ,  we  need the mgf of {X(t j )} .  
For a shot-noise process h(t), the multifold mgf is known 
((B9)I. By  generalizing the analysis presented  in Section 111 
to the  multifold case, we can easily show that  the mgf of { Wi} 

N 

where 

hTj ( r )  =[” h ( t  + t ’ )  d t ’ .  

We can therefore  determine the  joint statistics of { n i }  explicitly. 

B. Correlation  Function  and  Power  Spectrum 
The simplest special  case  is N = 2. Setting T1 = T2 = T in 

( 5 9 ,  and m l  = mz = 1 in  (A12), we obtain  the  correlation 
function  between  counts  in  time intervals T separated by a 
time delay T = tz  - t l  # 0, 

G$’)(T) = ( n l n 2 )  = p z  [II, h T ( X )  d l  

+ PJ-; ~ T ( x ) ~ T ( T  + x) d x ,  ( 5 6 )  

where h T ( r )  is  given  by (17). By use of (171, we can rewrite 
the  counting  correlation  function in  the form 

G ~ ) ( T )  = ( n Y  + ( n )  $(T), T # 0. (57) 

Here 
T T  

$(7) = 9 &T + t ’  - t )  d r   d t ’  

where 
Z 

f ( 7 )  =r h ( t )  h(t + 7) d r / [ l m  h ( t )  d t ]  ( 5 9 )  

is a normalized version of the  autoconelation  function of h( t ) .  
For T = 0, Gf)(O) = (n’), which according to (21) and (25), 

is 

-OD 

Note that $(O) = a1 , the excess Fano  factor. For  the usual ex- 
ample of an exponential impulse response function, h(r)  = ( 2 a /  
T ~ )  exp ( - 2 t / r p ) ,   ( 5 8 ) - ( 6 0 )  yield 

where 

b = [cosh ( 2 8 )  - 11 /28 )a = 28/(e-28 + 28 - 1) ( 6 2 )  
and 8 = TITp. The  counting correlation function is therefore 
exponential. Similar results have  been obtained  by Vere-Jones 
and  Davies [35]. 
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When the sampling time T is much shorter  than  the  time scale 

4(r) = a T W ,  (63) 

i.e., #(7) is proportional to t (7).  
The power spectral  density !~~ (a )  of the process, represent- 

ing fluctuations n( t )  - (n(t )> in  the number of counts  in an 
interval [ t, t + TI, can be determined by taking  the  Fourier 
transform of the  autocovariance  function c~,~)(T)  - ( n ) 2 .   his 
results in . a n  expression of the form 

sAn(@) = (n> + ( n )  @(a) (64) 
where @(@) is the  Fourier  transform of #(r). For a Poisson 
process, the second term of (64) disappears, and S&(rco) = (n) .  
It is clear, therefore, that the second term  represents excess 
noise. It is usual to  define the relative excess noise as 

of the  filter rP, (58) becomes approximately 

[sAn(a) - s&~n(a)l /s;n(a) = @(a). (65) 
For  a short counting  time (T<< rp) ,  equation  (63) applies 

and (59) gives 

%a) = - I m J J ) 1 2 ,  
T 

(66) a 
where H(a) is the trahsfer  function of the filter (i.e., the 
Fourier  transform of h(t)) .  For an exponential  filter,  the rela- 
tive excess noise  has a  Lorentzian shape 

@'(a) a T / [  1 + a 2 < / 4  1, (67) 

with an amplitude  proportional to a and T .  
In many situations  a  point process is  observed not by count- 

ing, but  rather by filtering  the incoming pulses to generate  a 
continuous signal,  which we denote as dt). If such  a  filter has 
a rectangular impulse response of width T and unit  area,  then 
s ( t )  would be identical to n( t ) ,  the  number of counts  in an 
interval [0, TI. Therefore,  the above results regarding count- 
ing statistics  (including  moments,  correlation, and power spec- 
tral  density) are also statistics of s( t ) .  In a  typical  situation, 
when the  point process represents  the passage of  electrons  in  a 
circuit, ( e / T ) n ( t )  represents  the  electric  current. Here, e is  the 
electronic charge, and T is the impulse response time  of  the 
circuit, when it is approximated by a  rectangular  function. 

V. APPLICATIONS OF THE SNDP 
The  mathematical  description discussed to this  point applies 

to a broad variety of phenomena. In the following, we deal 
with a number of applications of special interest  in  electrical 
engineering and physics. In  particular, we use the SNDP model 
for describing the following processes:  A) the  detection of 
scintillation  photons  created by nuclear particles; B) photo- 
multiplier noise produced by ionizing radiation; C) cathodolu- 
minescence; and  D)  X-ray radiography and electronography. 
The SNDP model will also be useful in  studies of related areas 
such as image intensification,  the  detection  of  particles by 
means of devices such as avalanche photodiodes and electron 
multipliers, and  visual perception. 

A.  Scintillation  Photon  Counting 
1)  Description of the  Process: The  detection of ionizing 

radiation is often accomplished through  a  radiation-matter 
interaction in which a single highenergy  particle  produces  a 
.shower of particles of lower energy. A case in  point  is  the 
scintillation  detector, which is a  combination of a scintilla- 
tion  crystal (eo., NaI : T1, plastic)  with  a  photomultiplier  tube 

~ ~ S S O N  

cL PHOTON - OF LUMINESCENCE I W I Z I N G  
RATE OF PRODUCTION 

~ PHOTON 
POISSON 

*(, , - 
(OJl* 1 1 1  I I h l t l  l r a t r r l  

- 
EMISSION PHOTONS 

- 
RADIATION 

I ' I  - - 
Fig. 12. Model for the  photon  point process  generated by sciotiIl.tion 
radiation, cathoddumineacence, and photduminescence. O k m e  
the  relation  to Fig. 3  which is the  mathematical  model  studied here. 

[53]. Conditions  for  the validity of the SNDP in describing 
scintillation  detection are that  the  incident  primary ionizing 
particles (e.g., electrons, gammas, protons) be representable 
as a  homogeneous Poison point process, and that  each  primary 
event have associated with it an impulse response function h(r) 
that  directly governs the  rate of production of Poisson optical 
photons. 

A  model  for  the physical process is illustrated in Fig.  12. It 
is seen to be identical  in  form to the  block diagnun presented 
in Fig. 3, so that  the resulting photon emissions form an SNDP. 
The  function h ( t )  will often be approximately a decaying 
exponential, so that  the  counting and time  statistics are given 
by (27), (44)-(47) and (El), (E3),  (E4),  respectively.  The 
description is completely  characterized by 1.1 and h( t )  and there- 
fore, in this case, by three  parameters: 1.1, the  rate of the pri- 
mary process; a, the  multiplication  parameter; and rp,  the 
lifetime of the process of secondary event generation. If  we 
perform  photon  counting, we must  adjoin T, the  counting 
time. It is clear from  Section III-A3, that  in  the limit of count- 
ing times much longer than  the  exponential decay time, the 
counting  distribution will reduce to  the Neyman Type-A for 
arbitrary h ( t ) .  It is often assumed in the literature, generally 
tacitly,  that  scintillation  photon  counting  statistics are describ- 
able by the  fiied multiplicative Poisson distribution;  this  pro- 
vides an appropriate  approximation  only for T >> rP and 
a >> 1, however [41]. Of course,  in  those cases where the 
secondary  events are not  describable by a Poisson process, the 
SNDP is not  the proper  representation. 

2)  Experiment: A series of counting  experiments of radio- 
luminescence  photons  produced  in glass has been recently 
carried out [50]. High energy 0- particles  from  a 9oSr-90Y 
equilibrium-mixture  source  irradiated  the Coming 7056 glass 
faceplate of an EMR type 541N-01 photomultiplier  tube  from 
a  distance of about 11.5 cm. The maximum 8- energies were 
0.54 and 2.23 MeV for  the  %r and respectively, and the 
0' flux was -8.2 X lo3 cm-2 s- l .  External light was ex- 
cluded. The  photomultiplier  anode pulses  were  passed through 
a  discriminator and standardized. Unavoidable system dead 
time was -60 ns. The  standardized pulses  were counted during 
consecutive fixed counting  intervals ( T  = 400 ps) and the 
counts were recorded.  The  experiment was performed  repeat- 
edly to obtain good statistical accuracy, and a histogram repre- 
senting the relative frequency of the  counts was constructed. 
The  total  duration of a  run was about  4 min. In  the  particular 
experiment we illustrate,  the observed  mean count was 85.89 
(this  number was substantially higher than  the mean dark count 
which could therefore be neglected) and the observed count 
variince was 429.58.  The  data are shown as the  dots in Fig.  
13. The solid curve represents  the Neyman-Type A  theoretical 
counting  distribution  with  the  count mean and variance fixed 
at  the experimental values. It is clearly in accord with the 
data. When one assumes that rp << T (')R = l), (C3) yields an 
experimental  multiplication  parameter a = 4.0. A Poisson  dis- 
tribution  with mean 85.89  (indicated  by  arrow) is plotted as 
the dashed curve in Fig. 13 ; clearly it bears no relation to  the 
data. 
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Fig. 13.  Photon counting  distribution p ( n )  versus number of photon 
counts n. Data (dots)  represent  radioluminescence photon registra- 
tions  from  the glass faceplate  of a photomultiplier  tube,  induced  by 
’ O S  - ”YP- rays. The counting  time T =  400 w. The experimental 

solid curve repredents the  Neyman Type-A theoretical  counting dik 
count mean and variance are 85.89 and 429.58, respectively. The 

tribution with the  same values of  count mean and variance (a = 4.0). 

shown aa the dashed curve. After Fig. 2 of the paper by  Teich  and 
The P o k o n  distribution with mean 85.89 (indicated by arrow) k 

Saleh [SO] .  

Because the primary process in this case consisted of high- 
energy charged particles (electrons), Cerenkov radiation could 
have  been produced in addition to luminescence radiation. 
However,  even if a large number of photoelectrons were  gener- 
ated by the Cerenkov photons arising from a single particle, 
they would nevertheless appear as a single (large) photoelec- 
tron pulse since the Cerenkov radiation emission time is much 
shorter  than  the  transit  time in the photomultiplier. In the 
presence of kerenkov  radiation,  therefore,  the  (unmarked) 
total point process will include the primary as well as the sub- 
sidiary  process.. An  analysis of this union process will be 
presented at a later  time, but  it will be  well characterized by 
the SNDP for a >> 1. 

B. Photomultiplier  Noise  Induced by Ionizing  Radiation 
In  certain applications in which  we  wish to  observe photon 

arrivals  by  using a photomultiplier  tube, e.g., in  astronomy 
conducted at high altitudes or  in space, the description provided 
above  may  be characteristic of the noise rather  than of the 
signal. Viehmann and Eubanks [541,[551 have  discussed 
sources of noise in  photomultiplier  tubes  in  the ionizing  radia- 
tion  environment of space. Such noise may arise from several 
mechanisms such as luminescence and Cerenkov radiation in 
the photomultiplier  window;  secondary  electron emission 
from  the window, photocathode,  and  dynodes; Bremsstrahlung 
in  turn causing such secondary electron emission; cosmic-ray 
bursts;  and, of course, thermionic emission dark  current. These 
effects clearly  degrade both  the dynamic range  and the photo- 
metric accuracy of low-light-level measurements, and  therefore 
must  be properly modeled. It is evident from the experimental 
results reported  in the previous subsection that  the SNDP  pro- 
vides a sound  point of departure  in modeling a number of these 
sources of noise.  Luminescence will be the  dominant source 
of noise in many applications. 

C.  Cathodoluminescence 
1 )  Description of the  Process: Cathodoluminescence  is  an 

important process in which a beam of accelerated electrons 
incident on a luminescent material (e&, a phosphor) induces 
the emission of light [ 281, [ 291. It is the process responsible 
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UORYALIZED FORWARD RECURRENCE TIME r/(r> 

Fig. 14. Dots represent the  relative  frequency of tb -e to  the first 
cathodoluminescsnt  photoelectron  event for a YVO, :Eu3+ phosphor 
with  the  exciting  electron  energy  fixed at 10.2 keV. The mean  photon- 
counting  rate wm 2.54 X lo4 s-’ and  the mean dark counting rate 

which represent the SNDP theoretical  probability  density function 
was 1.28 X 10’ 3-’. The solid curve is a plot of (El), @3), and (E4), 

(T)P,(T) versus the  normalized forward recurrence time T/(T) f a  an 
exponentially  decaying  shot-noise  pulse,  with F =  39.7 w, a = 9.6, 

retwxtc&. Data adapted  from Fig. 6 of  the paper by van Rijswijk 
and T /2 - 0.5 ma.  Dark noise has been  accounted  for in the the* 

1571. 

for  the television and oscilloscope  image. Conditions  for the 
validity of the SNDP in describing cathodoluminescence are 
that  the  electron beam reaching the sample be represented as a 
homogeneous  Poisson point process,  and that each primary 
event have associated with it an impulse response function h ( t )  
that governs the  rate of production of noninterfering Poisson 
optical  photons. Cathodoluminescence  may therefore be  repre- 
sented by the physical model in Fig. 12 if we simply replace 
the block  labeled  “Poisson ionizing radiation” by a block en- 
titled “Poisson electron beam.” 

The counting  statistics are then given by  (27) and (28), 
whereas the  time  statistics are  specified  by (48) and (49).  The 
description is completely characterized by 1.1 and h( t ) ,  and 
again, in  the limit of counting times long in comparison with 
the  time scale of h( t ) ,  the  counting  distribution reduces to the 
Neyman  Type-A for arbitrary h ( t ) .  

In the special  case  where the  function h ( t )  is a decaying  single- 
timeconstant  exponential, each electron entering the sample 
induces an  exponentially decaying flux of luminescence pho- 
tons, so that  the counting  and  time statistics will be  given  by 
(271,  (44)-(47)  and (El), (E3),  (E4), respectively. These 
results are the same as those derived  by  van  Rijswijk [ 56 1 ,  [ 5 71 
by  means of an entirely different method. It appears that van 
Rijswijk’s result can  be  used only  for luminescence that decays 
precisely exponentially, whereas our general result will  be 
valid for  arbitrary h( t ) .  In particular, we can easily account 
for  the  finite “decay” (rise) time of the luminescence emission. 

2 )  Forward  Recurrence-Time  Measurements: The statistics 
for  the time to  the first cathodoluminescent  photon arrival 
were experimentally measured  by  van  Rijswijk [57] for a 
Yvo4  :Eu3+ phosphor  and,  more  recently, by  Timmermans 
and  Zijlstra [ 581 for ZnS : Ag. In Fig. 14 we present the nor- 
malized forward recurrence time  data  (dots)  for YV04 : Eu3+ 
obtained by  van  Ftijswijk [ 571 with an incident  electron energy 
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Fa. 15. Dofl reprasnt the experimental relative exc- noise in the 
photomultiplie  mode ament for cathodolumineacenca  from ZnS : Ag. 
The solid curve is a Lomtzian. Figure adapted €torn Fs. 3 of the 
paper by 'I2mmammr  and Ziprtra [ 58 1. 

of 10.2 keV. The mean photon counting rate was 2.54 X lo4 
s-' and the mean dark counting  rate was 1.28 X lo3 s-'. The 
solid curve is a  plot of (El), (E3), (E4), which represent  the 
normalized probability  density  for the theoretical  forward 
recurrence  time PI (7) for an exponentially decaying shot-noise 
pulse, with7 = 39.7 p, a = 9.6, and rP/2 = 0.5 m s .  The effects 
of dark noise  were not negligible in  this w e  and were accounted 
for  in  the solid cume (571. 

3) Excess-Noise  Specmtm  Measurements: Intensity flue 
tuations  for  cathodoluminescence were fmt  investigated by 
means of the  spectral  properties of excess noise in  the  phot* 
multiplier  anode  current [ 591, [ 601. The  theoretical  expres- 
sion  for  the  spectrum  in the general case (viz., for  arbitrary 
h(t)  and arbitrary T) was derived in Section IV-B. The result 
for an exponentially decaying shot-noise pulse,  in a  form 
appropriate when measurements are made by a real-time spec- 
trum analyzer, is presented  in (67). Previous calculations were 
carried out only  for  purely  exponentially decaying lumines- 
cence, which leads to  the characteristic  Lorentzian  spectral 
shape. 

Recent excess-noise measurements were performed by van 
uswijk  [57] for W04:Eu3+ and by Timmermans and 
Zijlstra [58] for ZnS:Ag. In Fig. 15 we present  ZnS:Ag 
experimental relative excess noise as a  function of frequency 
(dots)  obtained by Timmermans and Zijlstra. The solid curve 
is a  Lorentzian which provides an excellent fit  to  the data, 
providing confirmation of the  exponential decay shape and 
the  luminescent-center  lifetime. 

D. X-Ray  Radiography  and  Electronography 
The recording of  X-rays (or 7-rays) on  a  photographic emul- 

sion involves a cascade of two processes [ a l l .  The  absorption 
of high-energy photons results in the emission of electrons 
(through  the  photoelectric  effect,  Compton  scattering,  or  the 
formation of electron-positron pairs). The  emitted  electrons 
then traverse the  emulsion, rendering a random number of 
silver halide grains developable. The higher the  photon energy, 
the larger the average number of developable grains per  photon 
[61].  It is a  common observation in  industrial  radiography, 
that  the higher the  photon energy, the  greater  the graininess of 
the exposed fii. This is a  direct  result of the  exposure of a 
larger average number of grains per photon, and their clustering 
around  that  photon. With commercially available  X-ray films 
this  effect is easily  visible to the naked eye [ 6  1 1 .  

It is apparent that  the SNDP can serve as a simple model to 
account  for  this  multiplicative cascade of events (assuming 
that  other  complex  phenomena which may occur  in  the emul- 
sion can be ignored).  The  primary process is then  the  random 
electrons which, because of the  local Poisson nature of the 
incident  photons  in  a region of f i e d  irradiance, can be reason- 
ably assumed to form  a Poisson point process of rate p per  unit 
area. These events are then  spatially  filtered, Le., they are 
spatially  spread, as they are transmitted  through, and scattered 
by, the emulsion. The spread in energy of each  primary elec- 
tron  then  renders  a  random  number of the grains in its path 
(on  the average a) developable. The developable grains form 
the secondary process, and if this  number is Poisson, the SNDP 
ensues. Note that  here,  time is replaced by space, and the 
SNDP is a  spatial  point process. 

The  detection of electron beams (in such fields as electron 
microscopy,  electron  diffraction, and Bray  dosimetry) may be 
similarly described [61  I,  (621. 

The  photographic  detection of both  electrons and X-rays 
obey the  singlehit theory [6 1 1 ,  which means that a single 
detected  particle is capable of rendering one  or more silver 
halide grains developable. An important  property of the SNDP 
is the  fact  that the variance-to-mean ratio  (the  Fano  factor) is 
larger than one and is independent of the  rate of the  primary 
events (the intensity of the  electron image). The multiplica- 
tion  parameter a, which determines  the  Fano  factor, is larger 
than  one  for single-hit  processes. 

In  radiography, X-ray  images may also be detected by use 
of intensifying screens. X-ray radiation  illuminates  a fluores- 
cent  screen, which emits visible photons  that are recorded  on 
a  photographic emulsion. An X-ray photon impinging on  the 
fluorescent screen results  in  the emission of a  random  number 
of light  photons. These spread as they  propagate to the  phot+ 
graphic  emulsion,  forming  a  patch of illumination  with  a  spatial 
distribution h(x ,   y ) ,  which is the point-spread function  or the 
spatial impulse response function. If the incoming X-ray  radia- 
tion is of uniform  irradiance p photons  per  unit  area, its pho- 
tons would be distributed according to a  homogeneous Poisson 
process of rate p. If  we postdate  that A ,  the number of light 
photons  per X-ray photon, also has a Poisson distribution of 
mean value ( A ) =  a, then  the  light  photons arriving at the 
emulsion will obey an SNDP, with  parametersp, a, and h(x ,  y) .  

It follows, then,  that  the light photons  should  exhibit  spatial 
clustering. Such clustering has been observed experimentally, 
and is often  referred to as quantum  mottle.  Indeed Kemper- 
man and Trabka  [631 have recently used the same model to 
describe the  first- and second-order  statistics of exposure  fluc- 
tuations  in  the recording of  X-ray images using intensifying 
screens. 

VI. CONCLUSION 
Thorough  consideration has been given to the  counting and 

time  statistics  for  the SNDP. This process provides a  natural 
description  for  phenomena involving the  random multiplica- 
tion (or reduction) of  Poisson point  events with a  random  time 
delay.  The SNDP is a  particular Neyman-Scott cluster process. 
The  model has been applied to a  number of important  prob- 
lems in  electrical engineering, physics, and optics,  including 
cathodoluminescence,  photomultiplier-tube luminescence noise 
induced by ionizing radiation,  the photoncounting scintillation 
detection of nuclear particles, X-ray radiography, and electron- 
ography.  There are other  singleatage  random  multiplication 
processes, involving random delay,  for which this  model 
provides a  ready  solution. 

The  model could be extended and strengthened  in  a  number 
of  ways. In this concluding section, we point to various restric- 
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tions that have  been implicitly and explicitly imposed on the 
mathematical  formulation, and  discuss  ways in which these 
restrictions can  be relaxed. 

The primary Poisson point process was taken to be  homo- 
geneous (HPP)  and therefore  stationary (see  Fig. 3). Physical 
situations in which primary events are nonstationary also 
occur, and it is of interest to determine  the  statistical proper- 
ties of the  resultant process. This is necessary, for example, 
for  studying  cathodoluminescence when the exciting electron 
beam is pulsed. Another example that presents itself  is the 
behavior of the neural discharge recorded from  the mammalian 
retinal ganglion  cell [64] excited by a brief  pulse of light. We 
have recently solved for  the  counting  distribution and the 
probability density function  for  the waiting time to the first 
event [ 651. It is quite  interesting that  the counting  distribution 
reduces to  the Neyman  Type-A  when the rate is a pulse of short 
duration (7, << rp + T ) .  Spatialinhomogeneities, correlations, 
and selection can also be important, so that  it will be worth- 
while to consider the addition of SNDP’s  and to extend  the 
formulation to more  than  one dimension. 

As is usual for  the Neyman-Scott  process, we have  assumed 
that primary events are excluded from  the final point process. 
A modified model may be constructed in which the resultant 
process is the  union of the SNDP with  the primary process. 
The  statistics of the combined  point process cannot be obtained 
by simple convolution because of the statistical dependence 
between primary and subsidiary events. In  the long-counting- 
time  limit,  when the SNDP yields the Neyman  Type-A count- 
ing distribution, it can  be shown  that  the  counting statistics 
associated with the  combined process is the  Thomas distribu- 
tion [41], [66] .  

Moving to the linear filter in Fig. 3,  we have tacitly assumed 
throughout  that h ( t )  is a deterministic impulse response func- 
tion. Gilbert and  Pollak [45] have  shown that if the filter 
h ( t )  contains a random parameter, then an equivalent com- 
pletely  deterministic impulse response function h’(t) can  always 
be found  that generates h(t) with  identical statistics. In partic- 
ular, if h ( t )  = h 0 ( t / T p ) ,  where 7 p  is random, h’(t) = ho(t/(17,1)). 
This is an  important result because it tells us that  the analysis 
we have  carried out applies  also  when the linear filter is not 
deterministic. In  the  context of cathodoluminescence, for 
example, not only can we ascribe an arbitrary  time course to 
the phosphorescence by  choosing h ( t )  appropriately,  but we 
can also permit h ( t )  to contain a stochastic  parameter. Indeed 
it is likely that local field inhomogeneities in a real phosphor 
will create some  degree of randomness in T ~ .  

Again examining Fig. 3, we see that  the shot noise h(t) pro- 
vides the  rate  for this second Poisson  process. Our  model can 
be modified to permit this second Poisson  process to be  self- 
excited,  thereby allowing for  aftereffects triggered  by past 
events [ 3 ] .  This  modification will  be immediately useful for 
calculating the effects of phenomena  such as  dead time (abso- 
lute refractoriness) and  sick time (relative refractoriness). We 
have recently derived the interevent-time statistics  for  the 
SNDP with 1-memory recovery, and  examined examples of 
their use in scintillation detection and  vision [67] .  A solu- 
tion has also been obtained  for  the  count mean  and  variance 
for an arbitrary dead-time-modified DSPP. These expressions 
have  been experimentally verified for @--induced radiolumines- 
cence photons  produced in several transparent materials, in 
the presence of system dead time [68] . l  For large counting 

The  proper result  for  the  variance-to-mean  ratio  for an SNDP  with a 
‘We note that  the dashed  curve shown in  Fig. 3  of [ 6 8 ]  is incorrect. 

rectangular impulse  response  function, in the  absence  of  dead time, is 
given by (22), (23), and (39b) above. - This  curve does  indeed lie every- 

times, we also showed that  the experimental  photon-counting 
distributions were  well described by  the Neyman  Type-A theo- 
retical distribution, both in the absence and in the presence of 
dead time [681. 

Given  an  SNDP Cf(t) in Fig. 3), we can easily account  for  the 
effects of a statistically independent Poisson point process 
representing, for  example,  broadband background  light in a 
photomultiplier ‘tube. The  counting  statistics  for the super- 
position process  can  be simply determined by numerical con- 
volution. An interesting case  arises in  the  context of photo- 
multiplier dark noise.  Such dark  counts can  be considered to 
arise from a combination of photocathode and dynode  therm- 
ionic emission, describable by  the HPP,  and multiplication 
noise. We have recently analyzed the experimental  counting 
statistics for  photomultiplier  dark noise, and found  it to be 
consistent with this model over a rather  broad range  of counts 
[69] .  A related approach has been found to be useful for de- 
scribing the  detection of light by  the human visual system at 
threshold [ 701. 

We should, perhaps, say a few  words about branching (cas- 
cade) processes, in which each subsidiary event generates its 
own cluster, and so on. This kind of nesting may  be referred 
to as higher-order clustering; in this  framework, the SNDP  is 
first-order clustered. A generalization of the SNDP to allow 
for nesting  will  be  valuable for deriving the precise counting 
and time  statistics for electron devices that involve more  than 
one stage of  random  multiplication and random time delay. 
Examples  are the avalanche detector and the  electron multiplier. 
We have recently analyzed some problems of this  type [ 7 1 ] . 

Finally, we point out  that  the statistical behavior of the 
clustered processes considered here is sufficiently unique that 
one may  conceive of innovative signal processors and  receivers 
specifically  designed to enhance such signals (or discriminate 
against such noise). Calculations of the  performance charac- 
teristics of such devices (detection, discrimination, estimation) 
will  have to be  carried out, of course, to  ascertain the value of 
any such proposed scheme. In  the  meantime, we have experi- 
mentally shown that dead time does selectively discriminate 
against such clusters [68] .  

APPENDIX A 
GENERAL  PROPERTIES OF THE DSPP 

For a DSPP with  stochastic  rate h(t), the  counting statistics 
(statistics of n) can best be  described in  terms of the statistics 
of the random variable 

w = lT h(t) d t  

which represents the integrated rate of events [3]  , [ 241, [ 261 , 
[27]. The moment-generating function of n is related to that 
of W by [27] 

where Qw(s )  = ( e -WS)  is the mgf of the  random variable W. 
The factorial moments =(e) 

n - m ) !  

and the probability  distribution p ( n ) ,  can be computed by  use 

where  above  the  solid curves shown in [ 6 8 ,  figure 31, thereby con- 
fuming  that  the  introduction of dead time  always  produces  a decrease in 
the  variance-to-mean  ratio, as intuitively  expected. 
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of the  formulas [27] 

Alternatively, p ( n )  can  be determined  from the Poisson trans- 
form of P( W )  

P( W )  d W.  
n!  

Statistics of the  times of occurrence of the  events of a DSPP 
can also be determined  from  the mgf of W. If PI(?) and Pz(7 )  
represent  the  probability  density  functions  for the forward 
recurrence  time  (time  from an arbitrary point to the first event) 
and  the  interevent  time, respectively, then [ 31 , [ 271 

where 

~ o ( T ) = Q w ( l >  = P ( O ) ,  (A91 

(X) is the mean rate of events, and p ( 0 )  is the probability of 
zero  counts in the interval IO, T I .  The key to determining 
the singlefold statistics of the DSPP therefore lies in the deter- 
mination of the  moment-generating  function Q w ( s )  of its 
integrated rate W. 

Joint statistics of the  number of events (nj)  in N time in- 
tervals [ t i ,   t j  + T i ] ,  j = 1,2,  * * * ,  N ,  can also be obtained  from 
the  multifold mgf 

of the  integrated rates 

'r' Tj 
wj = X(t) d t .  (A1 1) 

9 
The factorial moments are given  by 

and  the joint counting distribution is 

p(n1, * * , nN) 

APPENDIX B 
GENERAL PROPERTIES OF SHOT NOISE 

The statistics of shot noise X(t) are  well known [ 161,  [45] - 
[47] ; they  aresummarized  here  for  subsequent use. 

A .  Singlefold  Statistics 
The f i t - ,  second-,  and  third-order  moments are, respectively, 

(X( t ) )  = p I- h ( y )   d y  = p a  

OD 00 

(X3(t)> =p3a3 + 3pz h 2 ( y )   d y  + p h'(y) dy. (Bl) 
0 

The  moment-generating  function is 

Qh(s) = = exp { p e: - 11 d t } .  (B2) 

The  probability  density  function P(h)  can be  determined  by 
solving the integral equation [45] 

hP( X) = p 1- PIX - h( t ) l   h ( t )  dt .  (B3) 
-00 

Explicit solutions for this equation are known in only few 
cases, as indicated  below. 

1)  Rectangular  Filter: The filter 

elsewhere 

corresponds to a fixed-multiplicative probability  density 

(prp k e - M 7 ~  

k! 
P( A) = 6(h  - kh), k = 0, 1, 2, a * * , (BS) 

i.e., X takes  the discrete values 0, b, 2 b ,  - * - , kb, * * where 
k has a Poisson distribution of mean prp.  

2) Special  Filter  with  Logarithmic  Singularity  and  Expo- 
nential  Tail: Another filter with  rather simple properties is 
that described  by the  impulse  response  function [45 I 

where E;'(X) is the inverse of the exponential integral 

(B  7) 
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B. Multifold  Statistics 
The multifold moment-generating function is [46] 

In particular, the twofold mgf is given  by 

r P -  

and the correlation function is written as 

APPENDIX C 
PROPERTIES OF THE NEYMAN TYPE-A DISTRIBUTION 

The Neyman  Type-A distributed random variable n of pa- 
rameter a has an mgf [40],  [41],  [49] 

Its factorial moments are  given  by the recurrence relation 
provided in  (1  9), with 

al = a 1 .  (C2) 

In particular, the variance is 

var(n)=(l  + a ) ( n >  (C3) 

so that  the excess Fano factor al  is equal to a. The Neyman 
Type-A probability distribution p ( n )  is determined from the 
recurrence relation in  (27).  The coefficients Cl are 

c1= - 
I !  

so that  (27) becomes [40] 

n a 1 
( n  + I ) p ( n  + 1) = (n> e-' - p ( n  - I )  

1 =o I !  

Note  that when a + 0, (C5) reduces to 

(n  + l ) p ( n  + 1) = ( n > p ( n ) ,   p ( 0 )  = e-(n) (C6) 

which is the recurrence relation for  the ordinary Poisson  dis- 
tribution. This same result may be  obtained by letting a + 0 in 
(Cl). This leads to  Q,(s) = exy [(n> ( e -S  - l ) ] ,  the mgf  of the 
Poisson distribution. 

APPENDIX D 
COUNTING STATISTICS FOR  SOME SPECIAL FILTERS IN 

THE LIMIT OF SHORT COUNTING TIME 
A .  Rectangular  Filter 

When the impulse response function is rectangular of area 
a and width r P ,  each event of the primary homogeneous Pois- 
son process initiates a rectangular pulse.  Within the time 
interval of that pulse, secondary Poisson  events occur at  the 
rate pa/rp per second. With h ( t )  rectangular, (33) yields 

where the mean number of counts (n) registered  in the time 
interval T is 

(n> = paT, (D2) 

and  where 

0 = T I T p .  (D3) 

Using (A2) we then  amve  at Q n ( s ) ,  which turns  out to  be 

en($) =exp - {exp [a/3(e-s - l)] - 1}) . (D4) (:; 
This is precisely the rngf of  the Neyman Type-A distribution 
of parameter a0 (see (C1)). 

We conclude that  the shot-noise-driven  Poisson point process 
results in  the Neyman Type-A counting distribution when the 
impulse response function of the filter is rectangular in  shape, 
and the counting  time is very short. 

B. Exponentially  Decaying  Filter 

(2a/rP) exp (-2t/rp),  (33) gives 
When h ( t )  is an exponentially decaying function, h(t)  = 

where  again the mean count (n> = paT and 0 = T I T p .  The 
factorial and central moments of n are given  by (19)-(22), 
with 

Comparing these moments with those derived for  the rectangu- 
lar filter (viz., those of the Neyman  Type-A distribution) we 
see that,  for  the same  variance, the  third central moment  (and 
the skewness defiied by (26)) is larger in  the exponential case 
than  in  the rectangular case. 

The probability distribution p ( n )  is given by (27) in con- 
junction with the coefficients C1 from (28), which  are  now 

Here 7(Z+ 1, x )  is the incomplete gamma function, which  may 
be computed from the series 

y(Z+ 1, x )  = I !  1 - e -x  x ' /k! ] .  (D8) 
1 

[ k=O 
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Also 

Again, for vanishing Tor  a, the  counting distribution becomes 
Poisson. 

C. Special  Filter  with  Logarithmic  Singularity  and 
Exponential Tail 

This fiter, described  by (B6), comsponds  to  shot noise with 
a rate h( t )  characterized by the gamma probability  density 
function (B8). The  integrated intensity W AT wiU also have 
a gamma density  with  mean ( W) and  parameter M = prp.  In 
this case, we obtain  the  counting distribution p ( n )  by using 
the Poisson transform specified in (A6), since it is well known 
that  the Poisson transform of the gamma density is the nega- 
tive binomial distribution, as was first shown by Greenwood 
and  Yule  1721 : 

p ( n ) =  ( n ,  )/(! +$y (1 +z)M. (D10) 
n + M -  1 

This distribution also turns  out to provide a good approxima- 
tion  for  the  photocounting  detection of multimode  chaotic 
light of arbitrary spectrum; in that case M represents  the  num- 
ber of  degrees of freedom of the chaotic light [ 81, [ 121, [ 241, 
[27], [SO], [73],  [74]. This is to be distinguished from the 
degrees-of-freedom parameter R for  the  shot-noise light con- 
sidered here [ SO]. The factorial moments are 

The variance  is  given  by [SO] 

var ( n )  = ( n )  + ( d Z / M  = (1 + ab) (n )  (D  12) 

so that  the excess Fano  factor  for  this distribution is again 
u l  = ap. The SNDP is, in this example,  equivalent to  an in- 
homogeneous Polya  process [ 21 , [ 75 I . 

APPENDIX E 

AND EXFQNENTIAL FILTERS 

time  and  the  interevent  time are, respectively, 

-1 

TP 

rpa2 

For  a  rectangular filter of width rp and area a 

TIME STATISTICS FOR AN SNDP WITH  RECTANGULAR 

The  probability  density  functions for  the  forward  recurrence 

P1(r) = -R‘d  exp ( R d )  

P2(r) = - (R” + R ” d )  exp ( R d ) .  (El )  
1 

e - “ * ( a -  ax - 2)-  (a+ax - 2), X Q i 

e - ” ( a x - a - 2 ) - ( a + a x - 2 ) ,   x > l  
R = {  

R ’ = {  
e -axa(  1 - a + ax) - a, 
a(e-“  - 11, 

x Q 1  

x 2 1  

X Q l  

x 2 1  

For an exponential filter of time constant rp/2 and area a, 

with 

and = 2r/rp. 
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