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Evolution of the Statistical Properties of Photons
Passed Through a Traveling-Wave
Laser Amplifier

Paul Diament and Malvin C. Teich, Fellow, IEEE

Abstract—We determine the evolution of the photon statistics
of a light beam as it passes through a traveling-wave laser am-
plifier, modeled as a birth-death-immigration (BDI) medium.
The relationship between the input and output probability dis-
tributions and probability generating functions with given (but
possibly varying) birth, death, and immigration rates for ar-
bitrary input statistics is obtained. The case of constant birth,
death, and immigration rates is considered in particular detail.
The photon statistics at the output of a general BDI traveling-
wave amplifier are always broader than those at the input, and
they can take many forms. Our most general solution can be
applied when the input distribution to the amplifier takes the
form of a negative-binomial transform. The results are ex-
pected to be useful in calculating the performance character-
istics of lightwave systems using optical amplifiers in which the
object is to detect light with a broad range of statistical prop-
erties, including scattered light, spontaneous-emission light,
and light emitted from a laser. In the latter case the input is
Poisson, and the output distribution assumes the form of a non-
central-negative-binomial (Laguerre) distribution which is usu-
ally associated with a multimode (phase-preserving) superpo-
sition of coherent and chaotic fields.

I. INTRODUCTION

PTICAL-fiber and semiconductor laser amplifiers are

being used increasingly in optoelectronic systems.
Such amplifiers are typically operated either as traveling-
wave or resonant devices, depending on the application
[11, [2]. The amplification is the result of the interaction
of light with a large number of atoms for which a popu-
lation inversion is externally maintained.

There are several theoretical formulations of the laser
amplification process that are useful for dealing with am-
plifiers of different configurations [3}-[5]. The popula-
tion-statistical approach first used by Shimoda, Takahasi,
and Townes [6] generally provides a suitable point of de-
parture for characterizing the photon statistics associated
with laser amplification. This approach has its origins in
the branching-process models developed long ago for use
in cosmic rays and population biology. It relies on the
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birth-death-immigration (BDI) process, which is well
known in the theory of stochastic processes [71-(91.

Various versions of the BDI model have been used to
represent the processes of absorption, stimulated emis-
sion, and spontaneous emission taking place in a cavity
[10]-[14]. In particular, Schell and Barakat [11] exam-
ined the approach to equilibrium of the photon-number
distribution for a single radiation mode in a cavity, given
a variety of initial photon-number distributions. They
found that a Poisson initial distribution resulted in a final
distribution described by the noncentral-negative-bino-
mial with one degree of freedom.

Light amplifiers have been examined in the context of
quantum optics by a number of authors. Louisell and his
collaborators [15], [16] developed an early quantum
model of a linear single-mode phase-insensitive intensity
amplifier. The spatial propagation of the optical field
through the amplifying medium was replaced by a time-
dependent growth of the optical intensity. This model has
provided the point of departure for a number of general-
izations [3]-[5], [17]-[22]. Several of these quantum-me-
chanical models provided solutions for the photon-number
distribution at the output of the amplifier in terms of the
distribution at the input [3]-[5], [20]-[22]. The relation-
ship between the quantum model of Louisell and the pop-
ulation-statistical approach of Shimoda, Takahasi, and
Townes [6] has been elucidated by Shepherd and Jakeman
[4]. One of the cases they consider in the context of their
quantum model comprises a Poisson number of input pho-
tons coupled to the cavity by adding to the immigration.
Their results, like those of Schell and Barakat [11], lead
to the noncentral-negative-binomial distribution with one
degree of freedom.

In this paper we study the evolution of the photon sta-
tistics of a light beam as it passes through a traveling-
wave amplifier, using the population-statistical BDI ap-
proach [6]. Each of the photons in our traveling-wave
configuration can be viewed as initiating its own BDI pro-
cess, rather than augmenting the immigration parameter.
In Section II, we obtain the relationship between the input
and output probability density functions (and probability
generating functions) for a BDI process with given (but
possibly varying) birth, death, and immigration rates for
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arbitrary input statistics. The case of constant birth, death,
and immigration rates is considered in Section III, which
contains detailed results for two special limits: determin-
istic input distributions and negative-binomial-trans-
formed input distributions. The former constitutes the
least random situation achievable with our model, whereas
the latter represents our most general solution. Explicit
results are also provided for several intermediate cases of
special importance. These include input distributions with
negative-binomial photon statistics (which characterizes
multimode thermal or scattered light) and with Poisson
photon statistics (which characterizes pure coherent light),
as well as the Poisson-driven Yule-Furry (pure birth) pro-
cess. Pure coherent light at the input to the amplifier re-
sults in a noncentral-negative-binomial output distribu-
tion, but now with an arbitrary degrees-of-freedom
parameter. The conclusion is provided in Section IV.

The noncentral-negative-binomial distribution obtained
for coherent light at the input to the amplifier is essential
for properly calculating the performance characteristics of
a digital lightwave communication system incorporating
an ideal laser and a traveling-wave optical amplifier (e.g.,
Er *_doped silica fiber) [23]. Performance calculations
can also be carried out using the more general distribu-
tions developed here. These should enable us to deter-
mine whether optical amplifiers are useful devices for de-
tecting other kinds of light as well, e.g., thermal
(spontaneous emission) light, scattered light, and light
from real semiconductor lasers (which exhibit photon sta-
tistics that are broader than Poisson).

II. BDI MODEL WITH ARBITRARY INPUT STATISTICS

The relationship between the probability distributions
at the input and output of a medium with given (possibly
varying) birth, death, and immigration rates is provided
in this section. The derivations are given in the Appendix.

We let ¢ denote the time of traversal, or else the depth
of penetration, of a medium characterized by a birth rate
per particle \(¢), a death rate per particle u(7), and an im-
migration rate independent of the current number of par-
ticles »(r). The probability distribution p(n, ) that n par-
ticles are present at time (or depth) 7, given that the
distribution p(n, 0) at t = 0 was py(n), satisfies the well-
known forward Kolmogorov difference-differential equa-
tion,

p(n, /ot = [(n — DX + »lpn — 1, 1)
+ [(n + Dulp(n + 1,0
= [n(N + p) + vp(n, o) (I

as described in the Appendix.
The probability generating function (PGF)

Gz, 1) = (") = §0 pn, 02" Q)
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satisfies the partial differential equation
3G, /ot = [z — 1][(Az — p)
- 9G(z, 1)/ 0z + vG(z, N]. 3

This is solved, in the general case of varying birth, death,
and immigration rates, by

G(z, 1) = Gy(Z(z, t; 0)) exp {SO [Z(z, t; T) — 1]v(7) dr}

)

in terms of the initial PGF Gy(z) = G(z, 0), as is also
reviewed in the Appendix. We use here the definitions of
the following known functions, obtained directly from the
given forms of the rates of birth, death, and immigration
as functions of t:

(z = Dh(r)

Zz, 1) =1+ h() — [z — 11k — k()] ®

h(u) = exp ”O (u(®) = M2) dt]

u

k(u) = SO [A() ND)] dt. ©)

The mean number of events or particles N(t) = (n) =
L np(n, t) = dG(1, 1) /97 is given by

1 t
N@) = o {No + SO (h(T)v(7)) dT} 0

where N is the mean number at the initial point = 0.
The function A(r) /h(t) is seen to serve as a transfer func-
tion, directly from input to output for the initial mean
number of events or particles, and cumulatively for the
number of particles that immigrate within the medium.

III. THE CASE OF CONSTANT BIRTH, DEATH, AND
IMMIGRATION RATES

If we specialize now to the familiar problem of constant
birth, death, and immigration rates, N, u, », we then find

h@) =exp (p — Nt k@) = [N/ (p — N][A(@® — 1]
(8)

exp { go [Z(z, t; ) — 1]» d‘r}

= {1 - [z = 1K@/} ©)
so that the PGF G(z, 1) at the output of this medium is
given in terms of that at the input, Gy(z) = G(z, 0), by
GolZ(z, t; 0))
[1 — & — Dk /h@e)"™*

Gz, 0 = (10)
with
z—1

260 = 1+ =

(11)
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The mean count at the output for the case of constant rates
is, from (7), i

Ny + (#/ Nk

N@) = ho) (12)
This reduces to the form
N — N, v
No — N, =expl—(p—N] N = P (13)

If p > N, then the mean count N = N(r) approaches N,
as t — oo; if the initial mean count N is exactly N, then
that count remains at N, for all ¢.

For the case of constant rates, the variance at the output

is given in terms of the initial mean N, and variance o3
by

ok =
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which is the negative-binomial distribution mentioned
above. Fig. 1 is a plot of this counting distribution for o
= »/\ = 2.5 and a mean count N = 64. It would be
observed, for example, in a BDI medium with no initial
particles, at a depth such that the total immigration »f has
attained 8.20 and the births have reached A= 3.28 if
there are no deaths. Alternatively, it would be observed
at a depth for which »t = 64 if the birth and death rates
are equal at At = ut = 25.6. The distribution can never
be attained in that medium, however, if deaths exceed
births by a factor of more than 1.0391, at which point
»/(u — N) becomes 64.

2) One Initial Particle: Similarly, the usually cited
case of a single event at the input, associated with po(n)

3
03 — No + k() + h())Ny + ik(t) <§ k() — h(t)>

This is based on the values ¥, = (v/Nk(?) and V, =
L(v/NKX(2) for the iterated integrals defined in (A25).

To confirm that we recover the usual results for the
common special cases, we note that G(z, 1) can be ex-
pressed as the product

G(z, 1) = GyZ(z, t; NGz, 1) (15)
where
Gz, 1) = [1 — z — Dk(®y/h®1 " (16)

is recognized as the PGF for a negative-binomial distri-
bution, with mean

(v /N /h()) = Ni{1 = exp [—(p = Nil}

and degrees-of-freedom parameter » /\. We use the no-
tation

o"T(n + a) N"
nT(@ (N + a)*te

for the negative-binomial PDF, with mean N and param-
eter «; its PGF is

Gz a, Ny =11 = @~ DW/a)]™ (18)

This distribution reduces to the Poisson in the limit of «
— oo and to the Bose-Einstein distribution for o = 1.

B(n, a, N) = amn

A. Deterministic Input Distributions

The form of the initial PGF Gy(z) is particularly simple
when the number of particles or events at the input to the
medium is deterministic. We cite specifically the cases of
zero, one, and many initial events.

1) Zero Initial Particles: The output from the medium
when there are no particles or events at its input stems
entirely from immigration. Thus, if po(n) = 8(n) for which
Go(z) = 1, we obtain

p(n, 1) = B(n, v/\, 0/ Nk@®) /h@)) (19)

= §(n — 1) for which Gy(2) = 2, yields
G(z, 1) = Z(z, t; 0Gi(z, D
= +@- DA -k/h/
1 - @ — Dk/R*A*Y (20)

where h and k are abbreviations for h(?) and k(7). Since a
factor of z in a PGF corresponds to a shift by one count
in the PDF, this results in a combination of a negative-
binomial and a shifted one, as

pn, ) = [1 — (1 — k)/R1B(n, B, Bk/h)
+ [(1 = ky/mB(n — 1, B, Bk/h)y 2D
where
B =1(@/M+ 1]
and
it —Q-k/h
= [p/(p — NI — exp [—(x = M)

Note also that if there are no deaths (p = 0), then 1 — k
= h and the result is merely the shifted negative-binomial
p(n, 1) = B(n — 1, 8, Be™ — 1)).

3) Many Initial Particles: The more general case of a
deterministic input has ng initial particles; i.e., po(n) =
8(n — ng) for which Gy(z) = z™. At the output this yields

Gz, ) = Lz, t; NGz, O
=1 +@-DhA —-k/h/
[l = @ — Dk/R*/P (22)

which corresponds to a convolution of a positive-binomial
PDF with a negative-binomial one:

P(”’ t) = B(", 601 B()k/h) * b(n’ n07 nO[I - k]/h) (23)
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B(n, 2.5, 64)
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0+ n
0 100 200 300

Fig. 1. The negative-binomial distribution for @ = »/A = 2.5 and mean
output count N = 64.

where 8y = (v/N) + ng and b(n, m, N) = B(n, —m, N)
is the (positive) binomial distribution (with mean N), for
which the PGF is [1 + (N/m) (z — 1)]", often written (pz
+ q)”, subject top + ¢ = 1 and with N = mp.

B. Negative-Binomial-Transformed Input Distribution

We can now demonstrate the most general result of this
paper, which deals with the probability distribution at the
output of the medium when the input distribution is a neg-
ative-binomial transform of an arbitrary continuous prob-
ability density function. We previously discussed the sig-
nificance of negative-binomial transforms [24]. One
particular example of interest in the current context is the
noncentral-negative-binomial (NNB) distribution, which
can be viewed as a modified negative-binomial transform.
This provides an excellent model for the photon statistics
at the output of a laser when its spontaneous emission
noise is accounted for. Here we inquire into the effect on
such initial counting distributions of traversing a medium
in which birth, death, and immigration occurs.

The negative-binomial transform of a continuous PDF
®(x, N) is defined by

B{®} = B(n, «, x) A ®(x, N) = ¢(n, a, N)

S B(n, a, x)®(x, N) dx (24)
0

where B(n, a, N) is the negative-binomial probability dis-
tribution, with mean N and degrees-of-freedom parameter
o, and the caret A denotes the indicated averaging over
the repeated variable x. Explicitly, the transform is

B{®} =

&(x, N) dx.

a°T'(n + «) S X 25)

n!T(e) 0o (x + )™

This operation transforms the PDF of any continuous
source distribution into a discrete counting distribution;
the transform arises in many contexts [24].

For the negative-binomial transform ¢(n, o, N) of ®(x,
N), the probability generating function is given in terms
of an average over the original, continuous distribution
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$(x, N) as
G@@)

@M=l =z — Dix/a)} ™,
(G(z; o, X))y

where the notation (-}, indicates averaging with respect
to x.

If, therefore, the initial counting distribution at the in-
put to the medium is a negative-binomial transform (with
parameter «) of some continuous PDF ®(x, Ny), then the
initial PGF is expressed by

Gy(2) = G(z; a, x) A P(x, Ny
=[1 - /) = DI A &x, Np).
At the output, therefore, the PGF becomes

(26)

@n

[1 — (x/a)(Z(z, 1; 0) — D]™ A $(x, Np)
(1 — @ — Dkt)/h@]"™

Gz, 0 =

(28)
with

z—1

Z(z,t; 00 =1 + h4——(t) = Dk

29

This simplifies to

B [1-(- 1)(k/h + x/(ah))]_a A B(x, Np)
G, ) = = = DA *

(30)
where h and k are abbreviations for A(f) and k(¢). But this
is just

Gz, 1) = G(z; B, Bk/h)Glz; o, (x + k) /h]

A P(x, Ny) (€2))]

where 8 = (v/N) — «. This, then, is the output PGF
when the input PDF is a negative-binomial transform of
a given distribution.

C. Interpretation

The form of (31) is merely a product of the PGF of a
negative-binomial with mean Sk(r) /h(z) and parameter 8
with the PGF of a negative-binomial transform of ®(x,
Ny) whose kernel B(n, a, (x + «k)/h) has had its mean
value linearly transformed (rescaled by 1/h and shifted
by ak /h). Since a product of PGF’s implies a convolution
of PDF’s, we have, finally, that the PDF at the output of
the medium, when its input is some negative-binomial
transform, is

p(n, t) = B(n, 8, Bk/h)
% B(n, &, (x + ak)/h) A ®(x, Np) (32)

where * denotes discrete convolution and A indicates in-
tegration over x and where 8 = (v/\) — a.




DIAMENT AND TEICH: STATISTICAL PROPERTIES OF PHOTONS

Changing the integration variable x to u = x + ok or
else to v = (x + ak)/h furnishes the alternate forms
P(n» t) = B(n, 69 Bk/h) * B(ﬂ, «, u/h) A ‘b(u - (Xk, N())

(33)

B(n, 8, Bk/h) * B(n, o, v)
A ®(vh — ok, No)h; (34)

p(n, )

the latter form can be recognized as a convolution of the
negative-binomial with a negative-binomial transform of
a noncentral (shifted) and rescaled version of the original
continuous PDF &(u, Ny).

We note that the convolution and the integration do not
interfere with each other, so that the indicated operations
are associative. We also confirm that the mean of the re-
sultant PDF is as expected because the integration results
in a distribution with mean (N, + «k)/h and the convo-
lution adds Bk /h to that mean, yielding {(n) = N = [Ny
+ (o + B)k]/h = [Ny + (v/Nk}/h, as in (12).

The associativity allows us to study the general case by
reference to the convolved-negative-binomial transform
of a continuous PDF ®(x, Ny):

p(n, 1) = p(n, e, x, \, p, v, N) A @(x, Np)  (35)
where
p(n, a, x, \, p, v, N)
= B(n, 8, Bk/h) * B(n, o, (x + ak}/h) (36)

with
B=@w/N—-a h=explp—MNl
k=[N(u—Nl{expl(p — N -1} (37
and
N =xexp[—(p — N + N{l —exp [—(n = Nil}
(38)
where Ny = v/(p — N). The distribution
p(n, a, No, \, p, v, N)
= B(n, [v/\] — a, [v — o\E)
* B(n, a, NoE' + olE) 39)
with
E=E)=0-e"M/(n=-N
(orE =tifp =N (40)
E' = dE@)/dt = e * 7™
(orE' =1 ifp=N 41)
N = N(@® = NoE' + vE = (n) (42)

is the output counting distribution of the medium with
rates \, g, and » when the input is the negative-binomial
B(n, a, Np) with mean Ny and parameter o. This distri-
bution is the focus of the next section.
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o No + 2 k(t)
B(n,o,x)A®(x,Ng) N= n(t)
BDI medium
t pln,t) =
Ay My ¥

v PN, XA,V [x+ K1/MIAR(XNG)
$Ex =B(n, B, $k/h)=B(n, o [k 1/ AR (x,No)

Fig. 2. The negative-binomial transform as a source for the BDI medium.

Fig. 2 illustrates the most general overall process in
which a BDI medium is presented with a discrete input
distribution that is itself the outcome of a compound
source. The latter comprises a discrete process whose sta-
tistics are described by a negative-binomial distribution
B(n, «, x) whose mean x undergoes a smearing process
governed by a continuous distribution ®(x, No), with mean
N,. As indicated in the figure, the output of the BDI me-
dium is a convolved-negative-binomial transform of the
continuous PDF &(x, Ny).

D. Negative-Binomial Input Distribution

The output distribution for the BDI medium of depth ¢
such that the mean count becomes N when the input dis-
tribution is the negative-binomial B(n, o, Np) is denoted
p(n, a, No, N, i, », N). The input-output process is de-
picted schematically in Fig. 3, in which a box represents
a BDI medium with parameters A, p, v, and depth ¢. The
top figure represents the general case of an arbitrary input
particle distribution po(rn) at ¢t = 0, which becomes the
output distribution p(n, ) at the depth . The three middle
examples represent particular cases of special input dis-
tributions, a deterministic one, a Poisson, and a Bose-
Einstein, each of which is a limiting version of the neg-
ative-binomial input distribution. The output distributions
are indicated as special cases of the general result. The
bottom illustration defines that general case in which the
negative-binomial distribution B(n, o, Np) is converted
into p(n, a, Ny, \, ., v, N).

Fig. 4 shows the development of the counting distri-
bution at increasing depths in such a BDI medium with
parameters (N, u, » = 7, 6, 8in relative units) such that
births exceed deaths and the medium amplifies the mean,
which, initially, was Ny = 8, as N(t) = 16e’ — 8. The
degrees-of-freedom parameter of the input distribution is
o = 7.5. The counting distributions are presented for A
= 0, the input negative binomial with mean N = 8, then
for Nt = 1 with mean N = 10.457, then for At = 2 with
mean N = 13.291, and finally for At = 4 with mean N =
20.333. The plots show clearly how the initial distribution
broadens and flattens indefinitely as the amplifying me-
dium is traversed.

An inversion of the birth and death rates of the BDI
medium makes the death rate exceed the birth rate, in
which case the medium acts as an attenuator rather than
an amplifier. The counting distribution then approaches a
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BDI medium p(n,o,Ng, A, 1,», N)
po(n) ——0 t —— p(n,t)
Ay, o1 20 40 60 "
BDI medium x=7.5
8(n=ng) ——o t > p(n,~ng, NgsA, 1, ¥,N) No= 20
deterministic My LY A=5
N =(ng +£k)/h L6
BDI medium v=8
P(n,Ng)——0 \ t F—— p(n, 00, Ng, A, 11,,N}
i u, v
Poisson 2 0.01
BDI medium = N=20
B(n,Ng) ——0 t > p(n, 1,No, A, 1,V,N)
Bose-Einstein MU,y
r L 16.60
,B:l-o( = m x '_ o ‘:
A h(t) PR 1416
BDI medium o )
B(n,x,Ng) ——{0 t —— p(n,o¢,No, A, 1, »,N) = 0.001 oo
N A4, -001 9~ L R RT
negative-binomisal B(n, 8, 8k/h)=B(n,«,[Ngreck 1/h) oo
Fig. 3. Counting distributions at the output of a BDI medium for various TN ':1
input distributions. . P S
. n
p(no,No, X, 1,v, N) -
F 20 40 60 0.0001 PR
0.1 44—, n , «
h x
x = 7'5 1T . . . .
No= 8 Fig. 5. Downward approach to equilibrium in an attenuating medium.
A=7
u=6
v=8 PN, o¢,No, A, 1,V,N)
20 40 60
0.01 s ™, 0.1 —un "~ +n
- " . x= 7.5
~ - No= 8
L A=5
. ".,20.33 u=6
~ v=20
0.001 - 0.01 4
- - 13.29 . . «
. ; . . Lo m20
10.46, . l Y
0.001 . L
0.0001 Nes . { . L
Fig. 4. Evolution of the initial negative-binomial distribution in a ) P "
traveling-wave laser amplifier. * * 16.84
steady state, as presented in Figs. 5 and 6. For Fig. 5, the 0.0001 NeB "
initial mean count is Ny = 20 and the parameters (\, p, 11.40 .13.84
v =5, 6, 8) make the mean approach N = 8 from above, ’

as N(1) = 8 + 12¢'. The degrees-of-freedom parameter
is again o = 7.5. The distributions are presented at suc-
cessive depths of ur = 0, 2, 4, 8, and oo, for which the
mean counts are, respectively, N = 20, 16.598, 14.161,
11.163, and 8. The peak of the distribution first drops and
then rises again as the PDF sharpens on its way to the
equilibrium distribution.
Parameters (N, u, v = 5, 6, 20) in the case of Fig. 6
are chosen again with deaths exceeding births, but now
making the mean approach its steady-state value from be-

Fig. 6. Upward approach to equilibrium in an attenuating medium.

low, starting at Ny = 8 and rising to N = 20 as N(t) =
20 — 12¢~'. With the same degrees of freedom and the
distributions shown again at depths ur = 0, 2, 4, 8, and
oo, the mean values grow from N = 8 through 11.402,
13.839, and 16.837 on the way to N = 20. In this case,

the peaks fall and the PDF’s broaden as they approach the
limiting distribution.
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E. Poisson Input Distribution

The special case of a Poisson-distributed input merits
particular attention because it provides results for the sim-
plest model of laser light (when spontaneous emission
from the laser is ignored). It is the limit of the previous
case as the degrees-of-freedom parameter o becomes in-
finite. Since the PGF for the Poisson distribution is Gy(z)
= exp [No(z — 1)}, the output PGF given in (10)-(11)
reduces to

_exp {No/Wz — /[ — (/W@ = DI}

cte. 1 [ — k/h@E - DY

43)
This is recognized as the generating function for the gen-
eralized Laguerre polynomials, so that the factorial mo-
ments are given by
(nt/(n — m)ty = mik/W)"LYr " (=No/k).  (44)
The PDF itself is known as the noncentral-negative-bi-
nomial (or Laguerre) distribution

_ s"exp [—su/(s + D)
P(”; t) - (S + 1)n+v/)\

LY U(=u/(s + 1)

(45)

where the abbreviations s = k/h and u = Ny/k have been
used. This distribution, also denoted [24] L(n, k /h, v /X,
N(), often arises in the statistical description of super-
imposed coherent and chaotic fields [25], [26]. Its mean
is N(t1) = Ng/h + (v/N)k/h and its variance is

X = WNo/WR2K/B) + 11 + @/NG&/WKk/k) + 1].
(46)

In terms of our general notation, this PDF is p(n, o, Ny,
N, u, v, N), as indicated in Fig. 3.

Fig. 7 presents the development of the initially Poisson
distribution in a BDI medium with parameters (X, p, v =
5, 6, 8) from an initial mean value N, = 20 down to the
equilibrium state with mean N(o0) = 8, again at depths
givenby ut = 0, 2, 4, 8, and o. Note the initial drop and
later rise of the peak of the distribution as it broadens.

F. Poisson-Driven Yule-Furry Distribution

A special case of the noncentral-negative-binomial dis-
tribution deserves special mention. This is the case of a
pure-birth process (¢ = 0 and » = 0) that captures the
essence of the BDI process in a simple way. In this in-
stance, there is simple, exponential amplification of the
mean, as N(f) = Nye™, and the PDF reduces to the Pois-
son-driven Yule-Furry distribution

P(ﬂ, l) = L(ﬂ, e)\’ - 1, 0, Noe)\j)
= (1 — e NY'e ™ MLID(=Ny/(eM = 1)).  (47)

Fig. 8 shows this distribution’s development in a pure-
birth medium at depths A+ = 0, 0.125, 0.25, and 0.5 for
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Fig. 7. Evolution to equilibrium in Poisson-driven BDI medium.
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Fig. 8. Evolution of the Poisson-driven Yule-Furry distribution with
increasing depth.

an initial mean count of Ny = 20 and successive mean
values 22.663, 25.681, and 32.974.

IV. CONCLUSION
The photon statistics at the output of a general BDI
traveling-wave amplifier are always broader than those at
the input and they can take many forms. Interesting in-
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sights are offered by some of the special cases we have
considered. In particular, when a Poisson number of pho-
tons is presented to the input of the amplifier, the output
distribution assumes the form of a noncentral-negative-
binomial (Laguerre) distribution [25], [26]. These statis-
tics are usually associated with a multimode (phase-pre-
serving) superposition of coherent and chaotic fields.
However, they also emerge from the population-dynam-
ics approach [3], [4], [11], [14], [23] as a result of the
proportionality of the stimulated and spontaneous emis-
sion terms in the BDI (forward Kolmogorov) equations.
The results obtained here are applicable to a cascade of
optical amplifiers as well as a single amplifier, even in the
presence of intervening loss, provided that the normalized
bandwidth is the same for all amplifiers [27], [28].

In addition to being used in modeling the evolution of
the photon statistics of a source of light as it passes
through an optical amplifier, the particle-based traveling-
wave model considered here may also be useful for de-
scribing the effects of random media (such as the clear-
air turbulent atmosphere [29]) on the statistical properties
of a light source. Models of the kind presented here result
in greater fluctuations at the output than otherwise-equiv-
alent intensity-based models [24]. This is because the light
source is modeled in terms of its photon statistics, com-
prising both wave and particle fluctuations, rather than
simply wave fluctuations as in intensity-based models.

Finally, we note that it would be useful to incorporate
the results of amplifier saturation in the general case; there
are a number of ways in which this might be carried out
[30]-[33].

APPENDIX
DERIVATION OF
PDF AnND PGF INPUT-OUTPUT RELATIONS

This Appendix reviews the development of the rela-
tionship between the probability density functions (PDF’s)
and probability generating functions (PGF’s) at the input
and output of a BDI medium with given (possibly vary-
ing) birth, death, and immigration rates.

A. Difference-Differential Equation for the PDF

Adopting the model of stochastic distributions of events
or particles, we let ¢ denote the time of traversal, or else
the depth of penetration, of a medium characterized by a
birth rate per particle A(#), a death rate per particle u(r),
and an immigration rate independent of the current num-
ber of particles v(¢). We seek the probability distribution
p(n, t) that n particles are present at time (or depth) ¢,
given that the distribution p(n, 0) at t = 0 was py(n). Spe-
cial cases include that of constant N, u, and » and the
usual problem of one particle (event) at the starting point,
po(n) = 8(n — 1), where 6 denotes the Kronecker delta
(unity at zero argument, zero otherwise).

Within an infinitesimal interval dt, we assume that the
number of particles can only remain the same or change
by one; these mutually exclusive possibilities occur with
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the probabilities defined by the birth, death, and immi-
gration rates. Hence, there can be n particles at the end
of the interval if there were n — 1 at its start and either
birth or immigration occurred, or there were n + 1 pre-
viously and a death happened, or else there was no change
in number during dt, if no birth, death, or immigration
took place. The governing difference-differential equation
is, then,

pn, t +df)y = pn — 1, H[(n — 1)A dr]
+ pn — 1, 0)[v di]
+pn + 1, 0D[(n + Dy di}

+ p(n, D[l — (nN + np + v)ydf] (Al
which becomes, as dt — 0,
ap(n, /0t = [(n — DX + vlp(n — 1, 1)
+ [(n + Dplp(n + 1,0
= [n(N + @) +vlp(n, 5. (A2)

We seek the solution p(n, ?) of this difference-differential
equation (often called the forward Kolmogorov equation),
given the initial distribution p(r, 0) = po(n), for given but
varying parameters A(f), u(f), and »(¢). This furnishes the
evolution of the PDF in the medium.

B. Partial Differential Equation for the PGF
The equation is reduced to a simpler partial differential
equation for the probability generating function (PGF)
GG, 1) = 2 p(n, 12" (A3)

by multiplying the original equation by z" and summing
over all n; we can avoid dealing with ‘‘missing’’ terms at
n = 0 by considering all sums to range from —oo to o
but with p(n, 1) = 0 for n < 0. Thus, replacing the sum-
mation variables n + 1 in (A2) by m where appropriate,
we get

d/31) 22 p(n, 2"
= Nz 2 mp(m, 2" + vz 22 p(m, 7"
+ (p/2) 22 mp(m, )"

— [N+ ul Zonp(n, 02" — v Zp(n, D" (A4)
or, since Zmp(m, 1)z™ = 7 0G/dz,
3Gz, 1) /0t = A\z? 8G/dz + vzG + pn 3G /dz
- (N + wz3G/3z — »G (AS)
or, finally,
3Gz, /ot = (z — D[(A\z — p)
- 8G(z, 1/0z + vG(z, 1)]. (A6)

C. Solution for the PGF

To solve this, we integrate along the path z = z(¢) from
an as yet undetermined initial point (zy, 0) to a fixed but
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arbitrary point (z,, ¢;), where z(¢) is defined by
dz/dt = —(z — D(\z — p). (A7)

Along this path, the partial differential equation becomes
the ordinary one

dG/dt = (z — 1wG
for G = G(z(1), 1); this is solved by

(A8)
Gz, 1) = G(zo, 0) exp UO z@® — Dv(d dt}. (A9)

To obtain the path z = z(f), we define

h(u) = exp Ho (w® — M) dt] (A10)
which is a known function. By using u(®) — N@) =
(1/h(®)) dh(®)/dz, this allows reduction of the equation
(A7) for the path from its alternate form

dz — D)/dt = =Nz — 1)’ + (g — Nz — 1) (Al])
to
h() d(z — 1)/dt
= —-AO @z — D*h@) + (z — 1) dh(d/dat, (A12)

on multiplying by A(f). The last equation has the form
h(r)  h@®)
A -1 z(0) -1

in which the right side is known; we therefore define an-
other function

= k(1) — k() (A13)

u

k(u) = So (h()N(r)) dt (Al4)

which is also known, and integrate (A13) from ¢ to 7 to
get
h(7) h(?)
- = k(1) — k(¢
-1 -1 K0k

so that we have for any pair of values (¢, 7) along the path
) — 1= @) — D)

h(t) ~ (z(6) — DK@ — k(1)
In particular, since h(0) = 1 and k(0) = 0, we now have
72(0) = zq in terms of z(¢;) = z, as

(z; - 1
=1+ )
© W) — @ — Dk

Consequently, we have obtained the PGF G(z, ¢) at an
arbitrary point (z;, f,), in terms of the initial PGF G(zo,
0), as in (A9):

Gz, 1)) = G(zp, 0)

(A15)

(A16)

(A17)

" (zy — Dh(Or(t)
. drg.
“"Uo h() — @ — D) — kD) ’}

(A18)
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Realizing that (z,, ;) was an arbitrary point, we can set
t, = tand z; = zin (A17) and also in (A18) after changing
the dummy integration variable to 7. Defining Z(z, ; 7)
as z(7) on the path from (2o, 0) and (z, 7), we have the
known function of z, ¢, and 7:
(z = Dh()
h(t) — @ — k@) — k(1)
In particular, Z(z, #; 0) = z;, the initial point of the path
from (zq, 0) to (z, #), is now known to be
z-1
h(t) — (z — k()

Zz, 1) =1+ (A19)

Z(z,;0) =1 + (A20)

so that the PGF is given by
Gz, 1) = Gz, 1; 0), 0)

© exp {SO [ZGz, t; 7) — 1]¥(7) dr}. (A21)

D. Evolution of the Count Mean and Variance

Since Z(1, t; 7) = 1, we immediately confirm that G(1,
1), which is the sum of the probabilities at time (or depth)
t, equals the initial sum G(1, 0) = 1, for all z. We also
find the mean number of events or particles N(t) = (n)
= L np(n, 1) = dG(1, f)/dz to be given by

1 t

N@) = % <N0 + go h(7)v(1) d’r) (A22)
where N, is the mean number at the initial point 7 = 0.
This follows directly from 8Z(z, t; 7) /3z = h(t)h(7) / [h(t)
— (z = D(k() — k(r))* = h(r)/h(t) as z = 1. This
expression for the mean also solves the differential equa-
tion that governs its evolution,

dN(t) /dt = —(p — MDN@) + v (A23)

which arises directly from the definitions of the birth,
death, and immigration parameters.

In a similar manner, from 8*G(1, 1) / 3z2, we find the
evolution of the variance in the medium with varying BDI
parameters to be given by

oX1) = [6% — N, + 2k + h)(Ny + V) — Vo] /1’
(A24)
where
o2 = ((n — (m))D)

and
t

Vi@ = So h(t)v(7) dr

t
Vy(t) = S h()k(7) v(7) dr
0
(A25)
are known iterated integrals of the BDI parameters.

REFERENCES

[1] E. L. Goldstein and M. C. Teich, *‘Noise in resonant optical ampli-
fiers of general resonator configuration,”” IEEE J. Quantum Elec-
tron., vol. 25, pp. 2289-2296, 1989.




1334

[2] —, **Noise measurements on distributed-feedback optical ampli-
fiers used as tunable active filters,”” IEEE Photon. Technol. Lett.,
vol. 3, pp. 45-46, 1991.

{3]1 R. Loudon and T. J. Shepherd, *‘Properties of the optical quantum
amplifier,”” Opt. Acta, vol. 31, pp. 1243-1269, 1984.

[4] T.J. Shepherd and E. Jakeman, **Statistical analysis of an incoher-
ently coupled, steady-state optical amplifier.”” J. Opt. Soc. Amer. B,
vol. 4, pp. 1860-1869, 1987.

{5] G. L. Mander, R. Loudon. and T. J. Shepherd, **Theory of the in-
verted-population cavity amplifier.”” Phys. Rev. A., vol. 40, pp. 5753-
5773, 1989.

[6] K. Shimoda, H. Takahasi, and C. H. Townes, ‘‘Fluctuations in am-
plification of quanta with application to maser amplifiers,”" J. Phys.
Soc. Japan, vol. 12, pp. 686-700, 1957.

[7]1 M. S. Bartlett. An Introduction to Stochastic Processes.
Cambridge Univ., 1966.

[8} E. Parzen, Stochastic Processes.
1962.

[9) S. K. Srinivasan. Stochastic Theory and Cascade Processes.

York: Elsevier, 1969.

J. Weber, **Maser noise considerations,’” Phys. Rev., vol. 108, pp.

537-541, 1957.

[11] A. Schell and R. Barakat, **Approach to equilibrium of single mode
radiation in a cavity,”” J. Phys. A: Math., Nucl. Gen., vol. 6, pp.
826-836. 1973.

[12] Y. Yamamoto, *‘Noise and error-rate performance of semiconductor
laser amplifiers in PCM-IM optical transmission systems,”” IEEE J.
Quantum Electron., vol. QE-16, pp. 1073-1081, 1980.

[13] T. J. Shepherd, **A model for photodetection of single-mode cavity
radiation.”” Opt. Acta, vol. 28, pp. 567-583, 1981.

[14] S. K. Srinivasan, Point Process Models of Cavity Radiation and De-
tection. New York: Oxford Univ., 1988.

[15] J. P. Gordon, L. R. Walker, and W. H. Louisell, ‘*Quantum statistics
of masers and attenuators,’” Phys. Rev., vol. 130, pp. 806-812, 1963.

Cambridge:
San Francisco, CA: Holden-Day,
New

[10]

[16] W. H. Louisell, Radiation and Noise in Quantum Electronics. New
York: McGraw-Hill, 1964, Sec. 7.6.
[17] M. Sargent, M. O. Scully, and W. E. Lamb, Jr., Laser Physics. New

York: Addison-Wesley, 1974.

[18] S. Carusotto, ‘‘Quantum statistics of light after one-photon interac-
tion with matter,”” Phys. Rev. 4, vol. 11, pp. 1629-1633, 1975.

[19] E. B. Rockower, N. B. Abraham, and S. R. Smith, ‘*Evolution of
the quantum statistics of light,”” Phys. Rev. A, vol. 17, pp. 1100-
1112, 1978.

[20] S. Friberg and L. Mandel, ‘‘Coherence properties of the linear photon
amplifier,”” Opr. Commun., vol. 46, pp. 141-148, 1983.

[21] ——, “*Photon statistics of the linear amplifier,”’ in Coherence and
Quantum Optics V, L. Mandel and E. Wolf, Eds. New York:
Plenum, 1984, pp. 465-471.

[22] Y. Yamamoto and T. Mukai, ‘‘Fundamentals of optical amplifiers,”’
Opt. Quantum Electron., vol. 21, pp. S1-S14, 1989.

[23] T. Li and M. C. Teich, ‘‘Bit-error rate for a lightwave communica-
tion system incorporating an erbium-doped fiber amplifier.’” Elec-
tron. Lert., vol. 27, pp. 598-600, 1991.

[24] M. C. Teich and P. Diament, *‘Multiply stochastic representations
for K distributions and their Poisson transforms,’* J. Opt. Soc. Am.
A, vol. 6, pp. 80-91, 1989.

[25] J. Pefvina, ‘*Superposition of coherent and incoherent fields,”” Phys.
Lett., vol. 24A, pp. 333-334, 1967.

[26] M. C. Teich and W. J. McGill, ‘‘Neural counting and photon count-
ing in the presence of dead time,”’ Phys. Rev. Lett., vol. 36, pp. 754~
758, 1976.

[27] T. Li and M. C. Teich, ‘‘Performance of a lightwave system incor-
porating a cascade of erbium-doped fiber amplifiers,”” Opt. Com-
mun., 1992, in press.

28] R. Loudon, ‘‘Theory of noise accumulation in linear optical-amplifier
chains,”” IEEE J. Quantum Electron., vol. QE-21, pp. 766-773,
1985.

[29] 1. Petvina, Quantum Statistics of Linear and Nonlinear Optical Phe-
nomena. Dordrecht: Reidel, 1984.

[30] N. B. Abraham, ‘‘Quantum theory of a saturable optical amplifier,”’
Phys. Rev. A, vol. 21, pp. 1595-1601, 1980.

IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL. 28. NO. 5. MAY 1992

[31] G. Oliver and C. Bendjaballah, ‘*Statistical properties of coherent
radiation in a nonlinear optical amplifier,”” Phys. Rev. A, vol. 22, pp.
630-634, 1980.

[32] C. Bendjaballah and G. Oliver. **Comparison of statistical properties
of two models for saturated laser-light amplifier,”” Phys. Rev. A, vol.
22, pp. 2726-2731, 1980.

{33] E. Jakeman, ‘‘Statistics of binomial number fluctuations,”’ J. Phys.
A: Math. Gen., vol. 23, pp. 2815-2825, 1990.

Paul Diament was born in Paris, France, in 1938
and immigrated to the United States in 1948. He
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from Columbia University,
NY, in 1960, 1961, and 1963, respectively.

He was then appointed to the electrical engi-
neering faculty at Columbia. He is Professor of
Electrical Engineering at Columbia University,
where his field of specialization is electromagnet-
ics. He is the author of the textbook Wave Trans-
mission and Fiber Optics (Macmillan, 1990) and
is at work on a second text, in undergraduate electromagnetics. He is cur-
rently on sabbatical leave, conducting research in a radically different area,
attempting to apply probabilistic models to fluctuations in financial mar-
kets.

Malvin C. Teich (S'62-M'66-SM’72-F'89) was
born in New York City. He received the S.B. de-
gree in physics from the Massachusetts Institute
of Technology, Cambridge, in 1961, the M.S. de-
gree in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1962, and the Ph.D. de-
gree in quantum electronics from Comell
University, Ithaca, NY, in 1966.

After receiving the doctoral degree he joined
MIT Lincoln Laboratory, Lexington, MA where
he was engaged in work on coherent infrared de-
tection. In 1967 he joined the Department of Electrical Engineering, Co-
lumbia University, NY, where he is now teaching and pursuing his research
interests in the areas of quantum optics, optical and infrared detection, and
sensory perception. He served as Chairman of the Department from 1978
to 1980. He is also a member of the faculty of the Department of Applied
Physics, and a member of the Columbia Radiation Laboratory and the Cen-
ter for Telecommunications Research. He has authored or coauthored some
175 technical publications and holds one patent. He is the coauthor of Fun-
damentals of Photonics (Wiley, 1991).

Dr. Teich was the recipient of the IEEE Browder J. Thompson Memorial
Prize Award for his paper ‘‘Infrared Heterodyne Detection’’ in 1969, and
in 1981 he received the Citation Classic Award of the Institute for Scientific
Information for this work. He was awarded a Guggenheim Fellowship in
1973. He is a Fellow of the American Physical Society, the Optical Society
of America, and the American Association for the Advancement of Sci-
ence. He is a member of Sigma Xi, Tau Beta Pi, the Acoustical Society of
America, the Association for Research in Otolaryngology, and the New
York Academy of Sciences. He served as a member of the Editorial Ad-
visory Panel for the journal Oprics Letters from 1977 to 1979. He is cur-
rently a Member of the Editorial Board of the Journal of Visual Commu-
nication and Image Representation and Deputy Editor of the Journal of the
European Optical Society B: Quantum Optics.




