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Excess  Noise  Factors for Conventional  and 
Superlattice  Avalanche  Photodiodes  and 

Photomultiplier  Tubes 

Abstract-Light falling on a photodetector produces an output cur- 
rent that fluctuates. The noise in this signal arises from two sources: 
randomness in the photon arrivals and randomness in the carrier mul- 
tiplication process intrinsic to the photodetector. A general formula is 
derived for the variance of the photodetector output current in terms 
of parameters characterizing these two sources of randomness (the 
photon-number variance-to-mean ratio for the light and the excess noise 
factor for the detector). An important special case of this formula il- 
lustrates that the output-current variance is directly proportional to 
the detector excess noise factor when the number of photons at the 
input to the detector is Poisson distributed. Explicit expressions for 
excess noise factors are provided for three kinds of photodetectors: the 
double-carrier conventional avalanche photodiode, the double-carrier 
superlattice avalanche photodiode, and the photomultiplier tube. The 
results for the double-carrier superlattice device are new; it  is shown 
that even a small amount of residual hole ionization can lead to a large 
excess noise factor. Comparisons are drawn among the detectors in 
terms of their noise properties. 

L 
I. INTRODUCTION 

IGHT  falling on a  photodetector produces an output 
current that  fluctuates.  The noise in this signal arises 

from two sources: randomness in the  photon  arrival num- 
ber and randomness in the  carrier multiplication process 
intrinsic to  the photodetector.  The  object of this paper is 
fourfold.  First,  we  calculate  the  variance of the  output 
current  in  terms of parameters  that  characterize  these  two 
sources of randomness (the  Fano  factor  for  the  light  and 
the  excess noise factor  for  the  detector multiplication pro- 
cess).  Second,  we  demonstrate  that in the usual situation 
(Poisson photon arrivals),  a  simple relation between the 
output-current  variance  and  the  excess noise factor of the 
multiplication ensues.  Third,  we  give  explicit expressions 
for  the  excess noise factors of three  photodetectors of in- 
terest:  the  conventional  avalanche  photodiode,  the  super- 
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lattice  avalanche  photodiode,  and  the  photomultiplier 
tube.  Finally,  we  compare and contrast  the  noise  behavior 
of these  three  photodetectors,  illustrating  their relative 
merits. 

The  usual method for experimentally determining  the 
excess noise factor  for  an  APD involves a measurement 
of  the  variance of the  output  current’ when the  device  is 
illuminated by a Poisson stream of photons [l]. Yet  the 
theoretically calculated  excess noise factor is defined in 
terms of the normalized second moment of the  gain ran- 
dom variable when a  single  photocarrier  initiates  the mul- 
tiplication [2]-[4]. The relationship between the two 
quantities  is generally obtained individually for  each APD 
[2]-[5]. Our first task  is  to  derive  a  general formula that 
relates these quantities for  an arbitrary source of light and 
for  an arbitrary detector multiplication process. When the 
number of photons at  the input to the  detector  is  Poisson, 
the  output-current  variance  turns  out  to be directly pro- 
portional to  the  excess noise factor. 

Explicit  formulas  for  the  excess  noise  factor  are pre- 
sented for  several  special  cases:  the  conventional  ava- 
lanche photodiode (CAPD),  the  superlattice avalanche 
photodiode (SAPD),  and  the  photomultiplier tube (PMT). 
The results for  the  CAPD  are  in  accord with the  expres- 
sions obtained earlier by McIntyre [2], [3], whereas the 
results for  the  single-carrier  SAPD  agree with those re- 
ported by Capasso et aZ. [5] for  the  graded-gap  staircase 
APD.  The  expressions  for  the  double-carrier  SAPD  are 
new, although they are related to expressions obtained by 
van Vliet et al. [6]. The  formulas  for  the  PMT were de- 
rived long ago by Zworykin et al. [7] and by Shockley 
and Pierce [8]. The noisiness of the  three photodetectors 
is compared  graphically. 

The  excess noise factor is a useful statistic  because it 
represents,  in  a  compact  way,  the  lowest  order statistical 
properties of the  gain fluctuations that  introduce multipli- 
cative  noise.  However, it must be recognized that,  aside 
from photon fluctuations,  the  excess noise factor does not 
provide  a  complete  statistical  description of the  electron 
current.  While it is useful for  the  calculation  of quantities 
such  as  the  conventional  signal-to-noise ratio (SNR) for 

‘If only the  ac  or  “signal”  portion of the  current  is  considered,  the 
variance  is  equivalent to  the  mean-square  current. 
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analog  detection,  it is inadequate  for describing the  per- 
formance of a  digital-signal  information transmission sys- 
tem [9]. Instead,  measures  such  as probability of detec- 
tion  and probability of error  must  be  used  for  such 
systems. These  latter quantities are strongly dependent  on 
the tails of the  counting distributions (beyond  the  second 
moment)  and  therefore  require  a  more  complete statistical 
description of the  electron  current  (e.g.,  the  counting  dis- 
tribution) [lo]-[ 121. 

11. THEORY 
Consider  a point process representing the  primary (pho- 

ton-generated) carriers.  Let  the  number of these carriers 
generated within the time interval [0, TI be described by 
the discrete  random  variable a.  Each of these  primary car- 
riers,  in  turn,  is  assumed  to  independently  produce M 
daughter  carriers ( M  is the discrete gain random variable 
representing the  carrier multiplication). The total number 
of electrons n produced  at the output  of  the  device is the 
quantity of  interest. 

If a and M are statistically independent,  which it is  safe 
to assume,  then 

( n )  = ( M )  ( a )  (1) 

and 

Var (n) = ( M ) ~  Var (a) + ( a )  Var ( M I .  (2) 

The  angular brackets ( - ) represent the  ensemble  average 
and  Var ( e )  represents the  count variance. These relation- 
ships are  known as  the Burgess  variance  theorem [13]- 
[15].  Dividing (2) by (1) provides 

5, = ( M )  5,  + 5y (3) 

where  the  Fano factors 5; are defined as 

5; = Var ( j ) / ( j ) ,  j = n,  a,  M. (4) 

The quantity 5, is the Fano  factor  for the photogenerated 
carriers.  For many photon-counting  distributions, includ- 
ing the Poisson, the Fano  factor  is invariant to  random 
deletion [14],  in  which  case 5, is the same  as  the  Fano 
factor  for  the  photons incident on the device (Sphoton). 
Equation (3) is  are  then  independent of the detector  quan- 
tum efficiency q .  

In many detectors,  the processes a and n are filtered 
(continuous) versions of their discrete counterparts. In that 
case,  we use  the spectral form of the  Burgess variance 
theorem [ 151 

and 

S, = (M>’ S, + 2 4 ~ ~ )  Var ( M ) .  (6) 

The quantities ( I ,  ) and (I, ) and S,  and S,  represent the 
mean currents and  power spectral densities,  respectively, 
for  the n and a processes; q is the electronic  charge.  Since 
the primary process satisfies 

Var (I,)  = ( q / ~ ) ~  Var (a),  (7) 

the relation B = 1/2T (where B is  the  bandwidth of the 
system)  can  be  used  to  obtain 

s a  = 2qUa) 5,, (84  

thereby allowing (6) to be simplified to 

S, = 2q(Ia)  [ ( M ) ’  5, + Var  (MI]. (8b) 

The  excess.noise  factor F, is defined as  the normalized 
second  moment of the gain random variable for a single 
input photocarrier, i.e., 

F, = ( M ’ ) / ( M ) ’ .  (9) 

Equation (9) can  be  used  in  conjunction  with (8) to  pro- 
vide 

s n  = 2q(zU) (M)’ [5, + ( F e  - 1>1 (loa) 

and 

var(Z,) = 2q(I,) B W ) ’  [5, + ( F e  - 1>1, (lob) 

which  is  the  desired general relationship.  Combining (9) 
with (2) leads to the  discrete  analog  to (lob), which may 
be written as 

Var (n) = ( a )  (M)’  15, + (F, - I)] (10c) 

or equivalently as 

5, = ( M )  [5, + ( F e  - I)]. ( 1 0 4  
The  excess noise factor  can  also  be  expressed in terms of 
the mean  and  variance of the gain by 

F, = 1 + [Var ( M ) / ( M ) ’ ] .  (11) 

For deterministic multiplication 

Var ( M )  = 0, F, = 1 ( 12) 

whence  the  name  “excess noise factor.” 
The laboratory measurement  of an experimental  excess 

noise factor qbe is often carried out by determining the true 
ac mean-square  current at the output of the  APD  under 
study and the true  ac mean-square  current  at  the output of 
a  device  identical in all respects except that with unity 
multiplication. The ratio of these  two currents (which are, 
properly speaking, variances) provides  the  experimental 
excess noise factor 4, [ 11. We  therefore  have 

4, = Var (Z,)/Var (I,) = S,B/S,B. (13) 

Using (loa) together  with  (8a)  leads  to 

+e = ( ( ~ ) ‘ / 5 a )  [%a + (Fe - 111- (144 
Actual  experimental  measurements of +e are invariably 

carried out with  a  source of radiation that  generates  a 
Poisson flow  of photocarriers.  In that case, 5, = 1 so that 
(14a)  becomes 

4, = ( M Y  Fe. (14b) 
This explicitly demonstrates  the proportionality of the ex- 
perimentally determined  and theoretically calculated ex- 
cess noise factors for  Poisson  light. 

The general result for 4, given in (14a) may be equiv- 
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alently expressed in terms of the mean ( M  ) and Fano 
factors T M  and 5,. Using (1  1), we  obtain 

+e = ( M )  ( ( M )  + 5 d 5 a ) .  (154 

In the  case of Poisson  photocarriers,  this simplifies to 

4, = ( M )   ( ( M )  + 3.44). ( 133) 

111. EXCESS NOISE FACTOR FOR THE CONVENTIONAL 
APD 

An expression  for  the  excess  noise  factor F, associated 
with avalanching in a uniformly multiplying p-n junction 
was first derived by McIntyre [2].  When only electrons 
are injected into  the  depletion  layer,  but both electrons 
and holes have  the  capability  to  impact  ionize,  the result 
can be written as 

F, (electron injection) 

= [ k , ( M )  + (2 - l / (M) ) ( l  - kc)]; (16a) 

when only holes are  injected, it becomes 

F, (hole injection) 

= [ ( M ) / k c  - (2 - l / (M) ) ( l  - kc)/kc]. (16b) 

Equations (16a) and (16b) are,  as indicated above, valid 
for  single-carrier-initiated/double-carrier multiplication 
(SCIDCM).  The  quantity 

kc = p/a (17) 

in (16a) and (16b) represents the ratio of hole-ionization 
probability per unit length p to  electron-ionization  prob- 
ability per unit length a.  This <atio is  assumed  to  be  in- 
dependent of the  electric field E and constant throughout 
the  avalanche  region.2  Equation (16b) may be obtained 
directly from (16a) by using the  substitution kc -+ l /kc.  If 
electrons and holes are  both  injected,  the  overall result is 
obtained by adding  the  two  partial  results.2  The  lower  the 
value of kc, the  lower  the  device  noise.  In experimentally 
determining the APD excess noise factor,  the quantity that 
is directly measured is  the  variance of the  output  current 
in response to  a Poisson stream of photons at  the  input, 
as specified in (lob) with 5, = 1. Using (16a) and (16b) 
in (lob) provides results that  accord with those derived by 
McIntyre  [2]. 

The  average multiplication (mean gain) ( M )  for  a 
CAPD with pure  electron  injection,  expressed  as  a  func- 
tion of the  distance  from  the  edge of the  depletion  layer 
x, is [2]-[4] 

( M )  = (1 - k,)/{exp [a(kc - l)x] - k c ) ,  kc # 1. 

(18) 

*McIntyre [3] demonstrated  that  even  if (3 is not proportional  to a, a 
suitable  value  for kc ,  called k,,, can be defined for F, if ( M )  is large. 
Furthermore,  additional  noise is introduced  when  light  is  absorbed on both 
sides of the  junction, so that  both  electrons  and  holes  are  injected  into  the 
avalanche  region  (this is double-carrier-initiatedidouble-carrier multipli- 
cation  or  DCIDCM). In that  case,  an effective excess  noise  factor FCC can 
be  defined [4]. McIntyre’s  theoretical  results  for Si APD’s  were  experi- 
mentally  verified by Conradi 111. 

The  performance of digital-communication systems in- 
corporating CAPD’s  was  examined  in  detail by Person- 
ick.  His  initial  treatment of this topic [lo] dealt with mul- 
tiplication involving a  single ionizing carrier,  as well as 
multiplication involving two  carriers with equal  ioniza- 
tion coefficients. In a  subsequent  generalization [ 1 11, he 
obtained upper-bound performance results for double-car- 
rier devices with unequal ionization coefficients. Person- 
ick’s results are  consistent with those  obtained by Mc- 
Intyre  [3]. 

An important  special  case  is  that of the  CAPD un- 
der single-carrier-initiated/single-carrier multiplication 
(SCISCM) conditions.  This provides the  lowest possible 
noise. Setting kc = 0 in (16a) or kc = 03 in (16b) leads to 

F, = 2 - l / ( M )  (19) 

which, with the  help of (lob) with 5, = 1, gives rise to 

Var (1,) = 2q(I,) B ( M )  12“ - 11. PO), 

The  average  multiplication, readily obtained from (1 8), is 
then 

( M )  = exp (a). (21) 

Inserting (21) into (20) gives the  expression  for  the  vari- 
ance of a filtered Yule-Furry birth  process with a Poisson 
initial population [ 161. The identity between the  statistics 
of the  SCISCM  CAPD and the Yule-Furry process  is con- 
firmed by the gain distribution (in response  to  a  single 
initiating  event); it is  the shifted Bose-Einstein distribu- 
tion in both cases [lo], [ 121, [ 161. 

In  the  case where the  ionization coefficients for  elec- 
trons and holes are  equal (a = p ;  kc = l), (16a) and (16b) 
become 

F e  ( M ) ,  (22) 

whereupon (lob), with 5, = 1, provides 

Var (1,) = 2q(1,) B ( M > ~ ,  (23) 

as first obtained by Tager  [17].  The  average multiplica- 
tion is then 

( M )  = 1/(1 - a), kc = 1. (24) 

For  a  device  operated with either  pure-electron  or pure- 
hole delta-function  injection (i.e., pure injection  at  one or 
the  other  edge of the  depletion  layer),  this is the noisiest 
situation.  However,  for a # p, F, can be even  greater 
than or  less than (A4 ) , depending  on  where  the light is 
absorbed in the  junction.’ 

IV. EXCESS NOISE FACTOR FOR THE SUPERLATTICE 
APD 

An illustrative  example of a  superlattice  APD (SAPD) 
is the  staircase  avalanche  photodiode.  It is a  graded-gap 
multilayer device proposed by Williams,  Capasso,  and 
Tsang [5], [18], [19] for  low-noise light detection in the 
near-infrared region of the  spectrum.  The  device is of in- 
terest  for fiber-optic communications.  It  is designed to 
achieve  an  enhancement of the  impact-ionization  proba- 
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bility ratio,  thereby  minimizing  the  hole-electron  feed- 
back noise  associated with conventional 111-V quaternary 
APD’s for which kc = 1 [20].  Furthermore,  because  the 
electron multiplication can  occur  only at a finite number 
of discrete  locations  in  the  device,  the variability of the 
number  of  electrons  generated  per  detected photon is also 
reduced relative to  the  CAPD. (It has already been  ex- 
perimentally shown  that  the first superlattice  APD  struc- 
ture, proposed by Chin et al., can  provide  an  enhanced 
ionization ratio [21]-[25].) The fabrication of a  staircase 
device in this  region  of  the  spectrum, using molecular- 
beam epitaxy, is currently underway at  AT&T Bell Lab- 
oratories  [24]. 

Although we  deal with the  graded-gap  staircase  SAPD 
extensively for  purposes of illustration,  the  analysis pre- 

their  model  a good starting point for describing the excess 
noise  factor  for  the  double-carrier  instantaneous-multipli- 
cation SAPD.  Although  the theory is  appropriate  as it 
stands  for  those  SAPD’s  in which both electron  and  hole 
ionizations  occur  at  discrete  locations (e.g., the multi- 
quantum-well SAPD  [23]),  it must be modified for  the 
staircase  SAPD. In this  latter  case,  we must incorporate 
a  proper continuous theory  for  the  hole-ionization  proba- 
bility [5] into  the  discrete shifted-Bernoulli theory  of van 
Vliet et al. 

The  excess  noise  factor F, for  the  double-carrier  SAPD 
with electron  injection may then  be  obtained  from  the 
expression for the  variance  derived by van  Vliet et al. [6, 
eq. (73)] using the notational replacements MN -, ( M ) ,  
h -+ P ,  and k + k, along with (1 1 ) .  This  yields 

F, (electron injection) = 1 + (1 - 1 / ( M ) ) ( 1  - k,) 
2 + P ( l  + k,) 

x [ - P  + 2 
1 - k ,P2  1 + P  
1 + k,P [ ( M )  k, - 1 - k, + &]I ’ 

sented here  is  applicable for any SAPD in which  the  car- 
rier transport is perpendicular  to  the  superlattice  planes. 
In such  structures,  the  carriers  encounter  a  potential  dis- 
continuity at  the  heterointerfaces at each period of the 
multilayer  structure.  Thus,  our results will also apply to 
the multiquantum-well SAPD  structure of Chin et al. 
[21]-[23],  1251, the doped-quantum-well  SAPD  structure 
of Blauvelt et al. [26], and  the  stored-carrier multiquan- 
tum-well  SAPD [27]-[29]. However,  the results will not 
apply to  the channeling  APD [30], 13 13, nor to other  de- 
vices in which the  carriers  are spatially separated by means 
of a transverse-field with transport taking place  in  the plane 
of the  layers. 

The  gain,  excess noise factor,  and  electron probability 
distribution at the  output of a  staircase  SAPD  have re- 
cently been  calculated  as  a  function of the number of 
stages of the  device m and  the  electron  impact-ionization 
probability per  stage P under  the  SCISCM  assumption 
[32].3 This  analysis  is  valid  not only far  the staircase 
SAPD,  but  for any of  the  perpendicular-carrier-transport 
SAPD’s. 

We now extend  these  results to allow for residual hole- 
initiated  ionization in the  graded regions of the  device, 
arising  from  the  applied  electric field. (The valence-band 
steps  are of the  wrong  sign to assist  hole-initiated  ioni- 
zation;  indeed they may lead to hole  trapping.  Also,  be- 
cause of the  opposing  conduction-band  quasi-electric 
field, the  electrons  can  impact  ionize  only at the  conduc- 
tion-band discontinuities.)  The  mathematical results fol- 
low from  the  treatment  provided by van  Vliet et aZ. [6], 
with appropriate  extension  and  reinterpretation. The 
model provided by these  authors was intended  to  describe 
multiplication noise in CAPD’s.  However,  their  use  of  a 
deterministic  number of shifted-Bernoulli  stages  makes 

3The  impulse  response  function  was  also  calculated by incorporating the 
effects of (random)  transit  time  into  the  carrier  multiplication  process. 

As previously, P is the  electron  impact-ionization  proba- 
bility per stage  and ( M  ) is  the  average  overall  multipli- 
cation  for  the  device. The ratio of the  hole-ionization 
probability per  stage Q to  the  electron-ionization  proba- 
bility per  stage P defines k, for  the  SAPD, i.e., 

k, = QIP. (264 

For the  staircase SAPD, Q is  given by [5] 
/ r L  \ 

where 6 is  the hole-ionization coefficient (probability per 
unit length) in the  graded region and L is  the  length of 
each stage. 

The  average  multiplication ( M )  is obtained with the 
help of 16, eq. (53)] and (26a) which,  together with the 
notational substitutions X -+ P ,  p -+ Q, N -+ m, yield 

( M )  = 
(1 + P y ( l  - k, )  

(1 + ksP)m+’ - k,( l  + P)*+’ * 
(27) 

From (27), it is apparent  that  the  expression  for  the  excess 
noise factor in (25) could readily be  expfessed as a  func- 
tion of P ,  k,, and rn instead of P ,  k,, and ( M  ) . When k, 
# 0, the  average  multiplication in (27)  will  increase with- 
out limit  for  certain  parameter  values (i.e., avalanche 
breakdown will  occur).  The  validity  of (27) is restricted 
to the  parameter  space below avalanche  breakdown. 

The modified excess noise factor (F, - 1 )  for  the 
SCIDCM  SAPD  is  plotted  as  a  function of the  average 
multiplication ( M )  with the  help  of  (25)  and  (27).  The 
modified excess  noise  factor is used because it is  conve- 
niently displayed  on  double-logarithmic  coordinates.  Fur- 
thermore,  as  is  evident  from  Section 11, it is  the  pertinent 
measure  in  the  absence of quantum  fluctuations. In Figs. 
1 and 2,  we illustrate  its  behavior  for m = 3  and 10, re- 
spectively.  Results  for  several  values of k, are presented 
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AVERAGE MULTIPLICATION <M> 

Fig. 1. Modified  excess  noise  factor F, - 1 versus  average  multiplication 
( M ) for  the single-carrier-initiatedidouble-carrier multiplication 
(SCIDCM)  SAPD.  The modified  excess  noise factor  is  plotted  because 
it  can be conveniently  displayed on double-logarithmic  coordinates.  It  is 
the  pertinent  measure in the  absence of quantum  fluctuations.  The num- 
ber of stages m = 3.  The  behavior  for different  values of k,$ is illustrated 
parametrically.  The  curve  for k, = 0 corresponds  to  the  single-carrier- 
initiatedisingle-carrier  multiplication  (SCISCM)  SAPD. It is apparent 
that  even  small  deviations of k,< from 0 result in substantial  excess noise. 

c '.-*I LL 
e 

5! l 0  m = 10 

F *a-3L.-' : . I ; 3 

10 10 10 10 10 :0 = 10 = 
A V E R K E  M U L T I P L I I A T i O N  <M> 

Fig. 2. Modified excess  noise  factor F, - 1 versus  average  multiplication 
( M )  for the  SCIDCM  SAPD  with m = 10. Again,  the  curve k,  = 0 
corresponds  to  the  SCISCM  SAPD.  Comparison  to  Fig. 1 demonstrates 
that  as m increases,  the  deleterious effects of residual  hole  ionization 
become  more  pronounced. 

parametrically. The k,y = 0 curve  corresponds to the 
SCISCM  SAPD. As for  the CAPD, the  lower  the  value 
of k,, the  lower  the  noise.  It is apparent  that even small 
deviations of k, from 0 result in substantial  excess  noise. 
This effect is more pronounced aS,m increases.  These re- 
sults  provide  limits  on  the residual hole  ionization that is 
tolerable in an  SAPD. Based on a  many-particle Monte 
Carlo  simulation, Brennan [33] has recently estimated k, 
to be = lo-' for  the multiquantum-well SAPD of Chin et 
al. [23] an3 = for  the  staircase  SAPD of Williams 
et al. [ 181, in  the  GaAs/AlGaAs  system. He has also 
shown that  even  lower values of k, may be  achievable by 
using the  doped-quantum-well  SAPD  structure of Blau- 
velt et al. [26]. 

The  most  important  special  case, of course, is that of 
the  SCISCM  device,  which is the  lowest noise SAPD. 
From  (27),  the  average  multiplication  for  the  single-car- 
rier multiplication  SAPD is easily shown to be 

( M )  = (1 + P)". (28) 

The  excess  noise  factor is obtained by setting k,y = 0 in 
(25), which leads to 

F, = 1 + [(l - P)/(l  + P)][1 - (1 + P)-"]  (29a) 

1 (M)-l + 2(M)-1'" - 2(M)-l-l'". (29b) 

Using (14b),  the  experimental  excess  noise  factor 4, will 
then be  given by 

4, = (1 + P)2m + [(l - P ) / (  1 + P)]  [(l + P)2m 

- (1 + P)"] (30) 

which, with the  help of (lob) and 5, = 1, corresponds to 
the output  current  variance 

Var (z~) = 2q (I,) ~ ( ( 1  + p12" + [(I - P)/(I + P)] 

[(l + P)2m - (1 + P)"]}. (3 1) 

Equation (29a) agrees with the formula  obtained by Ca- 
passo et al. [5 ,  eq.  (2)]. Equation (31) is also  in accord 
with their result [ 5 ,  eq.  (l)], provided that the quantity 
( i 2 )  in [ 5 ,  eq. (l)] is  interpreted as the  power  spectral 
density Sn. All of  the  formulas  presented here are in 
agreement with those reported in  [32].  Equation (29b) is 
displayed in  Figs. 1 and  2 (k ,  = 0). 

Carrying (29b) to the  limit m + 03 leads to the result 

F, = 2 - l / ( M ) ,  (32) 

which is identical to that given for  the SCISCM CAPD in 
(19).  This is as  expected; in this  limit,  there is an infinite 
number of stages and the probability is vanishingly small 
that a  carrier is produced by impact  ionization in any one 
given stage of the  device. 

Finally, we consider  the  case of equal  ionization coef- 
ficients for  electrons  and holes in  the  SAPD (P  = Q ;  k, 
= 1).  The  excess  noise  factor, output-current variance, 
and average  multiplication then become 

F, = ( M )  - ( ( M )  - 1)2/m(M) (33) 

Var (z~) = 2q(1 , )  B [ ( M > ~  - ( M ) ( ( M )  - 112/m1 

(34) 

and 

( M )  = 1/(1 - Pm),  (35) 

respectively.  Carrying  (33) to the  limit m -+ 03 provides 

F, = ( M )  (36) 

which is identical  to  the  SCIDCM  CAPD result given in 
(22)  for  the  same  reasons as indicated  above. 
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Fig. 3 .  Modified  excess  noise factor F, - 1 versus  average  multiplication 
( M )  for  the  SCISCM  SAPD  (solid  curves) with m = 5 and 10, the 
SCISCM  CAPD (dotted curve), and the high-gain  Gap-first-dynode PMT 
with  Poisson  multiplication and A = 10 (dashed  curves) form = 1, 4, 
10. This figure illustrates  the best  possible  behavior for  all  three  devices. 
Although  the  theoretical  excess  noise  factor of the  SAPD  is  always su- 
perior  to  that  of  the  CAPD,  the differential  cannot  be large  because F ,  
< 2 for.both  devices. The  PMT  exhibits  high-gain,  low-noise  behavior 
for  all  useful  values of ( M )  . In  terms of the  excess  noise  factor,  it  can 
exhibit  better  performance  than  the  SAPD. 
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Fig. 4. Modified  excess  noise factor F, - 1 versus  average  multiplication 
( M )  for  the  SCIDCM  SAPD ( k ,  = 1, solid  curves)  with m = 5 and 10, 
the  SCIDCM  CAPD (kc = 1, dotted  curve),  the  identical-dynode  PMT 
with  Bose-Einstein  multiplication  (short-dash  curves)  and  with m = 4 
and 10,  and  the  high-gain  Gap-first-dynode  10-stage  PMT with  Bose- 
Einstein  multiplication  and  with A = 10 (long-dash curve).  This figure 
illustrates  the  worst  possible  behavior  for  all  three  devices,  assuming 
single  carrier  (delta-function)  injection. For the  CAPD, F, is identically 
equal to ( M ) ,  whereas for  the  SAPD, F, increases  approximately as 
( M ) .  These  results  illustrate  explicitly that the  feedback  associated  with 
double-carrier  multiplication  in  APD’s  gives  rise to  far  more  noise than 
does  uncertainty in  the  ionization  locations.  The  quintessentially  single- 
carrier  PMT  displays  far  and  away  the  lowest  values of the  excess  noise 
factor. 

V. COMPARISON OF EXCESS NOISE FACTORS FOR THE 

SAPD AND  THE CAPD 
The  modified  excess noise factors for  the  SAPD (solid 

curves) and CAPD (dotted curves) are plotted versus the 
average multiplication (A4 ) in Figs. 3 and 4 for k, = kc 
= 0 and k, = kc = 1 ,  respectively. The results in Fig.  3 
are  for  SCISCM  conditions, representing the best possible 

behavior of both devices. The excess noise factors for  both 
the SAPD  and the CAPD then  always  lie  below 2, as  is 
apparent  from (19) and (29a). Although  the theoretical 
performance of the  SAPD  is  always  superior  to  that of the 
CAPD, the differential (in terms of excess noise factor) 
cannot  be  very  large  since F, < 2 for both  cases. 

In the opposite  limit  (SCIDCM  with  equal impact-ion- 
ization probabilities),  the results are displayed in Fig. 4. 
This  is the worst  possible  behavior  for  both  devices,  as- 
suming  single-carrier (delta-function) injection. F, for the 
CAPD  is identically ( M )  from (22). F, for  the SAPD 
also increases in approximate proportion to ( M  ) , but with 
the coefficient (1 - l /m),  which  is slightly below  unity, 
as  can  be discerned from (33). Thus,  the SAPD excess- 
noise curves lie slightly below  the CAPD  curve  for finite 
m, coming  ever  closer as m --+ 03, in accord  with  (36). 

The results presented in Figs. 3 and 4 illustrate  explic- 
itly that the feedback noise introduced by the process of 
double-carrier multiplication is  far more  deleterious to 
noise performance  than is the randomness  associated  with 
uncertainty in the locations of the  ionizations. 

VI. EXCESS NOISE FACTOR FOR THE PHOTOMULTIPLIER 
TUBE 

The photomultiplier tube (PMT)  is  one of the oldest and 
most versatile of light detectors,  having  been  developed 
about 1935  [7]. From  a noise point of view, it has the 
distinct advantage  of  being  a  single-carrier  device 
(SCISCM)  since  the electrons travel  in  vacuum. An ex- 
cellent description of essentially all  aspects of PMT op- 
eration is available in the RCA Photomultiplier Handbook 
[34] ; in particular,  the  reader  is  directed  to  Appendix G 
(pp.  160-176) for  a  comprehensive discussion of the sta- 
tistical theory of PMT  noise. 

The  average multiplication for an  m-stage  device  is 
given by [34, eq. (G-55)] 

m 

(37) 

where (&) is the  mean  secondary-emission gain at  the 
kth stage. The random  variable (Sk represents  the  kth-stage 
secondary-emission  gain.  Using an  expression  for  the  vari- 
ance of the multiplication M at  the output of the PMT [34, 
eq. (G-56)] together  with  (1  1) gives the  excess  noise  fac- 
tor 

This  expression  is of general validity for  single-carrier 
discrete multiplication processes. (Thus, it can  also  be 
used  for the SCISCM  SAPD  when the individual stages 
have different values of P . )  It, and variants of it, were 
obtained early on [7],  [SI,  [35]. It  is  apparent  from the 
sequence  of  denominators in (38) that the gain of the first 
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stage (61 ) has  a  substantial influence on F,; the higher 
this  gain,  the  lower  the  contribution  to  the  excess noise 
from  the  subsequent  stages.  It is this mathematical prop- 
erty that  spurred  the  development of high-gain GaP-first- 
dynode  PMT's  at  RCA [36]. 

Two useful special cases of (37) and (38) involve 
PMT's with identical  dynodes  and  PMT's with a  high- 
gain first dynode.  We first assume  that  all rn dynodes of 
the  device are equivalent, so that  the  are  independent 
and identically distributed (iid) random  variables for all 
k,  with mean and  variance  given by (6 )  and  Var (6), re- 
spectively.  Then (37) becomes 

( M )  = (39) 

whereas  (38)  becomes 

These  expressions  are  exact and applicable  to any single- 
carrier  device with rn identical  stages.  Thus,  the formula 
for the  SCISCM  SAPD  excess  noise  factor given in (29a) 
may be  obtained by setting ( 6 )  = 1 + P and  Var (6) = 
P(l - P ) .  

We  next  assume  that  all  stages  produce iid secondary 
electrons, with mean and  variance ( 6 )  and Var (6) re- 
spectively, except for  the first stage  for which 

(61 ) = A ( 6 )  (4 1 4  

and 

Var (6,) = A Var (6) (4 1 b) 

where A is  a  constant. When A >> 1, this  characterizes 
the high-gain first-dynode PMT  (e.g.,  Gap).  The mean 
gain (37) then becomes 

( M )  = A(6)"  (4 1 c) 

whereas  the  excess  noise  factor (38) becomes 

The similarity between (42) and (40) is  obvious, with the 
prefactor 1/A on the right-hand side of (42) succinctly 
representing the  excess-noise-factor  advantage of the 
high-gain first-dynode tube. 

To  proceed  further,  the  variance of the gain at the  var- 
ious  stages must be specified.  This is determined by the 
secondary-emission  process at the  dynodes.  The  simplest 
and most frequently used model invokes Poisson second- 
ary-emission multiplication at every stage  (Var (6) = ( 6 ) )  
[7], [8], [35], [37]-[39]. A more  versatile  model  is  pro- 
vided by the  neagative-binomial (or Polya) distribution, 
which has been used by Prescott [40] and others  [34], 
[41],  [42].  This  distribution  arises  from a mixture of Pois- 
son distributions  whose means are  smeared in accordance 
with the gamma distribution 1431. Physically,  the  smear- 
ing is thought to  arise  from  the variability of the  second- 
ary-emission efficiency across  the  surface of the dynode 

[34], [40]. In this  case, 

Var (6) = (6)  + ( 6 ) * / 0  (43) 

where D is  the  "degrees-of-freedom''  parameter  describ- 
ing the extent  of  the  smearing [44]. Two special  limits of 
the  negative  binomial  are  the Poisson distribution  for 
which D = M (the  least  noisy)  and  the Bose-Einstein (or 
Furry)  distribution  for which D = 1 (the most noisy). 

Of the  various  possibilities  implicit in the results of this 
section,  the  overall  lowest  excess  noise  factor  obtains  for 
a high-gain first-dynode PMT with Poisson  multiplica- 
tion. In that  case,  using (41)-(43), we  obtain 

F , = 1 + -  [ - ] . (44) 
( M )  ( (M)/A)""  - 1 

Equation (44) is plotted as  the  dashed  curves  in  Fig.  3  for 
A = 10 (rn = 1, 4,  10). The gain of the m = 1 (4) GaP 
PMT is approximately  the  same  as that of  the m = 5 (10) 
SAPD. It is  apparent  that  the  excess  noise  factor of the 
PMT  can  fall below that of the  SAPD. Of course,  the 
overall  gain of a PMT can  stretch  to = lo8, which is far 
and away greater than that  achievable by any APD. 

The  excess noise factor  for  Poisson secondary-emission 
multiplication without the benefit of the high-gain first dy- 
node (all  dynodes  identical) is obtained by setting A = 1 
in (44). When ( M )  >> 1, F, then takes  the well-known 
approximate form 

F, = ( M ) l ' " / ( ( M ) l ' m  - 1) = (6)/((6) - l),  (45) 

signifying essentially noise-free multiplication even in this 
case. 

The  excess  noise  factor  for  a high-gain first-dynode 
PMT with Bose-Einstein secondary-electron  statistics is 
obtained from (41)-(43) with D = 1. It  is 

which is plotted as  the  long-dash  curve in Fig.  4  for A = 

Finally,  the noisiest of the  PMT  cases  considered  here 
arises for Bose-Einstein secondary-electron statistics with 
all  dynodes  equivalent.  This result is obtained by setting 
A = 1 in (46). For ( M ) >> 1, F, then  takes  the  approx- 
imate form 

10 (m = 10). 

F, 2(M)"m/(( M)"" - 1) 

= 2(6)/((6) - 1). (47) 

This  is only a  factor of 2 greater than the  excess  noise 
factor in (45) for Poisson multiplication.  This  case is plot- 
ted as the short-dash curves in Fig.  4 (rn = 4, lo). 

It is apparent that,  even  at  its  noisiest,  the  PMT is a 
relatively quiet device.  This  is  a  consequence  of its sin- 
gle-carrier  vacuum  character. The low excess noise factor 
has made  the PMT an  indispensible tool in  optics labo- 
ratories since  the  1930's  and it is not likely  to  be relegated 
to the  junk  heap any time  soon. 
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VII.. CONCLUSION 
We  have  obtained  a  general  expression (lob) for  the 

output-current  variance of a  photodetector in terms of the 
Fano  factor of the  photoelectrons 5, and  the  excess noise 
factor of the  multiplication  process  intrinsic  to  the  detec- 
tor F,. Sources of noise  such as  dark  current,  Johnson 
noise,  and l / f  noise were not included in the  simple  for- 
mulation considered  here; they can be easily incorpo- 
rated,  however. The analysis  assumed  instantaneous mul- 
tiplication in that the  measurement  time was assumed to 
be greater  than  the  time  response of the signal [ 3 2 ] .  

The  variance can be  cast  in  terms of a  current  signal- 
to-noise  ratio  at  the  output of the  photodetector  given by 

SNR (z,) = ( I,)/[Var (z,)]”~ 

= [( ZU)/2qB(5, + F, - 1)]”2 (48) 

where ( I,) = r (  Zphoton). In  the  usual  situation of Poisson 
photon  arrivals (5, = l),  the  output-current  variance is 
proportional to F, in  accordance with 

Var (Z,) = 2q( I,) B( M)2F,  (49) 

whereupon the  experimental  excess noise factor is 

A? = ( M > 2 F ,  (50) 

and the SNR is 

SNR (Z,) = [( Z,)/2qBF,]112. (5 1) 

In this  case,  optimization of the  SNR simply involves 
minimizing F,, independent of ( M )  . In  the  presence of 
thermal noise and/or  dark noise,  however,  optimization 
of the  SNR is achieved  at specific values of ( M )  and F,. 

Under  conditions of Poisson  photon  excitation (or in- 
deed for any distribution of photons for which 5, is con- 
stant and,independent of ( a ) ) ,  the right-hand side of ( 3 )  
depends  only  on  the  random  gain M .  Thus,  the ratio of 
overall  count  variance  to  overall  count mean is constant 
and independent of the  excitation  level. The output  cur- 
rent from any multiplying  detector  illuminated by such 
light  therefore  has  shot-noise-like  behavior.  A useful con- 
sequence of this property is the applicability of the square- 
root normalizing transformation [45] .  With the help of this 
computational  tool,  system  performance  can  be readily 
evaluated in approximate  form [46]. The  presence of ad- 
ditive  thermal noise and/or  dark  noise  will,  however,  de- 
stroy this  shot-noise-like  behavior. 

In the  complete  absence  of photoelectron fluctuations 
(5, = 0), and  thermal  and  dark  noise,  the  output-current 
variance  is no longer  proportional to F,, but is instead 
proportional to (F, - 1). Thus,  Var (I,) -+ 0 as F, -+ 1. 
In  this  idealized case,  the signal-to-noise  ratio  at  the  out- 
put of the  photodetector is 

SNR (I,) = [( I , )  /2qB(Fe - l ) ]  ‘ I 2 ,  (52) 

which can become  large  for  a  photodetector with F, + 1. 
Expressions  for the  excess  noise  factors for CAPD, 

SAPD, and PMT photodetectors  have been set forth and 

graphically displayed. In  terms of existing  devices,  small 
Si  CAPD’s with high quantum efficiency and  near-ideal 
performance (F, = 2.6 corresponding  to kc = 0.006  at 
( M )  = 100) have  been  fabricated  in  the  wavelength re- 
gion 0 . 4  < X < 0.95 pm [ 4 7 ] .  Devices  that  are  even 
more  quiet,  with F, < 2.2 corresponding to kc < 0.002 
at ( M )  = 100, appear  to be possible [48]. CAPD  devices 
with essentially  SCISCM  properties are therefore  cur- 
rently available  at  this  wavelength.  However,  quaternary 
devices are generally used in the  wavelength region h = 
1.5 pm. Unfortunately,  these  have kc = 1 so that F, is 
much higher [20]. Dark  current  and  leakage  current may 
also present difficulties in such devices. 

SAPD’s offer promise in  this  longer  wavelength  region. 
These  devices  have  potential  as  small, high quantum  ef- 
ficiency,  low-voltage  photodetectors, with low leakage 
current [ 5 ] ,  [20] .  Although  SAPD’s can, in  principle,  ex- 
hibit minimal noise (F, .+ l), their  average  multiplication 
is restricted (( M ) I 2” for  SCISCM  operation).  Resid- 
ual hole  ionization  is  also  a  potential  problem  and  it is 
imperative  to  construct  devices in which this effect is min- 
imized [ 3 3 ] .  The  dark-current  behavior of various SAPD’s 
has not yet been  established.  Attempts  are  currently  un- 
derway to  construct  a  long-wavelength  staircase  SAPD 

Photomultiplier  tubes  have  remarkably low excess 
noise,  along with the  desirable  properties of low dark  cur- 
rent, high gain, good pulse  resolution,  and  ease  of  oper- 
ation in the photon-counting  mode.  However,  as is well 
known, they suffer from  limited  quantum efficiency, large 
size,  high-voltage  requirements,  luminescence  noise,  and 
afterpulsing due  to  H + ions or inverse photoemission [ 3 4 ] .  

PMT’s  are  sometimes used to  discriminate  between  sin- 
gle-  and  multiple-photoelectron  events. This capability 
follows from the high gain  as  well  as  the  narrowness of 
the multiplied electron  distribution [34]  and is associated 
with a minimal value of the  gain  Fano  factor 5,. Such 
discrimination  is  more difficult for  the  CAPD which suf- 
fers  from  a  (rather  broad)  shifted Bose-Einstein gain  dis- 
tribution. It may also  be difficult for  the  SAPD which ex- 
hibits multiple peaks  in  the  gain  distribution, unless P is 
close  to unity [ 3 2 ] .  A related matter is the  operation of a 
photodetector as a high-speed photon  counter.  This  gen- 
erally  requires  some lo4 electrons/photon  to  overcome 
preamplifier Johnson noise [48].  Although  this is readily 
achieved with a PMT, such gains  are not easily  attained 
with APD’s.  In  particular, reaching this gain in a  SCISCM 
SAPD would require  a  structure of some 15 stages [ 4 8 ] .  

As a final note,  we  reiterate  that  the  excess  noise  factor 
is an  inadequate  measure  for  describing  the  performance 
of a  digital-signal  information-transmission  system. Ap- 
propriate  performance  measures for such  systems (e.g., 
probability of error)  require  knowledge of the  electron- 
counting distributions.  In  particular,  digital-system per- 
formance  is  strongly  dependent on  the tails  of  these  dis- 
tributions.  Certain of the  photodetectors  discussed  here 
will  have  more  favorable  shapes  for minimizing error 
probabilities  than will others.  This will be  elucidated  in  a 

~ 4 1 .  
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companion study of error probabilities for  a  simple  optical 
receiver,  to be presented elsewhere [ 121. 
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