Bibliography

Taqqu (Eds.), *Theory and Applications of Long-Range Dependence* (pp. 527–556). Boston: Birkhäuser.

Bienaymé, I.-J. (1845). De la loi de multiplication et de la durée des familles. L’Institut, Journal Universel des Sciences des Sociétés Savantes en France et à l’Étranger, 10 (Series 5), 37–39. These proceedings were periodically reissued as Extraits des Procès-Verbaux des Séances — Société Philomathique de Paris. This paper is reprinted at the conclusion of Kendall (1975).

Engset, T. (1915). Om beregningen av vælgere i et automatisk telefonsystem. Unpublished manuscript (in Norwegian), written in Kristiania (Oslo). This 130-page typed manuscript was discovered in the files of the Copenhagen Telephone Company (KTAS) in 1995 by Villy Bæk Iversen; the presumed original of the manuscript was subsequently located in the Norsk Telemuseum, Oslo. Translation: (1998). On the calculation of switches in an automatic telephone system. (A. Myskja, Trans.). Telektronikk (Oslo), 94, 99–142; translation reprinted in Myskja & Espvik (2002, pp. 40–148). A biography of Engset has been prepared by Myskja (1998b).

Fibonacci (1202). *Liber abaci*. Pisa. Leonardo Pisano was known as Fibonacci.

Kenrick, G. W. (1929). The analysis of irregular motions with applications to the
energy frequency spectrum of static and of telegraph signals. *Philosophical Magazine*, 7 (Series 7), 176–196.

Lowen, S. B. (2000). Efficient generation of fractional Brownian motion for simulation of infrared focal-plane array calibration drift. *Methodology and Computing in Applied Probability, 1*, 445–456. Erratum: \(X(k) \) is improperly defined; the correct expression, for \(0 < k < M \), is \(X(k) = (G_{1,k} + iG_{2,k}) \sqrt{S(k)/2} \), with all \(G_{1,k} \) and \(G_{2,k} \) independent, zero-mean, unit-variance Gaussian random variables.

BIBLIOGRAPHY

Teich, M. C. & Rosenberg, S. (1971). *N*-fold joint photocounting distribution for modulated laser radiation: Transmission through the turbulent atmosphere. *International Journal of Opto-Electronics*, 3, 63–76. Errata: The correct expression for Eq. (28) on p. 69 is $B = Q - \Lambda^{-1}$ where the elements of Q are simply $Q_{ij}^{(2)}$, with $i, j = 1, 2, \ldots, N$. The lettering on Figure 1, p. 71, should read $R = 0, 0, 0.499, 0.998$. Reference 9 should read *Applied Optics* 10 (1971) 1664. Reference 28 should read *J. Appl. Phys.* 43 (1972) 1256.

Author Index

Abbe (1878), 64, 513
Abeles et al. (1983), 227, 513
Abry et al. (2002), 314, 513
Abry & Flandrin (1996), 58, 68, 513
Abry et al. (2000), 58, 274, 331, 332, 513
Abry et al. (2003), 58, 114, 274, 513
Abry & Sellan (1996), 139, 514
Aiello et al. (2001), 321, 514
Aitchison & Brown (1957), 36, 147, 514
Aizawa (1984), 173, 176, 514
Aizawa & Kohyama (1984), 173, 514
Akay (1997), 58, 514
Aks et al. (2002), 45, 514
Albert & Nelson (1953), 236, 514
Albert & Barabási (2002), 37, 38, 321, 514
Albert et al. (1999), 16, 321, 514
Aldroubi & Unser (1996), 58, 514
Alexander & Orbach (1982), 471, 514
Allan (1966), 68, 276, 514
Alligood et al. (1996), 25, 514
Anderson (2001), 16, 44, 45, 514
Anderson et al. (1999), 16, 44, 515
Arececi & Califano (1987), 173, 515
Arececi & Lisi (1982), 173, 515
Argoul et al. (1989), 75, 515
Arlitt & Jin (1998), 330, 515
Arneodo et al. (1988), 58, 515
Arrault & Arneodo (1997), 75, 515
Ashkenazy et al. (2001), 275, 515
Ashkenazy et al. (1998), 44, 275, 515
Asmussen (2003), 316, 328, 515
Ayache & Lévy Véhel (1999), 123, 515
Azhar & Gopala (1992), 224, 472, 515
Bacelli & Brémaud (2003), 51, 515
Bachelier (1900), 19, 515
Bachelier (1912), 19, 516
Bacry et al. (1993), 75, 516
Bak (1996), 37, 516
Bak et al. (1987), 37, 516
Barakat (1976), 36, 516
Bardet et al. (2000), 280, 516
Bardet et al. (2003), 114, 139, 280, 516
Barlow (1957), 43, 516
Barndorff-Nielsen et al. (1978), 156, 516
Barnes & Allan (1966), 68, 144, 516
Barnsley (2000), 16, 39, 516
Bartlett (1955), 50, 82, 87, 516
Bartlett (1963), 4, 72, 88, 94, 516
Bartlett (1964), 72, 94, 95, 202, 517
Bartlett (1972), 4, 517
Barton & Poor (1988), 137, 143, 517

567
Bassingthwaighte et al. (1994), 16, 41, 517
Bassingthwaighte & Raymond (1994), 60, 517
Bateman (1910), 64, 517
Beggs & Plenz (2003), 42, 517
Beggs & Plenz (2004), 42, 517
Bell (1960), 116, 517
Bell (1980), 116, 517
Benassi et al. (1997), 123, 517
Beran (1992), 309, 517
Beran et al. (1995), 325, 517
Berger & Mandelbrot (1963), 154, 167, 517
Berry (1979), 16, 40, 517
Berry et al. (1980), 151, 517
Bertoin (1998), 35, 174, 518
Bharucha-Reid (1997), 236, 518
Bhattacharya et al. (2005), 42, 518
Bickel (1960), 116, 517
Bell (1980), 116, 517
Benassi et al. (1997), 123, 517
Beran (1992), 309, 517
Beran et al. (1995), 325, 517
Berger & Mandelbrot (1963), 154, 167, 517
Berry (1979), 16, 40, 517
Berry et al. (1980), 151, 517
Bertoin (1998), 35, 174, 518
Bharucha-Reid (1997), 236, 518
Bhattacharya et al. (2005), 42, 518
Bickel (1999), 122, 123, 518
Bickel (2000), 168, 452, 518
Bickel & West (1998a), 168, 452, 518
Bickel & West (1998b), 168, 452, 518
Biederman-Thorson & Thorson (1971), 42, 518
Bienaymé (1845), 95, 518
Blair & Erlanger (1932), 92, 518
Blair & Erlanger (1933), 92, 518
Bouchaud & Georges (1990), 35, 518
Bovy (1998), 4, 16, 518
Boxma (1996), 334, 518
Bracewell (1986), 51, 519
Brémaud & Massoulié (2001), 217, 519
Brichet et al. (1996), 328, 519
Brillinger (1981), 51, 519
Brillinger (1986), 78, 519
Brockmeyer et al. (1948), 316, 519, 524, 525
Brown (1828), 19, 519
Buckingham (1983), 16, 39, 107, 116, 172, 173, 196, 519
Buldyrev et al. (1995), 290, 519
Burgess (1959), 231, 519
Burlatsky et al. (1989), 471, 519
Činlar (1972), 84, 256, 258, 519
Caccia et al. (1997), 60, 519
Campbell (1909a), 186, 520
Campbell (1909b), 186, 520
Campbell (1939), 50, 520
Cantor et al. (1975), 237, 520
Cantor & Teich (1975), 237, 263, 520
Cantor (1883), 17, 40, 520
Carlson & Doyle (1999), 37, 520
Carlson & Doyle (2002), 37, 520
Carson (1931), 195, 520
Casting (1996), 123, 520
Čerenkov (1934), 220, 520
Čerenkov (1937), 220, 520
Čerenkov (1938), 220, 468, 520
Chandler et al. (1958), 4, 520
Chandrasekhar (1943), 193, 520
Chapman & Smith (1963), 42, 520
Chistyakov (1964), 57, 521
Christoph & Wolf (1992), 35, 521
Cohen (1969), 316, 328, 521
Cohen (1973), 328, 521
Cohn (1993), 516, 521
Cole (1995), 45, 521
Collins et al. (1995), 16, 43, 521
Conrad (1986), 25, 521
Cooper (1972), 316, 521
Cox (1948), 33, 521
Cox (1955), 88, 521
Cox (1962), 23, 51, 82, 85, 231, 264, 521
Cox (1963), 241, 521
Cox (1984), 15, 336, 521
Cox & Lewis (1966), 51, 70, 82, 88, 273, 521
Cox & Smith (1953), 84, 521
Cox & Smith (1954), 84, 522
Crovetta & Bestavros (1997), 325, 329, 335, 336, 522
Dal Negro et al. (2003), 40, 522
Dal Negro et al. (2004), 40, 522
Dal Negro et al. (2005), 40, 522
Daley (1974), 54, 522
Daley & Vere-Jones (1988), 51, 85, 94, 522
Dan et al. (1996), 45, 522
Daubechies (1988), 120, 522
Daubechies (1992), 58, 522
Davenport & Root (1987), 186, 189, 522
Davidsen & Schuster (2002), 149, 522
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davies & Harte</td>
<td>1987</td>
<td>139, 142, 522</td>
</tr>
<tr>
<td>Dayan & Abbott</td>
<td>2001</td>
<td>77, 522</td>
</tr>
<tr>
<td>DeBoer et al.</td>
<td>1984</td>
<td>57, 64, 282, 523</td>
</tr>
<tr>
<td>DeLotto et al.</td>
<td>1964</td>
<td>237, 263, 523</td>
</tr>
<tr>
<td>Dettmann et al.</td>
<td>1994</td>
<td>440, 523</td>
</tr>
<tr>
<td>Devaney</td>
<td>1986</td>
<td>25, 523</td>
</tr>
<tr>
<td>Diament & Teich</td>
<td>1970a</td>
<td>36, 523</td>
</tr>
<tr>
<td>Diament & Teich</td>
<td>1970b</td>
<td>501, 523</td>
</tr>
<tr>
<td>Ding & Yang</td>
<td>1995</td>
<td>138, 523</td>
</tr>
<tr>
<td>Ditto et al.</td>
<td>1990</td>
<td>30, 523</td>
</tr>
<tr>
<td>Doob</td>
<td>1948</td>
<td>85, 523</td>
</tr>
<tr>
<td>Doob</td>
<td>1953</td>
<td>189, 523</td>
</tr>
<tr>
<td>Dorogovtsev & Mendes</td>
<td>2003</td>
<td>37, 321, 523</td>
</tr>
<tr>
<td>Doukhan</td>
<td>2003</td>
<td>16, 523</td>
</tr>
<tr>
<td>Doyle & Carlson</td>
<td>2000</td>
<td>37, 523</td>
</tr>
<tr>
<td>Duffy et al.</td>
<td>1994</td>
<td>317, 523</td>
</tr>
<tr>
<td>Dulea et al.</td>
<td>1992</td>
<td>40, 523</td>
</tr>
<tr>
<td>Ebel et al.</td>
<td>2002</td>
<td>321, 523</td>
</tr>
<tr>
<td>Eccles</td>
<td>1957</td>
<td>91, 523</td>
</tr>
<tr>
<td>Efron</td>
<td>1982</td>
<td>255, 524</td>
</tr>
<tr>
<td>Efron & Tibshirani</td>
<td>1993</td>
<td>255, 524</td>
</tr>
<tr>
<td>Eguiluz et al.</td>
<td>2005</td>
<td>38, 524</td>
</tr>
<tr>
<td>Einstein</td>
<td>1905</td>
<td>19, 524</td>
</tr>
<tr>
<td>Ellis</td>
<td>1844</td>
<td>97, 524</td>
</tr>
<tr>
<td>Embrechts et al.</td>
<td>1997</td>
<td>57, 524</td>
</tr>
<tr>
<td>Engset</td>
<td>1915</td>
<td>315, 316, 524</td>
</tr>
<tr>
<td>Engset</td>
<td>1918</td>
<td>316, 524</td>
</tr>
<tr>
<td>Erlang</td>
<td>1909</td>
<td>315, 524</td>
</tr>
<tr>
<td>Erlang</td>
<td>1917</td>
<td>316, 318, 319, 524</td>
</tr>
<tr>
<td>Erlang</td>
<td>1920</td>
<td>316, 525</td>
</tr>
<tr>
<td>Erramilli et al.</td>
<td>1996</td>
<td>328, 525</td>
</tr>
<tr>
<td>Evans et al.</td>
<td>2001</td>
<td>227, 525</td>
</tr>
<tr>
<td>Evarts</td>
<td>1964</td>
<td>16, 42, 525</td>
</tr>
<tr>
<td>Fadel et al.</td>
<td>2004</td>
<td>42, 525</td>
</tr>
<tr>
<td>Fairfield-Smith</td>
<td>1938</td>
<td>33, 525</td>
</tr>
<tr>
<td>Fairhall et al.</td>
<td>2001a</td>
<td>42, 525</td>
</tr>
<tr>
<td>Fairhall et al.</td>
<td>2001b</td>
<td>42, 525</td>
</tr>
<tr>
<td>Falconer</td>
<td>2003</td>
<td>16, 39, 525</td>
</tr>
<tr>
<td>Faloutsos et al.</td>
<td>1999</td>
<td>321, 525</td>
</tr>
<tr>
<td>Fano</td>
<td>1947</td>
<td>66, 525</td>
</tr>
<tr>
<td>Fatt & Katz</td>
<td>1952</td>
<td>41, 44, 45, 151, 525</td>
</tr>
<tr>
<td>Feder</td>
<td>1988</td>
<td>16, 39, 525</td>
</tr>
<tr>
<td>Feldmann et al.</td>
<td>1998</td>
<td>323, 331, 335, 526</td>
</tr>
<tr>
<td>Feller</td>
<td>1941</td>
<td>85, 526</td>
</tr>
<tr>
<td>Feller</td>
<td>1948</td>
<td>50, 237, 526</td>
</tr>
<tr>
<td>Feller</td>
<td>1951</td>
<td>60, 526</td>
</tr>
<tr>
<td>Feller</td>
<td>1968</td>
<td>vi, 87, 93, 174, 179, 526</td>
</tr>
<tr>
<td>Feynman</td>
<td>1965</td>
<td>34, 526</td>
</tr>
<tr>
<td>Feynman et al.</td>
<td>1963</td>
<td>24, 526</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1202</td>
<td>40, 526</td>
</tr>
<tr>
<td>Field et al.</td>
<td>2004a</td>
<td>334, 526</td>
</tr>
<tr>
<td>Field et al.</td>
<td>2004b</td>
<td>334, 526</td>
</tr>
<tr>
<td>Fisher</td>
<td>1972</td>
<td>82, 526</td>
</tr>
<tr>
<td>Flake</td>
<td>2000</td>
<td>16, 39, 526</td>
</tr>
<tr>
<td>Flandrin</td>
<td>1989</td>
<td>138, 141, 526</td>
</tr>
<tr>
<td>Flandrin</td>
<td>1992</td>
<td>139, 143, 527</td>
</tr>
<tr>
<td>Flandrin</td>
<td>1997</td>
<td>15, 527</td>
</tr>
<tr>
<td>Flandrin & Abry</td>
<td>1999</td>
<td>15, 16, 39, 527</td>
</tr>
<tr>
<td>Fleckenstein</td>
<td>1969</td>
<td>vii, 527</td>
</tr>
<tr>
<td>Fourier</td>
<td>1822</td>
<td>102, 527</td>
</tr>
<tr>
<td>Franken</td>
<td>1963</td>
<td>84, 527</td>
</tr>
<tr>
<td>Franken</td>
<td>1964</td>
<td>84, 527</td>
</tr>
<tr>
<td>Franken et al.</td>
<td>1981</td>
<td>84, 527</td>
</tr>
<tr>
<td>Fréchet</td>
<td>1940</td>
<td>50, 527</td>
</tr>
<tr>
<td>Furry</td>
<td>1937</td>
<td>95, 527</td>
</tr>
<tr>
<td>Gardner</td>
<td>1978</td>
<td>116, 527</td>
</tr>
<tr>
<td>Garrett & Willinger</td>
<td>1994</td>
<td>330, 527</td>
</tr>
<tr>
<td>Gauss</td>
<td>1809</td>
<td>36, 173, 527</td>
</tr>
<tr>
<td>Gellermann et al.</td>
<td>1994</td>
<td>40, 527</td>
</tr>
<tr>
<td>Gere</td>
<td>2001</td>
<td>34, 528</td>
</tr>
<tr>
<td>Gerstein & Mandelbrot</td>
<td>1964</td>
<td>485, 528</td>
</tr>
<tr>
<td>Ghulinyan et al.</td>
<td>2005</td>
<td>40, 528</td>
</tr>
<tr>
<td>Gilbert</td>
<td>1961</td>
<td>154, 167, 528</td>
</tr>
<tr>
<td>Gilbert & Pollak</td>
<td>1960</td>
<td>186, 187, 189, 190, 378, 528</td>
</tr>
<tr>
<td>Gilden</td>
<td>2001</td>
<td>116, 528</td>
</tr>
<tr>
<td>Gillespie</td>
<td>1994</td>
<td>168, 452, 528</td>
</tr>
<tr>
<td>Gisiger</td>
<td>2001</td>
<td>37, 528</td>
</tr>
<tr>
<td>Glass & Mackey</td>
<td>1988</td>
<td>25, 249, 528</td>
</tr>
<tr>
<td>Gnedenko & Kolmogorov</td>
<td>1968</td>
<td>35, 528</td>
</tr>
<tr>
<td>Good</td>
<td>1961</td>
<td>192, 528</td>
</tr>
<tr>
<td>Gottschalk et al.</td>
<td>1995</td>
<td>16, 43, 528</td>
</tr>
<tr>
<td>Gradshshyn & Ryzhik</td>
<td>1994</td>
<td>104, 166, 420, 448, 528</td>
</tr>
<tr>
<td>Grandell</td>
<td>1976</td>
<td>88, 90, 197, 528</td>
</tr>
<tr>
<td>Grassberger</td>
<td>1985</td>
<td>199, 528</td>
</tr>
<tr>
<td>Grassberger & Proccacia</td>
<td>1983</td>
<td>75, 528</td>
</tr>
<tr>
<td>Grebogi et al.</td>
<td>1984</td>
<td>30, 529</td>
</tr>
<tr>
<td>Greenwood & Yule</td>
<td>1920</td>
<td>64, 147, 529</td>
</tr>
<tr>
<td>Greiner et al.</td>
<td>1999</td>
<td>57, 529</td>
</tr>
<tr>
<td>Greis & Greenside</td>
<td>1991</td>
<td>126, 529</td>
</tr>
<tr>
<td>Grigelionis</td>
<td>1963</td>
<td>84, 529</td>
</tr>
</tbody>
</table>
Gross & Harris (1998), 317, 529
Grossglauser & Bolot (1996), 327, 529
Grüneis (1984), 218, 335, 529
Grüneis (1987), 218, 529
Grüneis (2001), 218, 335, 529
Grüneis & Baiter (1986), 218, 335, 529
Grüneis & Musha (1986), 218, 219, 529
Grüneis & et al. (1993), 42, 529
Grüneis et al. (1989), 42, 529
Gumbel (1958), 36, 57, 147, 529
Gurland (1957), 95, 530
Gutenberg & Richter (1944), 33, 530
Haar (1910), 67, 74, 102, 104, 530
Haight (1967), 23, 82, 530
Halford (1968), 39, 530
Halley & Inchausti (2004), 41, 530
Halsey (2000), 35, 530
Harris (1971), 242, 530
Harris (1989), 95, 530
Hattori et al. (2000), 40, 530
Hattori et al. (1994), 40, 530
Hausdorff et al. (1997), 43, 530
Hawkes (1971), 217, 530
Heath et al. (1998), 334, 335, 530
Heneghan et al. (1996), 113, 296, 530
Heneghan et al. (1999), 59, 531
Heneghan & McDarby (2000), 62, 531
Hénon (1976), 28, 531
Henry & Zaffaroni (2003), 39, 531
Heyde & Seneta (2001), vii, 531
Hille (2001), 151, 531
Hohn et al. (2003), 335, 336, 346, 531
Holden (1976), 91–93, 149, 151, 531
Holtzmark (1919), 193, 531
Holtzmark (1924), 193, 531
Hon & Lee (1965), 275, 531
Hooge (1995), 169, 531
Hooge (1997), 169, 531
Hopcraft et al. (2002), 36, 531
Hopcraft et al. (2004), 36, 38, 532
Hopcraft et al. (1999), 36, 352
Hopkinson (1876), 38, 532
Hsiü & Hsiü (1991), 116, 532
Hu et al. (2001), 62, 532
Huberman & Adamic (1999), 321, 532
Humbert (1945), 192, 532
Hurst (1951), 59, 60, 116, 137, 287, 532
Hurst (1956), 59, 60, 137, 532
Hurst et al. (1965), 59, 60, 137, 532
Jaggi (1997), 40, 532
Jaggi & Sun (1990), 40, 532
Jakeman (1982), 40, 532
Jelenković & Lazar (1999), 334, 532
Jelley (1958), 221, 222, 532
Jenkins (1961), 78, 532
Jensen (1992), 316, 532
Johnson (1925), 115, 533
Jost (1947), 237, 533
Kabanov (1978), 77, 533
Kagan & Knopoff (1987), 222, 533
Kallenberg (1975), 232, 533
Kang & Redner (1984), 472, 533
Kastner (1985), 169, 533
Katz (1966), 41, 151, 533
Kaulakys (1999), 149, 533
Kaye (1989), 16, 533
Kelly et al. (1996), 42, 533
Kendall (1949), 95, 533
Kendall (1953), 317, 533
Kendall (1975), 95, 518, 533
Kendall & Stuart (1966), 249, 533
Kenrick (1929), 172, 534
Kerner (1998), 4, 534
Kerner (1999), 4, 534
Khinchin (1934), 172, 534
Khinchin (1955), 84, 534
Kiang et al. (1965), 249, 534
Kingman (1993), 51, 534
Klafter et al. (1996), 19, 534
Kleinrock (1975), 316, 317, 534
Knoll (1989), 223, 534
Kobayashi & Musha (1982), 43, 116, 275, 534
Koch (1999), 91, 534
Kodama et al. (1989), 42, 534
Kogan (1996), 16, 116, 534
Kohrausch (1854), 33, 534
Kohmoto et al. (1987), 16, 40, 534
Kolář et al. (1991), 40, 535
Kolmogorov (1931), 19, 535
Kolmogorov (1940), 136, 137, 535
Kolmogorov (1941), 36, 535
Kolmogorov & Dimitriev (1947), 95, 535
Komenani & Sasaki (1958), 4, 535
Kou & Xie (2004), 35, 535
Krapivsky et al. (2000), 38, 535
Krapivsky et al. (2001), 38, 535
Krishnam et al. (2000), 179, 535
Kumar & Johnson (1993), 123, 147, 535
Kurtz (1996), 335, 535
Kuznetsov & Stratonovich (1956), 70, 535
Kuznetsov et al. (1965), 70, 535
Lapenna et al. (1998), 155, 222, 536
Lapicque (1907), 91, 93, 536
Lapicque (1926), 91, 536
Latouche & Remiche (2002), 336, 536
Lauger (1988), 16, 41, 536
Lawrance (1972), 95, 202, 249, 536
Lax (1997), 186, 536
Leland et al. (1998), 155, 222, 536
Levy & Taqqu (2000), 334, 335, 536
Lévy (1937), 35, 192, 537
Lévy (1940), 35, 192, 537
Lévy (1948), 19, 537
Lévy Véhel et al. (1997), 16, 39, 537
Lévy Véhel & Riedi (1997), 331, 335, 537
Lewis et al. (2001), 42, 537
Lewis (1964), 94, 537
Lewis (1967), 94, 537
Lewis (1972), 51, 82, 88, 537
Li & Teich (1993), 147, 537
Li (1991), 37, 537
Libert (1976), 236, 263, 264, 537
Liebovitch (1998), 16, 41, 537
Liebovitch et al. (1987), 41, 537
Liebovitch et al. (2001), 41, 173, 538
Liebovitch & Tóth (1990), 41, 538
Likhmanov (2000), 497, 538
Likhmanov et al. (1995), 337, 538
Little (1961), 318, 538
Liu (1997), 40, 538
Lotka (1926), 33, 538
Lotka (1939), 50, 85, 538
Lowen (1992), xxx, 86, 87, 155, 157, 169, 175–177, 538
Lowen (1996), 73, 239, 240, 538
Lowen (2000), 139, 142, 538
Lowen et al. (1997a), 41, 42, 45, 148, 149, 152, 446, 538
Lowen et al. (1997b), 16, 41, 42, 45, 117, 132, 147–149, 152, 360, 446, 538
Lowen et al. (1999), 178, 539
Lowen et al. (2001), 42, 77, 78, 117, 121, 486, 539
Lowen et al. (1998), 77, 539
Lowen & Teich (1989a), 186, 187, 191, 192, 539
Lowen & Teich (1989b), 186, 187, 196, 539
Lowen & Teich (1991), 90, 95, 186, 193, 204–209, 212–214, 336, 377, 539
Lowen & Teich (1992a), 42, 117, 249, 539
Lowen & Teich (1992b), 169, 173, 539
Lowen & Teich (1993a), 73, 115, 308, 539
Lowen & Teich (1993b), 42, 145, 174, 539
Lowen & Teich (1993c), 41, 173, 539
Lowen & Teich (1993d), 41, 86, 155–157, 164, 173, 178, 539
Lowen & Teich (1996a), 16, 42, 68, 540
Lowen & Teich (1996b), 145, 540
Lowen & Teich (1997), 145, 249, 540
Lubberger (1925), 50, 540
Lubberger (1927), 50, 540
Lukes (1961), 86, 197, 540
Lundahl et al. (1986), 139, 540
Maccione (1981), 144, 540
Machlup (1954), 172, 540
Malamud (2004), 33, 540
Makai et al. (1996), 274, 540
Mandel (1959), 146, 540
Mandelbrot (1960), 33, 154, 541
Mandelbrot (1964), 154, 541
Mandelbrot (1965a), 16, 154, 167, 541
Mandelbrot (1965b), 137, 541
Mandelbrot (1967a), 4, 541
Mandelbrot (1967b), 144, 541
Mandelbrot (1969), 335, 541
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandelbrot (1972)</td>
<td></td>
<td>154, 541</td>
</tr>
<tr>
<td>Mandelbrot (1974)</td>
<td></td>
<td>331, 541</td>
</tr>
<tr>
<td>Mandelbrot (1975)</td>
<td></td>
<td>4, 541</td>
</tr>
<tr>
<td>Mandelbrot (1997)</td>
<td>39, 123, 154, 330, 541</td>
<td></td>
</tr>
<tr>
<td>Mandelbrot (1999)</td>
<td>15, 123, 541</td>
<td></td>
</tr>
<tr>
<td>Mandelbrot & Hudson (2004)</td>
<td></td>
<td>39, 154, 541</td>
</tr>
<tr>
<td>Mandelbrot & Wallis (1969a)</td>
<td></td>
<td>142, 542</td>
</tr>
<tr>
<td>Mandelbrot & Wallis (1969b)</td>
<td></td>
<td>60, 542</td>
</tr>
<tr>
<td>Mandelbrot & Wallis (1969c)</td>
<td></td>
<td>60, 542</td>
</tr>
<tr>
<td>Mannersalo & Norros (1997)</td>
<td>331, 542</td>
<td></td>
</tr>
<tr>
<td>Marinari et al. (1983)</td>
<td>34, 542</td>
<td></td>
</tr>
<tr>
<td>Masoliver et al. (2001)</td>
<td>189, 542</td>
<td></td>
</tr>
<tr>
<td>Matsuo et al. (1982)</td>
<td>95, 542</td>
<td></td>
</tr>
<tr>
<td>Matsuo et al. (1983)</td>
<td>95, 206, 542</td>
<td></td>
</tr>
<tr>
<td>Matsuo et al. (1984)</td>
<td>95, 542</td>
<td></td>
</tr>
<tr>
<td>Matthes (1963)</td>
<td>54, 542</td>
<td></td>
</tr>
<tr>
<td>Matthews et al. (2003)</td>
<td>36, 542</td>
<td></td>
</tr>
<tr>
<td>McGill (1967)</td>
<td>146, 147, 202, 542</td>
<td></td>
</tr>
<tr>
<td>McGill & Goldberg (1968)</td>
<td>43, 542</td>
<td></td>
</tr>
<tr>
<td>McGill & Teich (1995)</td>
<td>43, 543</td>
<td></td>
</tr>
<tr>
<td>McWhorter (1957)</td>
<td>39, 169, 173, 543</td>
<td></td>
</tr>
<tr>
<td>Merlin et al. (1985)</td>
<td>16, 40, 543</td>
<td></td>
</tr>
<tr>
<td>Mikosch et al. (2002)</td>
<td>336, 543</td>
<td></td>
</tr>
<tr>
<td>Millhauser et al. (1988)</td>
<td>16, 41, 543</td>
<td></td>
</tr>
<tr>
<td>Mitchell (1968)</td>
<td>36, 543</td>
<td></td>
</tr>
<tr>
<td>Mitchell et al. (1995)</td>
<td>43, 543</td>
<td></td>
</tr>
<tr>
<td>Molchan (2003)</td>
<td>136, 543</td>
<td></td>
</tr>
<tr>
<td>Montanari (2003)</td>
<td>39, 543</td>
<td></td>
</tr>
<tr>
<td>Montgomery (1952)</td>
<td>172, 543</td>
<td></td>
</tr>
<tr>
<td>Montroll & Shlesinger (1982)</td>
<td>36, 116, 543</td>
<td></td>
</tr>
<tr>
<td>Moon (1992)</td>
<td>25, 543</td>
<td></td>
</tr>
<tr>
<td>Moran (1967)</td>
<td>249, 543</td>
<td></td>
</tr>
<tr>
<td>Moran (1921)</td>
<td>237, 544</td>
<td></td>
</tr>
<tr>
<td>Moriarty (1963)</td>
<td>154, 544</td>
<td></td>
</tr>
<tr>
<td>Morse (1921a)</td>
<td>40, 544</td>
<td></td>
</tr>
<tr>
<td>Morse (1921b)</td>
<td>40, 544</td>
<td></td>
</tr>
<tr>
<td>Moskowitz et al. (1974)</td>
<td>43, 544</td>
<td></td>
</tr>
<tr>
<td>Moyal (1962)</td>
<td>50, 544</td>
<td></td>
</tr>
<tr>
<td>Müller (1973)</td>
<td>236, 237, 263, 264, 544</td>
<td></td>
</tr>
<tr>
<td>Müller (1974)</td>
<td>236, 263, 264, 544</td>
<td></td>
</tr>
<tr>
<td>Müller (1981)</td>
<td>236, 237, 263, 544</td>
<td></td>
</tr>
<tr>
<td>Musha (1981)</td>
<td>16, 43, 45, 116, 544</td>
<td></td>
</tr>
<tr>
<td>Musha & Higuchi (1976)</td>
<td>16, 116, 544</td>
<td></td>
</tr>
<tr>
<td>Musha et al. (1985)</td>
<td>116, 544</td>
<td></td>
</tr>
<tr>
<td>Musha et al. (1981)</td>
<td>42, 544</td>
<td></td>
</tr>
<tr>
<td>Musha et al. (1983)</td>
<td>16, 42, 116, 544</td>
<td></td>
</tr>
<tr>
<td>Myskja (1998a)</td>
<td>316, 544</td>
<td></td>
</tr>
<tr>
<td>Myskja (1998b)</td>
<td>524, 545</td>
<td></td>
</tr>
<tr>
<td>Myskja & Esparv (2002)</td>
<td>524, 544, 545</td>
<td></td>
</tr>
<tr>
<td>Newell & Sparks (1972)</td>
<td>4, 545</td>
<td></td>
</tr>
<tr>
<td>Newton (1687)</td>
<td>24, 34, 545</td>
<td></td>
</tr>
<tr>
<td>Neyman (1939)</td>
<td>202, 426, 545</td>
<td></td>
</tr>
<tr>
<td>Neyman & Scott (1958)</td>
<td>93, 94, 202, 545</td>
<td></td>
</tr>
<tr>
<td>Neyman & Scott (1972)</td>
<td>93–95, 202, 545</td>
<td></td>
</tr>
<tr>
<td>Norros (1994)</td>
<td>328, 545</td>
<td></td>
</tr>
<tr>
<td>Norros (1995)</td>
<td>325, 331, 335, 545</td>
<td></td>
</tr>
<tr>
<td>Norsworthy et al. (1996)</td>
<td>91, 545</td>
<td></td>
</tr>
<tr>
<td>Olson (2004)</td>
<td>4, 545</td>
<td></td>
</tr>
<tr>
<td>Omori (1895)</td>
<td>33, 545</td>
<td></td>
</tr>
<tr>
<td>Oppenheim & Schafer (1975)</td>
<td>304, 306, 545</td>
<td></td>
</tr>
<tr>
<td>Orenstein et al. (1982)</td>
<td>169, 545</td>
<td></td>
</tr>
<tr>
<td>Orer et al. (2003)</td>
<td>42, 545</td>
<td></td>
</tr>
<tr>
<td>Oshanin et al. (1989)</td>
<td>471, 546</td>
<td></td>
</tr>
<tr>
<td>Ott (2002)</td>
<td>25, 402, 546</td>
<td></td>
</tr>
<tr>
<td>Ott et al. (1994)</td>
<td>25, 227, 546</td>
<td></td>
</tr>
<tr>
<td>Ovchinnikov & Zeldovich (1978)</td>
<td>472, 546</td>
<td></td>
</tr>
<tr>
<td>Palm (1937)</td>
<td>315, 546</td>
<td></td>
</tr>
<tr>
<td>Palm (1943)</td>
<td>50, 82, 84, 227, 231, 237, 256, 258, 316, 318, 546</td>
<td></td>
</tr>
<tr>
<td>Papangelou (1972)</td>
<td>228, 546</td>
<td></td>
</tr>
<tr>
<td>Papoulis (1991)</td>
<td>64, 186, 197, 375, 410, 546</td>
<td></td>
</tr>
<tr>
<td>Pareto (1896)</td>
<td>33, 154, 155, 546</td>
<td></td>
</tr>
<tr>
<td>Park & Gray (1992)</td>
<td>93, 546</td>
<td></td>
</tr>
<tr>
<td>Park (2000)</td>
<td>328, 546</td>
<td></td>
</tr>
<tr>
<td>Park et al. (1996)</td>
<td>33, 329, 335, 336, 546</td>
<td></td>
</tr>
<tr>
<td>Park et al. (2000)</td>
<td>329, 333, 546</td>
<td></td>
</tr>
<tr>
<td>Park & Willinger (2000)</td>
<td>16, 39, 314, 547</td>
<td></td>
</tr>
<tr>
<td>Parzen (1962)</td>
<td>23, 51, 82, 85, 97, 192, 197, 231, 236, 237, 264, 547</td>
<td></td>
</tr>
<tr>
<td>Pastor-Satorras & Vespignani (2004)</td>
<td>37, 321, 547</td>
<td></td>
</tr>
<tr>
<td>Paulus & Geyer (1992)</td>
<td>16, 44, 547</td>
<td></td>
</tr>
<tr>
<td>Author/Reference</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Paxson & Floyd (1995)</td>
<td>325, 335, 336, 547</td>
<td></td>
</tr>
<tr>
<td>Pecher (1939)</td>
<td>92, 149, 547</td>
<td></td>
</tr>
<tr>
<td>Peitgen & Saupe (1988)</td>
<td>16, 39, 139, 275, 547</td>
<td></td>
</tr>
<tr>
<td>Peitgen et al. (1997)</td>
<td>16, 25, 28, 29, 39, 547</td>
<td></td>
</tr>
<tr>
<td>Peltier & Lévy Véhel (1995)</td>
<td>123, 547</td>
<td></td>
</tr>
<tr>
<td>Penck (1894)</td>
<td>2, 547</td>
<td></td>
</tr>
<tr>
<td>Peng et al. (1995)</td>
<td>43, 61, 547</td>
<td></td>
</tr>
<tr>
<td>Peng et al. (1993)</td>
<td>43, 547</td>
<td></td>
</tr>
<tr>
<td>Perina (1967)</td>
<td>147, 547</td>
<td></td>
</tr>
<tr>
<td>Perkal (1958a)</td>
<td>2, 547</td>
<td></td>
</tr>
<tr>
<td>Perkal (1958b)</td>
<td>2, 547</td>
<td></td>
</tr>
<tr>
<td>Perrin (1909)</td>
<td>19, 548</td>
<td></td>
</tr>
<tr>
<td>Petropulu et al. (2000)</td>
<td>192, 197, 548</td>
<td></td>
</tr>
<tr>
<td>Picinbono (1960)</td>
<td>186, 187, 189, 548</td>
<td></td>
</tr>
<tr>
<td>Pipiras & Taqqu (2003)</td>
<td>144, 548</td>
<td></td>
</tr>
<tr>
<td>Poincaré (1908)</td>
<td>25, 174, 548</td>
<td></td>
</tr>
<tr>
<td>Poisson (1837)</td>
<td>63, 83, 548</td>
<td></td>
</tr>
<tr>
<td>Pollard (1946)</td>
<td>192, 548</td>
<td></td>
</tr>
<tr>
<td>Pointrajon & Schnirelmann (1932)</td>
<td>12, 75, 548</td>
<td></td>
</tr>
<tr>
<td>Powers & Salvi (1992)</td>
<td>42, 548</td>
<td></td>
</tr>
<tr>
<td>Press et al. (1992)</td>
<td>356, 548</td>
<td></td>
</tr>
<tr>
<td>Prucnal & Saleh (1981)</td>
<td>249, 548</td>
<td></td>
</tr>
<tr>
<td>Prucnal & Teich (1979)</td>
<td>110, 548</td>
<td></td>
</tr>
<tr>
<td>Prucnal & Teich (1980)</td>
<td>249, 548</td>
<td></td>
</tr>
<tr>
<td>Prucnal & Teich (1982)</td>
<td>202, 549</td>
<td></td>
</tr>
<tr>
<td>Prucnal & Teich (1983)</td>
<td>237, 263, 549</td>
<td></td>
</tr>
<tr>
<td>Quenouille (1949)</td>
<td>95, 549</td>
<td></td>
</tr>
<tr>
<td>Quine & Seneta (1987)</td>
<td>83, 549</td>
<td></td>
</tr>
<tr>
<td>Rammal & Toulouse (1983)</td>
<td>471, 549</td>
<td></td>
</tr>
<tr>
<td>Rana (1997)</td>
<td>18, 549</td>
<td></td>
</tr>
<tr>
<td>Rangarajan & Ding (2000)</td>
<td>126, 549</td>
<td></td>
</tr>
<tr>
<td>Raymond & Bassingthwaighte (1999)</td>
<td>144, 549</td>
<td></td>
</tr>
<tr>
<td>Reid (1982)</td>
<td>vii, 549</td>
<td></td>
</tr>
<tr>
<td>Reiss (1993)</td>
<td>51, 549</td>
<td></td>
</tr>
<tr>
<td>Rényi (1955)</td>
<td>74, 549</td>
<td></td>
</tr>
<tr>
<td>Rényi (1956)</td>
<td>232, 549</td>
<td></td>
</tr>
<tr>
<td>Rényi (1970)</td>
<td>74, 549</td>
<td></td>
</tr>
<tr>
<td>Ricciardi & Esposito (1966)</td>
<td>263, 549</td>
<td></td>
</tr>
<tr>
<td>Rice (1944)</td>
<td>147, 172, 176, 186, 190–192, 194, 195, 549</td>
<td></td>
</tr>
<tr>
<td>Rice (1945)</td>
<td>147, 172, 176, 186, 190–192, 194, 195, 550</td>
<td></td>
</tr>
<tr>
<td>Rice (1983)</td>
<td>175, 550</td>
<td></td>
</tr>
<tr>
<td>Richardson (1960)</td>
<td>3, 550</td>
<td></td>
</tr>
<tr>
<td>Richardson (1961)</td>
<td>2, 6, 550</td>
<td></td>
</tr>
<tr>
<td>Riedi (2003)</td>
<td>123, 550</td>
<td></td>
</tr>
<tr>
<td>Riedi & Lévy Véhel (1997)</td>
<td>331, 550</td>
<td></td>
</tr>
<tr>
<td>Riedi & Willinger (2000)</td>
<td>331, 550</td>
<td></td>
</tr>
<tr>
<td>Rieke et al. (1997)</td>
<td>77, 550</td>
<td></td>
</tr>
<tr>
<td>Roberts & Cronin (1996)</td>
<td>15, 550</td>
<td></td>
</tr>
<tr>
<td>Roughan et al. (1998)</td>
<td>328, 550</td>
<td></td>
</tr>
<tr>
<td>Rudin (1959)</td>
<td>40, 550</td>
<td></td>
</tr>
<tr>
<td>Rudin (1976)</td>
<td>13, 550</td>
<td></td>
</tr>
<tr>
<td>Ruszczynski et al. (2001)</td>
<td>45, 550</td>
<td></td>
</tr>
<tr>
<td>Rutherford & Geiger (1910)</td>
<td>24, 64, 551</td>
<td></td>
</tr>
<tr>
<td>Ryu & Elwalid (1996)</td>
<td>327, 551</td>
<td></td>
</tr>
<tr>
<td>Ryu & Lowen (1995)</td>
<td>204, 336, 551</td>
<td></td>
</tr>
<tr>
<td>Ryu & Lowen (1997)</td>
<td>204, 334, 336, 551</td>
<td></td>
</tr>
<tr>
<td>Ryu & Lowen (2000)</td>
<td>189, 551</td>
<td></td>
</tr>
<tr>
<td>Sakmann & Neher (1995)</td>
<td>41, 551</td>
<td></td>
</tr>
<tr>
<td>Saleh (1978)</td>
<td>51, 82, 88, 89, 146, 147, 551</td>
<td></td>
</tr>
<tr>
<td>Saleh et al. (1983)</td>
<td>88, 202, 551</td>
<td></td>
</tr>
<tr>
<td>Saleh et al. (1981)</td>
<td>202, 237, 551</td>
<td></td>
</tr>
<tr>
<td>Saleh & Teich (1982)</td>
<td>88, 90, 94, 95, 186, 189, 202, 205, 207–209, 486, 552</td>
<td></td>
</tr>
<tr>
<td>Saleh & Teich (1983)</td>
<td>93, 94, 202, 552</td>
<td></td>
</tr>
<tr>
<td>Saleh & Teich (1985a)</td>
<td>202, 552</td>
<td></td>
</tr>
<tr>
<td>Saleh & Teich (1985b)</td>
<td>227, 552</td>
<td></td>
</tr>
<tr>
<td>Saleh & Teich (1991)</td>
<td>34, 222, 552</td>
<td></td>
</tr>
<tr>
<td>Samorodnitsky & Taqqu (1994)</td>
<td>35, 174, 552</td>
<td></td>
</tr>
<tr>
<td>Sapoval et al. (2004)</td>
<td>173, 552</td>
<td></td>
</tr>
<tr>
<td>Scharf et al. (1995)</td>
<td>68, 552</td>
<td></td>
</tr>
<tr>
<td>Schepers et al. (1992)</td>
<td>60, 552</td>
<td></td>
</tr>
<tr>
<td>Scher & Montroll (1975)</td>
<td>169, 552</td>
<td></td>
</tr>
<tr>
<td>Schicke (1974)</td>
<td>173, 552</td>
<td></td>
</tr>
<tr>
<td>Schiff & Chang (1992)</td>
<td>227, 253, 552</td>
<td></td>
</tr>
<tr>
<td>Schmitt et al. (1998)</td>
<td>123, 173, 331, 552</td>
<td></td>
</tr>
<tr>
<td>Schönfeld (1955)</td>
<td>195, 553</td>
<td></td>
</tr>
<tr>
<td>Schottky (1918)</td>
<td>186, 553</td>
<td></td>
</tr>
<tr>
<td>Schreiber & Schmitz (1996)</td>
<td>253, 553</td>
<td></td>
</tr>
<tr>
<td>Schroeder (1990)</td>
<td>16, 28, 34, 39, 46, 116, 553</td>
<td></td>
</tr>
</tbody>
</table>
Schuster (1995), 25, 553
Seidel (1876), 63, 553
Sellan (1995), 139, 553
Shapiro (1951), 40, 553
Shimizu et al. (2002), 16, 43, 553
Shlesinger (1987), 36, 116, 553
Shlesinger & West (1991), 13, 553
Sigman (1995), 54, 553
Sigman (1999), 57, 553
Sikula (1995), 173, 553
Simoncelli & Olshausen (2001), 45, 553
Soma et al. (2003), 45, 554
Song et al. (2005), 321, 554
Sornette (2004), 15, 16, 35, 554
Srinivasan (1974), 51, 82, 554
Steinhaus (1954), 2, 554
Stepanescu (1974), 169, 173, 554
Stern et al. (1997), 41, 151, 554
Stevens (1957), 43, 554
Stevens (1971), 43, 554
Stokesi et al. (1994), 139, 554
Stoyan & Stoyan (1994), 16, 554
Strogatz (1994), 25, 554
Szokefalvi-nagy (1959), viii, 530, 554
Takacs (1960), 85, 555
Takayasu et al. (1988), 199, 555
Taquq (2003), 136, 555
Taquq & Levy (1986), 177, 335, 555
Taquq & Teverovsky (1998), 62, 289, 555
Taquq et al. (1995), 274, 309, 555
Taquq et al. (1997), 331, 555
Taubes (1998), 325, 555
Taylor (2002), 45, 555
Teich (1981), 202, 206, 555
Teich (1985), 249, 555
Teich (1989), 16, 42, 45, 555
Teich (1992), 42, 145, 249, 555
Teich & Cantor (1978), 227, 263, 555
Teich & Diament (1980), 237, 555
Teich & Diament (1989), 95, 556
Teich et al. (1997), 16, 42, 183, 204, 485, 556
Teich et al. (1996), 16, 42, 51, 58, 74, 113, 117, 296, 351, 484, 556, 558
Teich et al. (1990), 42, 145, 202, 204, 249, 427, 556–558
Teich & Khanna (1985), 227, 249, 556
Teich et al. (1993), 227, 232, 476, 556
Teich & Lowen (1994), 42, 249, 556
Teich & Lowen (2003), 145, 217, 556
Teich et al. (2001), 16, 44, 145, 227, 275, 556
Teich et al. (1991), 42, 556
Teich et al. (1978), 227, 237, 556
Teich & McGill (1976), 147, 237, 556
Teich et al. (1982a), 202, 557
Teich et al. (1982b), 202, 557
Teich & Rosenberg (1971), 36, 557
Teich & Saleh (1981a), 202, 557
Teich & Saleh (1981b), 202, 557
Teich & Saleh (1982), 227, 232, 233, 236, 557
Teich & Saleh (1987), 202, 206, 557
Teich & Saleh (1988), 88, 202, 557
Teich & Saleh (1998), 202, 557
Teich & Saleh (2000), 88, 202, 557
Teich et al. (1984), 202, 264, 483, 557
Teich & Turcott (1988), 42, 558
Teich & Vannucci (1977), 227, 237, 483, 501, 558
Teicher et al. (1996), 16, 44, 558
Telesca et al. (2004), 77, 558
Telesca et al. (1999), 155, 222, 558
Telesca et al. (2002a), 155, 558
Telesca et al. (2002b), 222, 558
Terman (1947), 34, 558
Tewfik & Kim (1992), 114, 139, 296, 297, 300, 558
Theiler (1990), 74, 75, 558
Theiler et al. (1992), 227, 253, 559
Theiler & Prichard (1996), 253, 559
Thiebaut (1988), 155, 559
Thomas (1949), 206, 559
Thompson & Stewart (2002), 25, 559
Thorson & Biederman-Thorson (1974), 42, 559
Thue (1906), 40, 559
Thue (1912), 40, 559
Thurner et al. (1998), 43, 275, 559
Thurner et al. (1997), 16, 41, 58, 66, 68, 71, 115, 146, 174, 217, 242, 273, 310, 394, 485, 559
Tiedje & Rose (1980), 169, 559
Timmer & König (1995), 139, 559
Toib et al. (1998), 41, 560
Toussaint & Wilczek (1983), 472, 560
Tuan & Park (2000), 329, 560
Tuckwell (1988), 91, 93, 560
Tukey (1957), 249, 560
Turcott et al. (1994), 112, 560
Turcott & Teich (1993), 16, 43, 275, 487, 560
Turcotte (1997), 16, 39, 560
Turner et al. (1998), 16, 39, 560
Usher et al. (1995), 37, 560
van der Waerden (1975), 231, 560
van der Ziel (1950), 39, 560
van der Ziel (1979), 195, 561
van der Ziel (1986), 16, 561
van der Ziel (1988), 16, 116, 561
Vannucci & Teich (1978), 237, 238, 561
Vannucci & Teich (1981), 237, 238, 561
Veitch & Abry (1999), 274, 280, 561
Vere-Jones (1970), 94, 202, 204, 222, 223, 561
Verhulst (1845), 26, 561
Verhulst (1847), 26, 561
Verveen (1960), 16, 41, 92, 116, 173, 561
Verveen & Derksen (1968), 41, 149, 151, 173, 561
Vicsek (1992), 16, 35, 561
Vicsek (2001), 16, 561
Ville (1948), 138, 561
Viswanathan et al. (1996), 45, 561
Voldman et al. (1983), 155, 562
von Borstel (1989), 39, 562
den Schweidler (1907), 39, 562
Voss (1989), 116, 562
Voss & Clarke (1978), 116, 562
Watson & Galton (1875), 95, 562
Weber (1835), 33, 562
Weiss (1973), 197, 562
Weiss et al. (1994), 192, 562
Weissman (1988), 16, 116, 562
Wescott (1976), 232, 562
West (1990), 45, 562
West & Bickel (1998), 168, 452, 562
West et al. (2003), 16, 39, 562
West & Deering (1994), 16, 41, 562
West & Deering (1995), 16, 41, 45, 116, 562
West & Shlesinger (1989), 36, 563
West & Shlesinger (1990), 36, 563
West et al. (1999), 116, 563
Whittle (1962), 34, 563
Wickelgren (1977), 43, 563
Wiener (1923), 19, 563
Wiener (1930), 172, 563
Willinger et al. (2004), 330, 563
Willinger et al. (2003), 314, 325, 329, 563
Willis (1922), 33, 563
Wise (1981), 485, 563
Witten & Sander (1981), 35, 199, 563
Wixted (2004), 43, 563
Wixted & Ebbesen (1991), 43, 563
Wixted & Ebbesen (1997), 43, 563
Wold (1948), 50, 564
Wold (1949), 50, 564
Wold (1965), 51, 564
Wolf (1982), 319, 564
Yamamoto & Nakahama (1983), 42, 564
Yamamoto et al. (1986), 42, 564
Yang et al. (2004), 222, 564
Yang & Petropulu (2001), 181, 184, 335, 564
Yu et al. (2005), 45, 335, 564
Yule (1924), 95, 564
Zhukovsky et al. (2001), 40, 440, 564
Zipf (1949), 33, 564
Zrelov (1968), 221, 222, 468, 564
Zucker (1993), 151, 565
Zucker (1993), 151, 565
Zuckerkandl & Pauling (1962), 168, 565
Zuckerkandl & Pauling (1965), 168, 565
Zumofen et al. (2004), 173, 565
Subject Index

absolute refractoriness, See event deletion
action potentials, 50, 204
amygdala, 42
central nervous system, 42
hippocampus, 42
integrate-and-reset model, See integrate-and-reset process(es)
medulla, 42
reticular formation, 42
somatosensory cortex, 42
surrogate data analysis, 227
thalamus, 42
visual-system interneuron, 42, 167–168, 265–267, 344, 345
Allan, David W., viii, 68, 269, 276
Allan factor, 68
Allan variance, 68, 269
alternating fractal renewal process(es), 172–173, 177–182
autocorrelation, 183–184
autocovariance, 178, 183
chain of Markov processes, 178–179
computer network traffic, 173, 334–335
dwell times, 174
fractal binomial noise, 173, 181
fractal Gaussian process, 173, 181–182
fractal test signals, 173, 184
ion channels, 41, 173
nanoparticle fluorescence fluctuations, 173
nerve-membrane voltage fluctuations, 173
rainfall, 173
semiconductor noise, 173
spectrum, 177, 183
sums of, 173, 181
systems with fractal boundaries, 173
alternating renewal process(es), 172–182
alternating fractal renewal process,
See alternating fractal renewal process(es)
autocorrelation, 175
Bernoulli random variables, 174
binomial noise, 173, 179–181
burst noise, 172
characteristic function, 175, 183
dwell times, 174
exponential dwell times, 176–177
extreme asymmetry, 176
Gaussian process, 181–182
moments, 174–175
on–off process, 172
random telegraph signal, 172
relation to renewal point process, 176
spectrum, 175–177, 183
sums of, 173, 179–181
amygdala, See action potentials
attention-deficit hyperactivity disorder, 44
auditory nerve fiber, See action potentials
Barnes, James, 269, 276
Bartlett, Maurice, 94, 201, 202
Bartlett–Lewis process, See cascaded process(es)
Berger, Jay, 153, 154
Bernoulli random deletion, See event deletion
Bernoulli, Jakob, 225, 226
binomial noise
as a sum of alternating renewal processes, 173, 179–181
autocorrelation, 179–181
binomial distribution, 179
convergence to a Gaussian process, 181–182
fractal, See fractal binomial noise moments, 179
bivariate point process, See point process(es)
block shuffling, See operations on point processes
blocked counter, See event deletion
bootstrap method, See operations on point processes
box-counting dimension, See dimension
branching process, See cascaded process(es)
Brownian motion, 19–21
as a neuronal threshold, 149–150
Bachelier process, 19
definition, 19–20
diffusion process, See power-law behavior
fractal-based point process from, 149–150
generation of, 150
history, 19
relation to fractional Brownian motion, 137
Wiener–Lévy process, 19
zero crossings, 15
Burgess variance theorem, 231
burst noise, See alternating renewal process(es)
Cantor, Georg, 9
Cantor set, 17–19
fat, 18
Hausdorff–Besicovitch dimension, 75
membership, 47
photonic multilayer-structure version, 40
randomized version, 95
semiconductor multilayer-structure version, 40
triadic, 17
variant, 46, 133–134
capacity dimension, See dimension
capacity-dimension scaling function, See dimension
cascaded process(es), 93–95
applications of, 202, 323
Bartlett–Lewis, 94, 98–99, 324
branching, 95
cluster, 93
compound, 93
doubly stochastic Poisson process version, 95, 333, 336, 346
fractal Bartlett–Lewis, 218–219, 335–336, 345–351
fractal Neyman–Scott, 336–337, 345–351
Neyman–Scott, 93, 202, 204, 324
Poisson branching, 95
Thomas, 95, 206
Yule–Furry, 95
central limit theorem, 36, 173, 174, 181, 188, 191, 216, 306
central nervous system, See action potentials
Čerenkov radiation, See photon statistics
chaos, 25–32
fractal attractors, 25
fractals, connection to, 24–32
functional roles, 25
phase-randomization surrogate, 227
strange attractors, 25
characteristic function, See interval statistics
cluster process, See cascaded process(es)
coastline(s)
Australian, 6
British, 6
fractal, 2–4
Höfn, 2, 6
Icelandic, 2, 6, 13–15
length of, 2–4, 6, 14
Seyðisfjörður, 2, 6
South African, 6
compound process, See cascaded process(es)
computer cache misses, 155
computer communication networks, See computer network traffic
computer network traffic, 313–354
alternating fractal renewal process, 173, 334–335
analysis and synthesis, 332
applications layer, 323
arrival process, 317
as a point process, 50
bit transmission, 323
blocking probability, 319
buffer occupancy, 316
buffer overflow probability, 319–321, 325, 334, 351–352
buffer size, 316
CAIDA, 322
capacity-dimensional scaling function, 343
cascaded-process models, 335–337, 345–351
characteristic features of, 342–343
computer communication networks, 320–323, 328, 332
data sources, 117, 325
detrended fluctuations, 338, 340, 341, 348, 349
drop probability, 319
event clustering, 345
exponentialized data, 250, 251, 326, 327, 337, 343, 345
extended alternating fractal renewal process, 335
feedback, 332
file transfers, 323
flow control, 333
fluid-flow models, 331
forward Kolmogorov equation, 318, 351
fractal Bartlett–Lewis process, 218, 335–336, 345–351
fractal exponents, 44, 126, 343–344
fractal features, 16, 40, 324–332
fractal-Gaussian-process-driven Poisson process, 335, 352–353
fractal Neyman–Scott process, 204, 328, 333, 335–337, 345–353
fractal-rate point process, 342
fractal renewal process, 334
fractal-shot-noise-driven Poisson process, 204, 335–337
fractional Brownian motion, 325, 331
FTP, 323, 329, 335, 336
general arrival and service processes, 317
generalized dimension, 343
geometric queue-length distribution, 318, 319, 328, 351–352
heavy-tailed service times, 328, 333, 337
HTTP, 323, 335
internetwork layer, 323
interval histogram, 130, 131, 233, 244, 338, 340–344, 348, 349, 351
interval sequence, 337, 340, 341, 348, 349
interval spectrum, 128, 339–341, 344, 348, 349
interval statistics, 350–351
interval wavelet variance, 129, 338, 340, 341, 344, 348, 349
IP, 322–323
ISP, 322
link layer, 323
Little’s law, 318
local-area network, 325
Markov process, 317, 325, 327, 328
message-loss probability, 328, 332
model complexity, 332–333
modeling, 332–337, 345–351
modulated fractal-Gaussian-process-driven Poisson process, 353
monofractal approximation, 353–354
multifractal features, 16, 329, 331–332, 353–354
multiple data sets, 341–342
multiple servers, 317, 319, 351
multiple statistical measures, 337–340
normalized variance, 126, 127
packets, 50, 315, 323, 325
PASTA, 319
periodicities, 342
persistence, 329
physical layer, 323
point-process description, 330–331
point-process identification, 271, 337–351
power-law file sizes, 33, 323, 329–330, 335, 336
power-law queue-length distribution, 328, 352
predictability, 329
queue length, 316–318
queue waiting-time jitter, 328
queue-length distribution, 317, 318, 325, 328, 334, 351, 353
queueing theory, 316–320, 327–329, 336–337
randomly deleted data, 234, 235, 344
randomly displaced data, 245, 246
rate spectrum, 118, 234, 325–326, 339–341, 344, 348, 349, 351
rescaled range, 338, 340, 341, 348, 349, 349
resemblance to striate-cortex action potentials, 345, 351
scale-free networks, 37–38, 40, 321–322
scaling cutoffs, 330
second-order statistics, 325–328, 340, 341, 348, 349
server utilization, 318
service process, 317
service ratio, 318, 328
shuffled data, 253, 254, 326, 327, 337, 342–344, 351, 352
simulations, 332–333, 345–353
SSH, 323, 329
static representation, 322
TCP, 323, 329, 334
teletraffic theory, 315
TELNET, 323, 335
transport layer, 323
UDP, 329
vertical layers, 323
video traffic, 325, 330
waiting number mean, 318
waiting time mean, 318
wide-area network, 325
World Cup access log, 330
WWW, 325
correlation dimension, See dimension counting statistics, 63–70
α-particle counting, 64
accidents, 64, 147
Allan factor, 68
Allan variance, 68, 269
autocorrelation, 69, 71, 72, 106–107, 121, 124, 132, 222, 232, 282, 296, 311
autocovariance, normalized form, 69, 285–287
count sequence, 51, 63
counting distribution, 64, 65, 146–147, 163, 205–206, 218, 263–264
counting-time increments, 297–298
counting-time oversampling, 302–304
counting-time weighting, 298–302
cross-spectrum, 78
dead-time-modified point process, 145, 227, 238, 240, 263–264
decimated point process, 263–264
dispersion ratio, 66
doubly stochastic Poisson process, See doubly stochastic Poisson process(es)
d faculty moments, 65, 83, 87, 161
Fano factor, 66
fractal renewal process, See fractal renewal process(es)
fractal-shot-noise-driven point process, See fractal-shot-noise-driven point process(es)
generalized rates, 64
generalized version of normalized Haar-wavelet variance, 69
homogeneous Poisson process, See homogeneous Poisson process
index of dispersion, 66
integrate-and-reset process, See integrate-and-reset process(es)
kurtosis, 65
moments, 65–66
negative binomial distribution, 146
Neyman Type-A distribution, 202, 206, 209, 212
noncentral negative binomial distribution, 147
normalized Daubechies-wavelet variance, 120
normalized general-wavelet variance, 74, 113–114, 120, 296–297
normalized Haar-wavelet covariance, 77–78
normalized Haar-wavelet variance, relation to normalized variance, 62, 68–69, 112, 209–211, 284, 296, 344
normalized wavelet cross-correlation function, 77
periodic processes, 64
periodogram, 70
rate-based measures, 64
relation to interval statistics, 65, 344
relationship among measures, 114–115
renewal process, See renewal process(es)
sample rate, 64
shot-noise-driven Poisson process, See doubly stochastic Poisson process(es)
skewness, 65
Thomas distribution, 206
variance-to-mean ratio, 66
Cox, David R., vi, viii, 81, 88
Cox process, See doubly stochastic Poisson process(es)
cross-spectrum, See counting statistics
data-transmission errors, See fractal renewal process(es)
dead-time deletion, See event deletion
decimation, See event deletion
deletion, See event deletion
detrended fluctuation analysis, See inter-
val statistics
developmental disorders, 44
developmental insults, 44
diffusion processes, See power-law be-
havior
dilation, See operations on point pro-
cesses
dimension
 box-counting, 12, 14, 75, 164, 237
 Cantor set, 18
 Cantor-set variant, 46
 capacity, 12, 14, 75, 96, 131, 164, 237
 capacity-dimension scaling func-
tion, 131, 132, 343
 correlation, 75, 96
 Euclidian, 11, 23, 35, 75, 223
generalized, 74–76, 96, 130–132, 256, 332, 343
generalized-dimension scaling func-
tion, 76, 131, 132, 266, 267
 Hausdorff–Besicovitch, 75
 information, 75
 Kolmogorov entropy, 75
 monofractal, 18, 75, 121
 multifractal, 75
 of a space, 11
 of an object, 11
 of diffusion processes, 34–35
 of point processes, 75–76, 96, 111, 121, 126, 130–132, 256, 272, 332, 343
 Rényi entropy, 74
topological, 11, 75
 wavelet estimate of, 75
 Dirac delta function, special property of, 92, 228
dispersion ratio, See counting statistics
displacement, See operations on point processes
doubly stochastic Poisson process(es), 87–90
 autocorrelation, 88
cascaded-process isomorph, 95, 333, 336, 346
coincidence rate, 88
 counting statistics, 88–89
dead-time-modified, 237–241
 exponential interval density, 89–90, 125, 249, 272, 281
 factorial moments, 88
 fractal-binomial-noise-driven, 174, 182, 183, 272
 fractal-Gaussian-process-driven, 124–125, 145, 183, 217, 229, 249, 270, 275–281, 310, 328, 335, 352–353
 fractal-lognormal-noise-driven, 250
 fractal-rate-driven, 124, 262
 fractal-shot-noise-driven, See fractal-
 shot-noise-driven point pro-
cess(es)
 integrated rate, 88
 interval density, 89
 interval statistics, 89–90
 multistage shot-noise-driven, 95
 random deletion of, 236
 rate coefficient of variation, 89–90, 281
 renewal version of, 90
 shot-noise-driven, 90, 202–204
 simulation of, 270, 310
 spectrum, 88
 superposition of, See superposition
 drug abuse, 44
 earthquakes, 33, 40, 77, 150, 155, 204, 222–223
 emotional state, 44
 equilibrium counter, See event deletion
 Erlang, Agner Krarup, 97, 313, 315, 316, 319
 Euclidian dimension, See dimension
event deletion, 226, 229–241
 Bernoulli random deletion, 226, 227, 230–236, 262–263, 344
 blocked counter, 236, 264
 Burgess variance theorem, 231
decimation, 97, 226, 227, 230–232, 262–264
decimation parameter, 231
doubly stochastic Poisson process,
See doubly stochastic Poisson process(es)
effects on fractal features, 229–231, 236
equilibrium counter, 236, 264
experimental interval histograms, 232–233
experimental normalized Haar-wavelet-variance curves, 235
experimental rate spectra, 234
fractal onset frequency, 232, 241
fractal onset time, 232, 241
fractal renewal process, See fractal renewal process(es)
general results, 229–231
homogeneous Poisson process, See homogeneous Poisson process
limit of a homogeneous Poisson process, 232
periodic process, 232–236
renewal process, See renewal process(es)
type-\(p\) dead time, 236
unblocked counter, 236, 263, 264
excitable-tissue recordings, 41
expansion-modification systems, 37
exponentialization, See operations on point processes
extended dead time, See event deletion

Fano factor, 66
Fatt & Katz, 45
Feller, William, vi, 225, 237
fern, 22
Fibonacci sequences, See photonic materials, See semiconductors
fixed dead time, See event deletion
fluorescence fluctuations of nanoparticles, See alternating fractal renewal process(es)
Fourier, Jean-Baptiste, 101–102
fractal analysis, See fractal parameter estimation
fractal-based point processes, See point process(es)
fractal binomial noise
as a rate function, 174, 182–183, 272, 334
as a sum of alternating fractal renewal processes, 173, 181
convergence to a Gaussian process, 181–182
fractal-binomial-noise-driven gamma process, 183
fractal chi-squared noise, 145–147
as a rate function, 150–151
fractal exponential noise, 146
fractal noncentral chi-squared noise, 147
fractal noncentral Rician-squared noise, 147
negative binomial counting distribution, 146
noncentral negative binomial counting distribution, 147
fractal exponent(s)
auditory nerve fiber, See action potentials
diffusion, See power-law behavior estimation of, See fractal parameter estimation
for fractal Bartlett–Lewis process, 219
for fractal point process, 121
for fractal-rate process, 124
for fractal shot noise, See fractal shot noise
for multifractals, 15, 75, 331
for nonstationary nonfractal processes, 110, 112, 133
for normalized general-wavelet variance, 113–114
for normalized Haar-wavelet variance, 111–114
from autocorrelation, 110–111
from count-based autocovariance, 287
from interval spectrum, 126–128, 295
from normalized Daubechies-wavelet variance, 120
from normalized detrended fluctuations, 291
from normalized Haar-wavelet variance, 117–119, 235, 246, 251, 254, 278, 299, 303
from normalized interval wavelet variance, 127–129, 293
from normalized rate spectrum, 116–118, 234, 245, 250, 253
from normalized rescaled range, 289
from normalized variance, 109–110, 126, 127, 285
from rate spectrum, 307
human heartbeat, See heartbeat
Hurst exponent, 137, 143–144, 287, 289
lateral geniculate nucleus, See action potentials
limited range of, 109–111
negative values of, 107–109, 133
observed values of, 109
range of values, 107–114
relations among, 105, 107, 114–115, 133
relative strength of fluctuations, 103, 273
retinal ganglion cell, See action potentials
same exponent from different fractal renewal processes, 166
spectrum, 133
striate cortex, See action potentials
superposition, See superposition
time varying, 331
under exponentialization, 250, 251, 264
under general deletion, 229–231
under random deletion, 234, 235
under random displacement, 245, 246
under shuffling, 253, 254
values in biological systems, 34
vesicular exocytosis, See vesicular exocytosis
visual-system interneuron, See action potentials
fractal exponential noise, 146
fractal Gaussian process(es), 144–145
as a rate function, 145, 216–217
as a sum of alternating fractal renewal processes, 173, 181–182
nomenclature for fractional processes, 143–145
fractal lognormal noise, 147–149
as a rate function, 148–149, 151–152
rate statistics, 147–148
fractal networks, See scale-free networks
fractal noncentral chi-squared noise, 147
fractal noncentral Rician-squared noise, 147
fractal parameter estimation, 269–312
asymptote subtraction, 312
autocovariance, 285–287
bias from cutoffs, 274
bias/variance tradeoff, 311
choice of scaling range, 274
coincidence-rate limitations, 311
comparison of measures, 309–310
count-based measures, 282–287
counting-time increments, 297–299, 303
counting-time oversampling, 302–304
counting-time weighting, 298–302
detrended fluctuations, 289–291
discrete-time processes, 274
estimator variance, 273
heart rate variability, 274–275
interval-based measures, 287–296
interval spectrum, 294–296
interval wavelet variance, 291–293
limitations of, 310
maximum-likelihood approach, 274
nonparametric approach, 273–274
normalized general-wavelet variance, 296–297
normalized Haar-wavelet variance, 276–281, 296–304, 344
normalized variance, 127, 282–285, 296, 311, 344
optimal measures, 271, 309
rate spectrum, 133, 304–309, 311
rescaled range, 287–289
robustness/error tradeoff, 311
simulations, 270, 275–278, 284–295, 297, 299, 303, 305, 307, 310, 312
speed/accuracy tradeoff, 274
fractal point processes, See point process(es)
fractal-rate point processes, See point process(es)
fractal renewal process(es), 87, 124, 131, 132, 154–166, 281
capacity dimension, 164
characteristic function, 155, 156, 166
coincidence rate, 159–160
comparison with homogeneous Poisson process, 122
computer cache misses, 155
counter network traffic, 334
counting distribution, 163
data-transmission errors, 40, 154, 166–167
earthquake occurrences, 155
effect of interval-density exponent, 157
factorial moments, 160–161
features of, 122
forward recurrence time, 262
fractal exponents, 158
fractal onset frequency, 166
generalized inverse Gaussian density, 156
generalized Pareto density, 165
interneuron counterexample, 167–168, 265–267
interval density, 155–157
interval density with abrupt cutoffs, 155
interval density with smooth transitions, 156–157
interval moments, 155, 156
molecular evolution, 168–169
nondegenerate realization, 164–166
normalized Haar-wavelet variance, 344
normalized variance, 160–162
Pareto density, 154–155
point-process spectrum, 157–159, 166
random deletion of, 236, 263
same fractal exponent from different interval densities, 166
simulation time, 166, 312
stable distribution, 157
superposition of, See superposition
trapping in semiconductors, 169, 224
Wald’s Lemma, 164
fractal shot noise, 186–197
amplitude statistics, 189–193
as a rate function, 90, 202–205
autocorrelation, 194–195
characteristic function, 189–190
cumulants, 190
degenerate, 188, 193
fractal exponents, 195–197
Gaussian limit, 145, 188
impulse response function, 187–188, 202, 205
integrated, 204–205
mass distributions, 198–199
multifractal impulse response function, 331
parameter ranges, 188, 189
point processes from, See doubly stochastic Poisson process(es)
power-law-duration variant, 188–189, 198, 336, 352
spectrum, 188, 195–197
stable distribution, 188, 192, 193, 197
sums of, 198
fractal-shot-noise-driven integrate-and-reset process, See fractal-shot-noise-driven point process(es)
fractal-shot-noise-driven point process(es), 202–217
applications of, 204

S. B. Lowen and M. C. Teich
Fractal-Based Point Processes
Wiley (Hoboken, NJ), 2005
applications of the Neyman Type-A distribution, 202
applications of the shot-noise-driven Poisson process, 202
Čerenkov radiation, 220-222
coincidence rate, 214
computer network traffic, 328, 335–337, 352–353
counting distribution, 205–206
counting statistics, 205–212
design of, 220
diffusion, 223
earthquakes, 222–223
factorial moments, 207–208
forward recurrence time, 212–213
fractal exponents, 209, 211, 214, 215
fractal-Gaussian-process-driven limit, 216–217
fractal-shot-noise-driven integrate-and-reset process, 217
fractal-shot-noise-driven Poisson process, 90, 202–217
Hawkes point process, 217
impulse response function without cutoffs, 220
interval density, 212–213, 219, 272
multifractal version, 331
Neyman–Scott process, 202, 204
Neyman Type-A distribution, 202, 206
normalized Haar-wavelet variance, 210–212
normalized variance, 208–209, 219
self-exciting point process, 217
semiconductor particle detectors, 223–224
spectrum, 215–216
fractal-shot-noise-driven Poisson process,
See fractal-shot-noise-driven point process(es)
fractals
and Kant, 33
and Kohlrausch, 33
and Laplace, 33
and Leibniz, 33
and Weber, 33
and Weierstrass, 33
artificial, 16–21
chaos, connection to, 24–32
costlines, 2–4, 6
correlation to stable distributions, 35–36
deterministic, 13, 16–19, 21–22
diffusion processes, 34–35
dynamical processes, 13
elements of fractals, 16–23, 28–30, 33, 115–120
elements of nonfractals, 23–24, 26–28
expansion-modification systems, 37
highly optimized tolerance, 37
historical antecedents, 32–33
in art, 45
in ecology, 26, 41
in human behavior, 43–44
in mathematics, 39–40
in medicine, 43–44
in music, 116
in the biological sciences, 41–44
in the neurosciences, 41–43
in the physical sciences, 39–40
in the psychological sciences, 42, 43, 45, 116
in vehicular-traffic flow, 4, 44, 45, 50, 116
laws of physics, 33–34
lognormal distribution, 36, 147
long-range dependence, 14–15
natural, 16, 21–23
noninteger dimension, 14
objects, 4
onset frequencies, 114–115
onset times, 114–115
origins of fractal behavior, 32–39, 329–330
Pareto’s Law, 33
pink noise, 115–116
power-law behavior, connection to, 14, 32–39
putative exponential cutoff, 39
random, 13, 16, 19–23
range of time constants, 38–39, 332
recognizing the presence of fractal behavior, 44–45
salutary features of fractal behavior, 41, 45
scale-free networks, 37–38, 45
scaling, connection to, 13–15
self-organized criticality, 37
static, 13
ubiquity of fractal behavior, 39–44
fractals in human behavior
attention-deficit hyperactivity disorder, 44
developmental disorders, 44
developmental insults, 44
drug abuse, 44
mood fluctuations, 43
fractals in mathematics
convergence to stable distributions, 35–36
fractal geometry, 40
lognormal distribution, 36
fractals in medicine
blood flow, 116
congestive heart failure, 275
fluctuations in human standing, 43
heart rate variability, 43–44, 270, 274–275
pain relief, 45
sensitization of baroreflex function, 45
fractals in the neurosciences
action potentials in auditory nerve fibers, 42, 131, 145, 147, 249
action potentials in central-nervous-system neurons, 42, 131
action potentials in isolated preparations, 41–42
action potentials in visual-system neurons, 42, 77, 131, 183, 217, 267
cognitive processes, 43, 116
electroencephalogram fluctuations, 116
excitable-tissue fluctuations, 41, 92, 116, 149, 151, 173
ion-channel transitions, 41, 151, 173
neuronal avalanches in slice preparations, 42
sensory detection and estimation, 42–43, 45
vesicular exocytosis, 41, 131, 132, 149, 151–152
fractals in the physical sciences
Čerenkov radiation, 34, 40, 204, 220–222
computer network traffic, 40, 313–354
data-transmission errors, 40, 154, 166–167
diffusion processes, 34–35, 204, 223
earthquake occurrences, 33, 40, 77, 150, 155, 204, 222–223
highly optimized tolerance, 37
laws of physics, 33–34
light scattering, 36, 40, 173
photonics, 40
self-organized criticality, 37, 222
semiconductors, 34, 39, 40, 116, 169, 172, 173, 223–224
fractional Brownian motion, 136–141
as a model for computer network traffic, 325, 331
as a rate function, 140–141
autocorrelation, 137, 150
autocorrelation coefficient, 150
definition, 21, 137
generalized dimensions, 139–140
generation by fractional integration, 144
history, 136
Hurst exponent, 137
level crossings, 138
nomenclature for fractional processes, 143–145
ordinary Brownian motion, See Brownian motion
properties, 138–139
realizations, 139–140
relation of Hurst and scaling exponents, 143–144
relation to fractional Gaussian noise, 141
relation to ordinary Brownian motion, 137
self-similarity, 138
stationary increments, 137, 150
synthesis, 139
Wigner–Ville spectrum, 138–139
zero crossings, 15
fractional Gaussian noise, 141–142
as a rate function, 142
definition, 141
generalized dimensions, 142
 generation by fractional integration, 144
 in a Langevin equation, 35
 nomenclature for fractional processes, 143–145
 properties, 141–142
 realizations, 142–143
 relation of Hurst and scaling exponents, 143–144
 relation to fractional Brownian motion, 141
 synthesis, 142
 Wigner–Ville spectrum, 141–142
 gamma renewal process, See renewal process(es)
 Gauss, Carl Friedrich, 36, 171, 173
 generalized dimension, See dimension
 generalized-dimension scaling function, See dimension
 generalized inverse Gaussian density, 156
 Grand Canyon river network, 22
 Greenwood, Major, 49, 64, 147
 Gutenberg–Richter Law, 33
 Haar, Alfréd, 68, 101, 102
 Hausdorff–Besicovitch dimension, See dimension
 heart rate variability, 44, 270, 274–275
 heavy-tailed distributions, See interval statistics
 highly optimized tolerance, 37
 hippocampus, See action potentials
 Holtsmark distribution, 193
 dead-time-modified, 237–238, 249, 262–264
 decimated, 97, 263–264
 factorial moments, 84
 moments, 83
 human standing, 43
 Hurst, Harold Edwin, 59, 269, 287
 Hurst exponent, See fractal exponent(s)
 hypothesis testing, See operations on point processes
 Icelandic coastline, 14
 index of dispersion, See counting statistics
 information dimension, See dimension
 integrate-and-reset processes, 91–93
 dead-time-modified, 237, 241
 decimated, 231
 fractal-binomial-noise-driven, 174, 183
 fractal-Gaussian-process-driven, 145, 243
 fractal-shot-noise-driven, 217
 gamma-distributed rate, 98
 identification of, 273
 interval density, 92
 interval moments, 92
 interval statistics, 91–92
 kernel for heartbeat model, 293, 310
 leaky, 93
 model for action potentials, 91
 modulated rate, 98, 110, 112
 normalized variance, 96
 oversampled sigma-delta modulator, 91
 packet generation, 334
 point-process spectrum, 91
 randomly deleted, 236
 time-varying threshold, 92–93, 149
 interevent-interval transformation, See operations on point processes
 interneuron, See action potentials
 interval statistics, 54–62
 autocorrelation, 20, 57, 83, 282
 characteristic function, 55–56
 coefficient of variation, 55, 231, 233, 236, 345
 cumulants, 55, 56
 density, 55, 89–90, 121, 129–130, 227, 281
 detrended fluctuation pseudocode, 62
detrended fluctuation statistic, 61–62, 79, 282

detrended fluctuation statistic, normalized form, 62, 289–291

discriminating among fractal-rate processes, 310–311

distribution, 281

doubly stochastic Poisson process, See doubly stochastic Poisson process(es)

exponential density, 83, 89–90, 92, 97, 125

fractal renewal process, See fractal renewal process(es)

fractal-shot-noise-driven point process, See fractal-shot-noise-driven point process(es)

heavy-tailed distributions, 13, 56, 57, 328, 333, 337

homogeneous Poisson process, See homogeneous Poisson process

infinite moments, 56, 79, 165

integrate-and-reset process, See integrate-and-reset process(es)

interval ordering, 90, 227, 247–254, 256, 281, 345

kurtosis, 55, 79, 175, 179

limitations of, 122–124, 281–282, 344

moments, 55, 60

normalized wavelet variance, 59

Pareto distribution, 57, 138, 154, 155, 165

periodic processes, 64, 96

periodogram, 70

power-law distribution, See fractal renewal process(es)

recurrence time, 56, 65, 79, 80, 96

relation to counting statistics, 65, 344

rescaled range pseudocode, 60

rescaled range statistic, 59–60, 79, 282

rescaled range statistic, normalized form, 60, 287–289

semi-invariants, 55

serial correlation coefficient, 57

shot-noise-driven Poisson process, See doubly stochastic Poisson process(es)

skewness, 55, 79, 175, 179

subexponential distributions, 57

survivor function, 55–57, 165, 238, 259–262

wavelet transform, 58

Weibull distribution, 57, 328

interval transformation, See operations on point processes

ion channels, See alternating fractal renewal process(es)

Isham, Valerie, vi

Kenrick, Gleason W., 172

knockout mice, 227

Kolmogorov, Andrei, 135–136

Lapicque, Louis, 81, 91

lateral geniculate nucleus, See action potentials

laws of physics, See power-law behavior

Leyden-jar discharge, 33, 39

light scattering, See fractals

logistic equation, 26, 37

logistic map, 26, 28, 30, 46

lognormal distribution, 36, 57, 147

long-range dependence, 15

Lévy, Paul, 35, 36, 171, 174

Lévy dust, See point process(es)

Lévy-stable distributions, See stable distributions

Mandelbrot, Benoît, viii, 4, 135, 136, 153, 154

marked point process, See point process(es)

medulla, See action potentials

mixed Poisson process, See doubly stochastic Poisson process(es)

molecular evolution, See fractal renewal process(es)

monofractals, 15–16, 274, 331
mood fluctuations, 43
multidimensional point process, See point process(es)
multifractals, 15–16, 75, 188, 331–332, 353–354
multivariate point process, See point process(es)

Newton’s Law, 34
Neyman, Jerzy, 94, 201, 202
Neyman Type-A distribution, See counting statistics
Neyman–Scott process, See cascaded process(es)
Nile river flow patterns, 59, 116, 269
noncentral limit theorem, 174
nonextended dead time, See event deletion
nonfractal(s)
- Euclidian shapes, 6–7, 23
- examples of, 14, 23–24, 26–28, 46
- generalized dimensions, 75, 96
- heart rate variability measures, 43, 275
- homogeneous Poisson process, See homogeneous Poisson process influences, 279
- orbits in a two-body system, 24
- point processes, See point process(es)
- radioactive decay, 24, 50
nonparalyzable dead time, See event deletion
nonstationary point process, See point process(es)
normalization, See operations on point processes
normalized Haar-wavelet covariance, See counting statistics
normalized Haar-wavelet variance, See counting statistics
normalized variance, See counting statistics
normalized wavelet cross-correlation function, 77
normalizing transformation, See operations on point processes

Omori’s Law, 33
on–off process, See alternating renewal process(es)
oplications on point processes
- block shuffling, 255, 262
- bootstrap method, 255
- event deletion, See event deletion
- event-time displacement, 145, 226, 242–247, 251, 254, 255, 262
- hypothesis testing, 126, 247, 253, 254, 271
- imposed by experimenter, 227
- imposed by measurement system, 227
- interval displacement, 242
- interval exponentialization, 226, 227, 249–251, 255, 261, 264–267, 326, 327, 337, 343, 345
- interval normalization, 249
- interval transformation, 226, 247–251, 261–262
- intrinsic to underlying process, 227
- phase randomization, 227
- point-process identification, 255–256
- superposition, See superposition surrogate data, 15, 126, 227, 247, 253, 265–267, 271
time dilation, 226, 228–229, 262

Palm, Conny, 50, 82, 257, 313, 315, 316
paralyzable dead time, See event deletion
Pareto, Vilfredo, 33, 153–154
Pareto’s Law, 138, 154
Penck, Albrecht, 1–2
periodogram, See counting statistics, See interval statistics
phase randomization, See operations on point processes
photon statistics
- betaluminescence, 202
- cathodoluminescence, 202
Čerenkov radiation, 34, 40, 204, 220–222
in presence of atmospheric turbulence, 36
in presence of dead time, 263
radioluminescence, 202
scattered light, 40
superposed coherent and thermal light, 147
thermal light, 146
photonic materials
difractals, 40
fractal reflectance, 40
fractal transmittance, 40
group-velocity reduction, 40
light scattering, 40
multilayer structures, 40
phase screen, 40
pseudo-bandgaps, 40
Poincaré, Henri, 9, 25, 174
point process(es), 4–5, 50–80, 82–99
Bartlett–Lewis, See cascaded point process(es)
bivariate, 77
branching, See cascaded process(es)
capacity dimension, 164
cascaded, See cascaded process(es)
coincidence rate, 70–72, 74, 80, 105–106, 110–111, 133, 159–160, 214
computer network traffic, See computer network traffic
correlation in a bivariate process, 77–78
count-based measures, 63–70
deleted, See event deletion
doubly stochastic Poisson, See doubly stochastic Poisson process(es)
eyear work, 50
estimation of, See fractal parameter estimation
examples of, 4, 79, 82–99
filtered general, 197–198
fractal, 76, 121–123, 131, 255
fractal-based, 4–5, 120–124, 130
fractal behavior in, 115–120
fractal parameter estimation, See fractal parameter estimation
fractal-rate, 76, 123–124, 251, 255, 345
fractal renewal process, See fractal renewal process(es)
fractal-shot-noise-driven, See fractal-shot-noise-driven point process(es)
from Brownian motion, 149–150
from fractal binomial noise, 182–183
general measures of, 70–76
Hawkes, 217
homogeneous Poisson, See homogeneous Poisson process
infinitely divisible cascade, 123, 331
integrate-and-reset, See integrate-and-reset process(es)
intermittency, 122
interval-based measures, 54–62
limitations of measures, 282
Lévy dust, 15, 95–96, 138
marked, 54, 77, 176, 222, 334
measures of fractal behavior, 103–107
modulated integrate-and-reset, See integrate-and-reset point process(es)
monofractal, 131
multidimensional, 82
multifractal, 123
multivariate, 77
Neyman–Scott, See cascaded point process(es)
nonfractal, 96, 124–125, 131
nonstationary, 71, 110, 112, 133–134
operations on, See operations on point processes
orderly, 52–54, 66, 75, 79, 95, 96, 110, 174, 197, 206, 220
periodic, 91, 232–236
renewal, See renewal process(es)
right-continuous, 51
self-exciting, 217
sinusoidally modulated, 98
spectrum, 72–74, 80, 88, 91, 97, 103, 111, 115, 121, 122, 124,
592 SUBJECT INDEX

spectrum, normalized form, 72

superoes, See superposition

Poisson, Siméon Denis, 49, 63
Poisson process, See homogeneous Poisson process

power-law behavior
anharmonic-oscillator energy, 34
Čerenkov radiation, 34
computer file sizes, 33, 323, 329–330, 335, 336
Coulomb’s Law, 34
diffusion processes, 34–35, 204, 223
dipole field, 34
expansion-modification systems, 37
fractal exponent, See fractal exponent(s)
fractals, connection to, 14, 32–39
Gutenberg–Richter Law, 33
harmonic-oscillator energy, 34
highly optimized tolerance, 37
Hooke’s Law, 34
hydrogen-atom energy, 34
infinite-quantum-well energy, 34
interval distribution, See fractal renewal process(es)
Kepler’s Third Law, 34
Langmuir–Childs Law, 34
laws of physics, 33–34
line of charge, 34
logistic equation, 37
lognormal distribution, 36
mass distributions, 198–199
Newton’s Law, 34
Omori’s Law, 33
preservation of, 103
quadrupole field, 34
quantum number, 34
relationships among measures, 114–115
Richardson’s Law, 3
rigid-rotor energy, 34
scale-free networks, 37–38
scaling functions, 3, 12–13
self-organized criticality, 37
stable distributions, 35–36
superposed relaxation processes, 38–39
time functions, 34
van der Waals force, 34
queueing theory, See computer network traffic

random deletion, See event deletion
random telegraph signal, See alternating renewal process(es)
rate spectrum, See counting statistics
recovery function, See event deletion
refractoriness, See event deletion
relative dead time, See event deletion
relative refractoriness, See event deletion
renewal process(es), 85–87
alternating, See alternating renewal process(es)
coincidence rate, 85–86
decimated Poisson process, 97, 263–264
doubly stochastic Poisson version of, 90
event deletion, See event deletion
exponential density, 97
factorial moments, 87
fractal, See fractal renewal process(es)
gamma density, 97
gamma density for computer network traffic, 336
history of, 85
invariance to shuffling, 271
operations on, See operations on point processes
random deletion of, 236, 263
relation between interval and counting statistics, 87
spectrum, 86–87, 97
superposition of, See superposition
Renyi dimension, See dimension
rescaled range analysis, See interval statistics
reticular formation, See action potentials
retinal ganglion cell, See action potentials
Rice, Steven O., 147, 185, 186
Richardson, Lewis Fry, 1–3
Rudin–Shapiro sequences, See semiconductors
scale-free networks, 37–38, 40, 321–322
scaling, See fractals
scaling cutoffs, See fractal exponent(s)
scaling exponents, See fractal exponent(s)
Schottky, Walter, 185, 186
Scott, Elizabeth, 201, 202
self-organized criticality, 37
semiconductors
fractional scaling exponents, 34
multilayer structures, 40
noise in, 39–40, 116, 169, 172, 173
particle detectors, 223–224
range of time constants, 39
trapping in, 169, 224
semi-experiments, See operations on point processes
shot noise, 186–187
amplitude, 186–187
as a rate function, 90
filtered general point process, 197–198
fractal, See fractal shot noise
Gaussian limit, 186, 191
generalized, 187
impulse response function, 202
shuffling, See operations on point processes
sick time, See event deletion
somatosensory cortex, See action potentials
spectral smoothing, 117, 128, 326, 339
spectrum, See counting statistics, See interval statistics, See point process(es)
spike trains, See action potentials
stable distributions, 35–36, 79, 157, 174, 192, 193
stochastic dead time, See event deletion
striate cortex, See action potentials
superposition
alternating renewal processes, 41, 173, 179–182
doubly stochastic Poisson processes, 258–259
fractal-based and homogeneous Poisson processes, 273
fractal-based point processes, 258, 261, 310
fractal content, 262
fractal Gaussian process and modulating stimulus, 145
fractal ion-channel transitions, 42
fractal renewal processes, 260–261
harmonic functions, 101
packet arrival times, 323
periodic series of events, 81
point processes, 84–85, 227, 256–261
Poisson-process limit, 85
relaxation processes, 38–39
renewal processes, 259–260, 334
secondary events comprising, 218
surrogate data, See operations on point processes
survivor function, See interval statistics
synapse, See vesicular exocytosis
telephone network traffic, 40, 84, 97, 154, 166–167, 313, 315–320, 324
tent map, 46
thalamus, See action potentials
thinning, See event deletion
Thomas distribution, See counting statistics
Thomas process, See cascaded process(es)
Thue–Morse sequences, See photonic materials, See semiconductors
time dilation, See operations on point processes
time series, 4
topological dimension, See dimension
translation, See operations on point processes
triadic Cantor set, See Cantor set
type-p dead time, See event deletion
unblocked counter, See event deletion
Van Ness, John W., viii, 135, 136
variance-to-mean ratio, See counting statistics
visual-system interneuron, See action potentials
Wald’s Lemma, 164, 237
wavelet(s)
 computer-network-traffic analysis, 336
 Daubechies, 120
 estimating the generalized dimension, 75
 generating fractional Brownian motion, 139
 Haar, 101, 269
 higher-order moments, 332
 interval wavelet variance, See interval statistics
 normalized Daubechies-wavelet variance, See counting statistics
 normalized general-wavelet variance, See counting statistics
 normalized Haar-wavelet covariance, See counting statistics
 normalized Haar-wavelet variance, See counting statistics
 removing trends, 62, 113
 transform, 58, 67, 74
Weibull distribution, 57, 328
Wiener–Khintchine theorem, 73
Yule, G. Udny, 49, 64, 95, 147
Yule–Furry branching process, See cascaded process(es)
zeta distribution, 33, 38