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Fractal stochastic point processes (FSPPs) provide good mathematical models for
long-term correlations present in auditory-nerve fibers in a number of species. Sim-
ulations and analytical results for FSPPs concur with experimental data over long
times. Refractoriness-modified Poisson point processes, in contrast, model only
the short-term characteristics of these data. FSPPs incorporating refractoriness
yield superior results over all time scales, and analytical results for the statistics
of this model agree closely with both computer simulations and auditory data.
Furthermore, these processes provide a superior method for estimating the fractal
exponent o, which parametrizes the long-term correlation found in these record-
ings.

1 Introduction

Certain random phenomena are well described by essentially identical events
occurring at discrete times. One example is the registration of action poten-
tials recorded by an electrode near an auditory-nerve fiber 31517 A (one-
dimensional) stochastic point process is a mathematical construction which
represents these events as random points on a line. Such a process may be
called fractal when a number of the relevant statistics exhibit scaling with re-
lated scaling exponents, indicating that the represented phenomenon contains
clusters of points over a relatively large set of time scales 11567,

The power spectral density (PSD) and the Allan factor (AF) are two statis-
tics which reveal this clustering "%!. The PSD S(w) for a point process, as for
continuous-time processes, provides a measure of how power is concentrated
as a function of the angular frequency w. The Allan factor A(T), is defined as
the ratio of the Allan variance of the event count in a specified time window
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T to twice the mean count. The Allan variance, in turn, is the variance of the
difference between the numbers of counts in adjacent windows of duration 7.
For an FSPP, over a large range of times and frequencies, it can be shown that
7,91
PSD: S(w)/A
AF: A(T)

1+ (w/ewo) ™
1+ (T/T0)", (1)
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with X the average rate of the process, o > 0 the fractal exponent, wy a cutoff
frequency, Tp a cutoff time, and wgT = (2 —2%) cos(ma/2)T(a +2) *1°. Thus
in this mathematical formalism, the fractal exponent « can assume values in
excess of unity, as sometimes occurs in auditory recordings °.

The homogeneous Poisson point process (HPP) is perhaps the simplest
stochastic point process, being fully characterized by a single constant quan-
tity, its rate. It is not fractal, but serves as a building block for other point
processes which can be. With the inclusion of refractoriness (dead- and sick-
time effects), the refractoriness-modified Poisson point process (RM-P) 141215
proves successful in modeling auditory-nerve spike trains over short time scales.
With fixed and exponentially distributed 2° random refractoriness together '°,
the RM-P predicts an interevent-interval histogram (ITH) of the form

(1) :{ 3(1—Ar)‘1{exp[—A(t—f)] —exp[=(t = f)/r]} Eii;; )

where A is the original rate of events (before refractory effects), f is the por-
tion of the refractory period that is fixed, and r is the mean of the random
component.

However, the accurate modeling of the self-similar or fractal behavior ob-
served in sensory-system neural spike trains over long times requires a fractal
stochastic point process 16131741829 © A number of FSPP models have been
developed ”; we focus on a particular process, the fractal-Gaussian-noise-driven
Poisson process (FGNDP) 7. The FGNDP is important because Gaussian pro-
cesses are ubiquitous, well understood, and are completely described by their
means and autocovariance functions. Thus only three parameters (including
the rate) are required to specify an FGNDP, since, like all FSPPs, it follows
Eq. 1. The FGNDP describes the firing patterns of primary auditory afferents
quite well over long time scales (several hundred milliseconds and larger) 7,
although 1t does not accurately model neural activity over short time scales.
Therefore procedures for estimating the fractal exponent « based on a simple
FSPP formalism that ignores refractoriness, such as a least-squares fit to the
logarithm of Eq. 1, necessarily yield biased results. The parameter o plays
a crucial role in characterizing the auditory-nerve fiber recordings, since this
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single quantity describes the long-term correlations present in such recordings,
and the singularity near zero frequency in the PSD?.

2 Models Incorporating Refractoriness and Fractal Behavior

Incorporating refractory effects into the fractal behavior of the FGNDP yields
the refractoriness-modified version (RM-FGNDP), a new model which does
indeed mimic auditory-nerve behavior over all time and frequency scales &.
Figure 1 shows the AF obtained from a recording of an auditory-nerve fiber
under spontaneous conditions (solid curve), and from a single simulation of the
RM-FGNDP process (dashed curve). All recordings used in this paper were
obtained from one cat auditory afferent fiberhe cat, with a spontaneous rate
of 75 spikes/sec, and a characteristic frequency (CF) of 3926 Hz. (Data collec-
tion and minimal subsequent processing methods are described in Ref. 9 and
references therein.) The two curves agree within the limits imposed by fluctua-
tions inherent in a finite data length; agreement also obtains for other statistics
such as the ITH, not shown. Evidently, simulations of the RM-FGNDP process
mimic auditory-nerve-fiber data well. Simulations of non-fractal models, in
contrast, exhibit AF curves which never exceed unity, and thus are not suit-
able as models of auditory-nerve firing behavior. Conversely, simulations of
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Figure 1: Doubly logarithmic plot of the Allan factor (AF) for auditory-nerve-fiber data
recorded under spontaneous conditions (solid curve), and for a simulation of the RM-FGNDP
process with parameters chosen to fit the data (dashed curve).
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non-refractory models exhibit AF curves which never dip below unity, while
those of the data always do.

Fortuitously, for the parameter ranges employed in modeling these spike
trains, the effects of the fractal fluctuations are minimal over the time scales
where refractoriness dominates, and vice versa; thus these two effects may be
decoupled in the modeling procedure. In particular, the ITH plots for the full
RM-FGNDP theory, the non-fractal RM-P models, and the data all resemble
each other closely.

The AF and PSD for the RM-FGNDP, in contrast, do differ apprecia-
bly from those of both the (non-fractal) RM-P and (non-refractory) FGNDP
models. We have developed new analytical formulas for these quantities in the
presence of generalized refractoriness (including both fixed and exponentially
distributed random components) 1%, and provide two key results below. For
steady-state (equilibrium) counting'?, and for T'>> f,r, the AF assumes the
form, over all counting times:

N 6a” +4a® + a* + A7 (6 — M%) — A3 (14 N f)

A 4(1+ a)®AT

+ (1+a)*(T/T)*,
(3)

with @ = A(f + r) 1% the PSD assumes the form

14 \%r?
Aoy T ™ ()
for equilibrium counting in the range w < 1/f,1/r 0.

Figure 2 provides estimated averaged Allan Factors from a typical simula-
ted FGNDP with o = 0.5, both with and without refractoriness (solid curves).
Also shown are fits from Eq. 1 for the upper curve, and for the full RM-
FGNDP (Eq. 3) model for the lower curve (dashed curves). Both theoretical
results match their respective simulations extremely well, particularly at the

S(w) = A

longer counting times which prove most important in estimating «.

Table I shows the results from a number of simulations at different design
values of the fractal exponent «. These results are estimated from the simple
FGNDP model of Eq. 1 (fourth column), and for the full RM-FGNDP model
with refractoriness of Eq. 3 (third column). The RM-FGNDP model yields a
much more reliable estimate of a. Similar improvement obtains for the PSD
when employing the RM-FGNDP model '°,

Returning to auditory-nerve data, in Fig. 3 we present AF curves for two
stimulus levels: spontaneous firing (no stimulus) as shown in Fig. 1, and +40
db:re threshold at CF. Also shown are the predictions of Eq. 3, obtained from
a least-squares fit of the logarithm of the AFs. For the upper and lower exper-
imental data curves, the estimated fractal exponents of these firing patterns
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Figure 2: Doubly logarithmic plot of the averaged Allan factor (AF) for simulations of

the RM-FGNDP process, with A = 1, @ = 0.5, and N = 100 simulations. Upper curves:

f = r = 0 for simulation (solid curve) and fit from Eq. 1 (dashed curve). Lower curves:
f = r =1 for simulation (solid curve) and fit from Eq. 3 (dashed curve).

are o« = 0.71 and a = 1.5, respectively. These are indeed substantially larger
than the values o = 0.48 o = 0.96 obtained without taking refractoriness into
account ?. Within limits imposed by a finite data size, predictions of the RM-

SIMULATION ESTIMATION
Fractal Exp. Refract. Eq. 3 Bias Eq. 1 Bias
a=0.5 none -0.002 -0.046
a=05 f=r=1 +0.016 -0.156
a=1.0 none -0.012 -0.027
a=1.0 f=r=1 -0.015 -0.058
a=1.5 none -0.019 -0.035
a=15 f=r=1 -0.027 -0.090

Table 1: Bias in estimates of the fractal exponent « obtained from the averaged Allan

factor (AF) for simulations of the RM-FGNDP process. For all table entries, A = 1 and

N = 100 simulations. Results are reported for three values of o (0.5, 1.0, and 1.5), both

with (f = r = 1) and without (f = r = 0) refractoriness. Bias is calculated by a least-

squares fit of the logarithm of the averaged simulated AF plots to the logarithm of Eq. 3, for

ten values of the counting time T per decade in the range 10> < T < 105 (left bias column);
and to Eq. 1 in the range 10* < T < 10° (right column).
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FGNDP model closely follow the AF for the experimental data over all time
scales. The PSD predicted by the RM-FGNDP model also accords with that
of the data over all frequency scales, as do all other statistics examined to date.

Finally, a similar process, based on a gamma renewal process instead of
a Poisson substrate, appears to provide an excellent fit to data collected from
neurons in the visual system of the cat, using these same statistics'®. Thus the-
oretical results obtained for this process will likely provide a superior method
for estimating the fractal exponent of these neurons.

3 Conclusion

Over all time scales, analytical predictions of the refractoriness-modified frac-
tal-Gaussian-noise-driven Poisson point process model, with fixed and stochas-
tic refractory periods together, match statistics of experimental data collected
from cat auditory-nerve fibers, and of computer simulations of this process.
This model therefore provides the best method known to date for estimating
the fractal exponent « of neural recordings.
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Figure 3: Doubly logarithmic plot of the Allan factor (AF) plot for auditory data (unit L-19,

with CF = 3926 Hz, threshold = 19.3 dB SPL, and spontaneous firing rate = 75 spikes/sec.).

Upper curves: spontaneous firing conditions (solid curve) and analytical fit from Eq. 3 (long-

dashed curve). Lower curves: stimulus applied at CF at +40 dB:re threshold (short-dashed
curve) and analytical fit from Eq. 3 (dotted curve).
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