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§ 1. Introduction

The photon correlation experiments carried out by HANBURY-BROWN and
Twiss [1956a,b] and the invention of the laser by SCHAWLOW and TOWNES
[1958] fostered a strong interest in photon statistics in the 1960s. As it turned
out, the semiclassical theory of light provided an adequate theoretical frame-
work for understanding the observed photon correlations from conventional
sources of light as well as from lasers (MANDEL [1959a, 1963]). In 1963
GLAUBER [1963a,b] developed a fully quantum-mechanical theory of light that
encompassed the semiclassical theory. One intriguing aspect of the new
quantum optics was that it admitted the possibility of photon anticorrelations
as well as photon correlations. Within this expanded framework it became
possible to conceive of new forms of light that had never before been realized:
antibunched light, sub-Poisson light, and quadrature-squeezed light.

These three characteristics of nonclassical light have recently received a great
deal of attention because they have now been observed in the laboratory
(KIMBLE, DAGENAIS and MANDEL [1977], SHORT and MANDEL [1983],
TEICH and SALEH [1985], SLUSHER, HOLLBERG, YURKE, MERTZ and
VALLEY [1985]). In any given light source these characteristics may, but need
not, accompany each other (TEICH, SALEH and STOLER [1983], PERINA,
PERINOVA and KODOUSEK [1984], SHORT and MANDEL [1984], SCHLEICH
and WHEELER [1987], YAMAMOTO, MACHIDA, IMOTO, KITAGAWA and
BJORK [1987]). There are other manifestations of nonclassical light as well;
examples include a photon interevent-time probability density function that is
underdispersed relative to the exponential and a violation of Bell’s inequalities
in a photon correlation experiment (REID and WALLS [1984]). Nonclassical
light should be useful in providing new insights into various physical and
biological processes, such as spectroscopy and the behavior of the human
visual system at low levels of light (TEICH, PRUCNAL, VANNUCCI, BRETON and
McGiLL [1982]). It is also expected to find use in applications such as optical
signal processing, interferometry, gravitational-wave detection, and lightwave
communications.

This review pertains to the generation and characterization of antibunched
and sub-Poisson light (sub-Poisson light is alternatively called photon-number-

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



4 PHOTON BUNCHING AND ANTIBUNCHING [I,§1

squeezed light). These characteristics are manifested in direct-detection experi-
ments, in which the phase of the light wave is ignored. This is in contrast to
the observation of quadrature-squeezed light, which requires the use of an
auxiliary light source (a local oscillator) and a heterodyne (coherent) detection
process. (Useful sources of recent literature pertinent to the generation and
detection of quadrature-squeezed light include articles by WALLS [1983],
SHAPIRO [1985], CAVES [1986], LounoN and KNIGHT [1987], and TEICH
and SALEH [1988]). In the course of this presentation, we also review the
generation of bunched and super-Poisson (classical) light from collections of
independent radiators.

The discussion is readily initiated by the analogy with a gun illustrated in
fig. 1.1. Photon guns naturally generate random (Poisson) streams of photons,
as shown in fig. 1.1a. The production of antibunched or sub-Poisson light can
be achieved in three ways: by regulating the times at which the trigger is pulled,
by introducing constraints into the firing mechanism, and/or by selectively
deleting some of the Poisson bullets after they are fired. Each of these
techniques involves the introduction of anticorrelations, which results in a more
predictable number of events. These anticorrelations are introduced by means
of a feedback (or feedforward) process of one kind or another.

e

Trigger Firing mechanism Poisson bullets
(a) Poisson *-— o—o-t—e-)
(b) Dead-time deletion [ [ T-  —o0->
(c) Coincidence decimation ®-e— .- >
(d) Decimation ole ° >
(e) Overflow count deletion ¢.e——¢.0.0 5
(f) Rate compensation o0 0000—0.00—0 -0~
K— T A —F—T Ae—
T,A

Fig. 1.1. Schematic representation of three components of a simple photon-generation system.

A trigger process excites a photon emitter (firing mechanism), which in turn emits photons

(Poisson bullets). Anticorrelations can be induced in any of the three elements. Mechanisms for

generating antibunched and sub-Poisson light from (a) Poisson light can make use of (b) dead-

time deletion, (c) coincidence decimation, (d) decimation, (e) overflow count deletion, or (f) rate
compensation.
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1L§1] INTRODUCTION 5

Several specific schemes for introducing such photon anticorrelations are
presented in fig. 1.1. Dead-time deletion, illustrated in fig. 1.1b, prohibits
photons from being arbitrarily close to each other. This effect can result from
a requirement that the trigger or firing mechanism reset between consecutive
shots. We will show in § 5.1 that this is, in fact, the way in which isolated atoms
behave in the course of emitting resonance fluorescence photons. Under
appropriate conditions, dead time can instead be imposed on the bullets after
they are fired, as discussed in § 6.2. The dead-time deletion process regularizes
the events, as is apparent from fig. 1.1, thereby reducing the randomness of the
number of events registered in the fixed counting time T.

Photon anticorrelations can also be introduced by coincidence decimation,
which is a process in which closely spaced pairs of photons are removed from
the stream, as shown in fig. 1.1c. Optical second-harmonic generation (SHG),
for example, is a nonlinear process in which two photons are exchanged for a
third photon at twice the frequency (see § 6.1). Both photons must be present
within the intermediate-state lifetime of the SHG process for the nonlinear
photon interaction to occur. Again, the removal of closely spaced pairs of
events regularizes the photon stream.

The process of decimation is defined as every A4th photon (4= 2,3, ...) of
an initially Poisson photon stream being passed while deleting all intermediate
photons. The passage of every other photon (A = 2) is explicitly illustrated in
fig. 1.1d. The regularization effect on the photon stream is similar to that
imposed by dead-time deletion. This mechanism can be used when sequences
of correlated photon pairs are emitted; one member of the pair can be detected
and used to operate a gate that selectively passes every .4'th companion photon
(see § 6.2.1).

Overflow count deletion is another feedback mechanism that can introduce
photon anticorrelations. As shown in fig. 1.1e, the number of photons is
counted in a set of preselected time intervals [0, T'], [T, 27}, ...; the first n,
photons in each interval are retained and the remainder deleted. If the average
number of photons in [0, T'] of the initial process is > n,, then the transformed
process will almost always contain n, counts per time interval (MANDEL
[1976a]).

Finally, rate compensation is illustrated in fig. 1.1f. In this case the (random)
number of photons is counted in a short time T, ; this information is fed back
to control the future rate at which the trigger is pulled. If the random number
measured in T, happens to be below average, the trigger is subsequently pulled
at a greater rate and vice versa. More generally, each photon registration at time
t, of a hypothetical Poisson photon process causes the rate 4 of the transformed
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6 PHOTON BUNCHING AND ANTIBUNCHING [I,§1

point process to be modulated by the factor A(¢ — ¢;) (which vanishes for ¢t < ¢,).
In linear negative feedback the rate of the transformed process becomes
Be = A9 — Y. ,h(t — t,), where A, is the rate of the Poisson process. A variety
of techniques can be used to implement rate compensation, such as quantum
nondemolition measurements (see § 6.2.4) or correlated photon pairs (see
§ 6.2.2). Dead-time deletion can be viewed as a special case of rate com-
pensation in which the occurrence of each event sets the rate of the process
equal to zero for a specified period of time after the registration (SHAPIRO,
SAPLAKOGLU, Ho, KUMAR, SALEH and TEICH [1987]).

In the course of this review we will find that an attractive way of producing
antibunched and sub-Poisson photons is to regulate the times at which the
trigger is pulled, using a control mechanism located right at the trigger (see § 7).
This is most readily achieved by using an electron stream as the trigger and a
collection of atoms in a solid as the firing mechanism. An electron stream
exhibits natural anticorrelations in the presence of space charge. Because of
their mutual Coulomb repulsion, the electrons repel each other so that the
trigger can be pulled with a great deal of regularity. Indeed, the behavior of such
a stream of electrons can be understood from a mathematical point of view
(SRINIVASAN [1965]) in terms of rate compensation with linear negative
feedback.

In § 2 we review the theory pertaining to the generation of bunched and
super-Poisson light within the semiclassical theory. We elucidate the distinc-
tions among Poisson, super-Poisson, and sub-Poisson photocounts; un-
bunched, bunched, and antibunched light; and chaotic, superchaotic light. The
roles of wavelike and particle-like fluctuations are discussed. Particular atten-
tion is devoted to the statistical characteristics of light arising from the
superposition of independent emissions where there is randomness either in the
number of emissions or in the times at which the emissions are initiated. Light
of this nature often arises in luminescence, scattering, and speckle experiments.

The quantum theory of light generation from superpositions of independent
emissions is developed in § 3. A stationary stream of antibunched and/or
sub-Poisson light can be generated if sub-Poisson statistics are obeyed by both
the random times at which the emissions are initiated and the individual photon
emissions themselves. For sufficiently large counting times and large detection
areas, interference effects donot appear, and the photons can be shown to behave
purely as classical particles. If the emissions are (deterministic) single photons,
the overall photon statistics then directly mimic the statistics of the excitations.
Uniquely quantum effects can therefore be observed within the domain of linear
(single-photon) optics. The implementation of physical mechanisms that lead
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L§1] INTRODUCTION 7

to this kind of light is discussed in § 7. Although the theory presented in § 3
is geared principally to independent emissions, it can also be applied to certain
physical processes that operate on the basis of nonindependent emissions.
Several important examples considered in § 6 and § 7 fall in this category.

In § 4 we demonstrate that the loss of photons generally randomizes the
statistical properties of an anticorrelated stream of photons, ultimately convert-
ing it into random (Poisson) form. Effects such as attenuation, scattering, and
the presence of background photons are deleterious to sub-Poisson light.

In § 5 we discuss two nonlinear optics mechanisms (atomic resonance
fluorescence and parametric downconversion) that generate small clusters of
conditionally sub-Poisson photons. A cluster may comprise 2 or 3 photons for
resonance fluorescence from an isolated atom in a typical experiment, or a
single photon for parametric downconversion. This effect can only be observed
by gating the detector for a prespecified time window to ensure that only a single
cluster is detected. Sub-Poisson behavior is destroyed by the presence of a
Poisson stream of clusters, as discussed in § 3.3.2. Thus unconditionally (cw
or stationary) sub-Poisson light cannot be generated without controlling the
excitations.

Photon feedback is discussed as a means of producing cw unconditionally
sub-Poisson light in § 6. Photons generated by a particular process are fed back
to control it, which may be accomplished by the use of a variety of nonlinear
optics techniques. Methods using feedback intrinsic to a physical process,
simply stated, remove selected clusters of photons from the incident pump
beam, leaving behind an antibunched residue. External feedback can also be
used. A simple example is a process in which photon pairs are produced (e.g.,
parametric downconversion), with one member of the pair being used to control
its twin. Control mechanisms such as decimation, dead-time deletion and rate
compensation, illustrated in fig. 1.1, can be used to achieve these ends.

The use of excitation feedback for generating useful antibunched and cw
unconditionally sub-Poisson light is discussed in § 7. In this case the radiators
are controlled before photon emission. Many of the limitations associated with
photon-feedback methods are avoided. The technique operates by initiating
single-photon emissions at antibunched and sub-Poisson times. For sufficiently
long detection times and areas the emitted photons behave like classical
particles; their statistics mimic those of the excitations. Perhaps the simplest
example of an excitation feedback scheme is provided by the space-charge-
limited Franck—Hertz experiment. The anticlustering properties of an electron
stream, resulting from Coulomb repulsion, are transferred to the photons. The
direction of transfer is the inverse of that encountered in the usual photo-
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8 PHOTON BUNCHING AND ANTIBUNCHING [1,§2

detection process, in which the statistical character of the photons is imparted
to the photoelectrons. Any number of solid-state implementations of this
concept can be envisaged. Even a simple emitter such as a LED, driven by a
constant current source from a battery, will emit sub-Poisson photons. Con-
figurations in which the feedback signal is externally carried have also been
suggested. Excitation feedback appears to be the most useful scheme for
producing useful antibunched and sub-Poisson light.

In § 8 we consider the use of sub-Poisson light for carrying information, such
as in a direct-detection lightwave communication system. As a matter of
principle, the channel capacity of such a system, when based on the observation
of the photoevent point process, cannot be increased by the use of sub-Poisson
light. On the other hand, the channel capacity of a photon-counting system can
be increased by the use of such light. In this latter case, error performance will
either be degraded or enhanced by using sub-Poisson light, depending on where
the power constraint is placed. Sources of light considered for use in direct-
detection lightwave communications should be strongly sub-Poisson, exhibit a
large photon flux, be small in size, be fast, and produce a collimated output.

§ 2. Bunched Light from Independent Radiators

The fluctuation properties of light have traditionally been derived from a
thermodynamic study of the interacting radiators, atoms and molecules, and
the radiated field, treating the source as a continuum. It has been argued that
when large numbers of individual radiators are treated discretely, the central
limit theorem leads to chaotic behavior. When the number of radiators is small
and random, however, it becomes possible to observe deviations from the
results predicted by the central limit theorem, and to discern the dependence
on the source-number fluctuations.

The problem of studying the interaction of light with matter is often compli-
cated by the fact that the radiated light itself affects the radiating matter. This
is the case, for example, with black-body radiation, which results from thermo-
dynamic equilibrium between the radiation and matter in a cavity. It is also the
case with laser light in which the emitted photons are fed back to interact with
the atoms by the continuing processes of absorption and stimulated emission.

There are a number of problems in which the source and the ensuing
radiation may be separated, however. In these cases it is possible to find an
explicit relationship for the radiated field in terms of the characteristics of the
source. Consider the following examples: (1) a stream of electrons or photons
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I,§2] BUNCHED LIGHT FROM INDEPENDENT RADIATORS 9

impinges on a phosphorescent screen in which each electron (or photon)
produces a packet of radiation in the form of a cluster of photons. The emitted
radiation escapes and does not interact with the stream of incoming electrons.
(2) A laser beam illuminates a dilute solution of moving particles, resulting in
the emission of scattered light. In the first Born approximation an explicit
linear relation between the scattered field and the fluctuating density of the
medium can be established. The radiated light does not influence the density
itself.

In this section we discuss the bunching properties of light generated by a
collection of statistically independent radiators excited by an external source.
It is assumed that the emitted photons affect neither the excitation process nor
the emission process (i.e., there is no feedback from the emitted photons to the
source). Our approach makes use of the semiclassical theory of light; we begin
with a brief review of semiclassical coherence theory. The quantum treatment
is presented in § 3.

2.1. SEMICLASSICAL THEORY OF OPTICAL COHERENCE

The semiclassical theory of light treats the radiation field classically while
using the quantum theory to describe the interaction of the light with the atoms
of the detector. This method has proved to be adequate for a great many
purposes (see, for example, SARGENT, ScULLY and LAMB [1974] and
MANDEL [ 1976b]). In the confines of this theory, light is represented by means
of a random complex analytic signal ¥(x) [where x is the space-time point
(r, )], whose squared absolute value I(x) = | ¥'(x)|? is the optical intensity
(GABOR [1946], BoRN and WOLF [1980]). Light fluctuations are completely
characterized by the statistics of the stochastic process V(x). A hierarchy of
statistical moments and probability distribution functions of ¥(x) and I(x) for
different x are defined (see, for example, MANDEL and WOLF [1965], SALEH
[1978] and PERINA [1985]). At a space-time point x the most important
descriptor is the probability density P(I) of the intensity I = I(x),its mean (I ),
and its variance Var(l). The bracket {-) denotes ensemble averaging.

Fluctuations at two space—time points x, and x, are characterized by the
amplitude correlation function

GV(xy, x;) = (V*(x,) V(x2)) (2.1)
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10 PHOTON BUNCHING AND ANTIBUNCHING [1,§2

and the intensity correlation function (also called the second-order correlation
function)

GP(x), x,) = (I(x)1(x;)) , (2.2)
as well as their normalized versions

g0y, x3) = GV(xy, x,)/[<T(x))) (H(x2)>]'72, (2.3)

gB(xy, x) = G (xy, x)/[ (x> {L(x2)>]. (2.4)

These quantities are also known as the degrees of first- and second-order
coherence, respectively. The degrees of coherence satisfy the following
inequalities

0<|gP(xy, X))l <1, (2.5)
gP(x,x) > 1, (2.6)
gD(xy, x,) < [gP(xy, x))gP(x, x,)1'. (2.7

When light is detected by a photodetector such as a photomultiplier tube, the
photoelectron arrivals at different locations and times are describable by a
doubly stochastic Poisson point process (DSPP) (Cox [1955]), whose rate is
the stochastic function n/(x), where 7 is the quantum efficiency of the detector.
The probability of detecting a photoelectron within an incremental area A4 and
incremental time AT, surrounding the point x, is given by

nGV(x, x)AAAT = n{I(x)> AAAT,

whereas the probability of coincidence of two photoevents within incremental
areas A4 and time intervals AT, surrounding the space—time points x, and x,,
is given by n2G‘®(x,, x,) (AAAT)? (MANDEL [1959a, 1963], GAGLIARDI and
KARrp [1976], SALEH [1978], SHAPIRO [1985]). The normalized intensity
correlation function g®(x,, x,) therefore represents the joint probability of
occurrence of one photoevent detected at x, and another at x,, normalized by
the product of the marginal probabilities that a photoevent occurs at x, and that
a photoevent occurs at x,. The quantity g®(x,, x,) can be thought of as a
normalized photoevent coincidence rate. This approach is valid only in the
absence of feedback paths from the detector to the source. In the presence of
such paths, the photoelectron arrivals are described by a self-exciting point
process (SEPP) (SNYDER [1975]) rather than a DSPP (SHAPIRO, TEICH,
SALEH, KUMAR and SAPLAKOGLU [1986]).

The function g®(r, ¢, r, t + ) can be measured by means of a single detector
placed at position r, where the delayed coincidence rate of photoelectron arrival
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I,§ 2] BUNCHED LIGHT FROM INDEPENDENT RADIATORS 11

times is determined. The delay T may also be introduced optically by splitting
the light beam into two parts (using a beamsplitter) and monitoring the
coincidence of photoelectrons registered by two photodetectors. The function
g(r,, t,r,, t + 1) is determined by using two detectors, placed at r; and r,,
and measuring the delayed coincidence of photoelectrons registered by the two
detectors.

The number of photoelectrons » collected in a time interval T, by a detector
placed in an area 4, is a random number whose probability distribution is given
by (MANDEL [1959a, 1963])

p(n) = roP(W)[W" ",_ W]dW. 2.8)
0

n!

The counting distribution p(n) is readily seen to be the Poisson transform of
the probability density P(W), where

W= r;j I(x)dx.
D

The quantity W represents the total energy collected by the detector, multiplied
by the quantum efficiency #. D is the domain of integration, represented by

te[0, T], red.

The moments of # can be easily computed from the moments of W by the use
of well-known relations (MANDEL [1958], SALEH [1978)); in particular,

{ny =LW)> = nj GV(x,x)dx 2.9)
D
and
Var(n) = {n) + Var(W) (2.10)
from which

Var(n) = {n) + ”2J f (x,)) <I(x,)) [89(xy, x;) - 1] dx, dx, .
pDJp

2.11)
If A4 and T are sufficiently small, (n) = n4T{I(x)> and

Var(n) = (n) + (n)?[gP(x, x) - 1]. (2.12)
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12 PHOTON BUNCHING AND ANTIBUNCHING [1,§2

For the purpose of this presentation, the most important descriptors of the
photoelectron statistics are the normalized photocoincidence rate (i.e., the
degree of second-order coherence, or the normalized intensity correlation
function) g(®(x,, x,), and the photocount variance Var (n).

We first examine the case of coherent light, which may be regarded as a
standard for comparison with other sources of light.

2.1.1. Coherent light

Coherent light is characterized by a deterministic intensity I(x), and by
degrees of coherence whose absolute value is unity, that is,
|gM(x,, x,)| = gP(x,, x,) = 1. Photoevents occur independently, and their
coincidence is totally random. Photocounts have a Poisson distribution regard-
less of the counting time or the detector area. The Poisson distribution is
represented by

{n>" exp(-(n))

p(n) = , (2.13)
n!
which has a variance equal to the mean, that is,
Var(n) = (n) . (2.14)

The most important source of coherent light is an ideal single-mode, amplitude-
stabilized laser operated well above the threshold of oscillation (see, for
example, SARGENT, ScULLY and LaMB [1974]).

2.1.2. Poisson, super-Poisson, and sub-Poisson photocounts

The ratio between the variance and the mean of the photocounts » is an
important descriptor of the photocount statistics, and is known as the Fano
Sactor (FANO [1947])

Var(n)
(ny

In view of eq. (2.11) the Fano factor depends on the counting area and time
(represented by D). The quantity [F,(D) — 1] is sometimes referred to in the
literature as Q (MANDEL [1979]). For coherent light n is Poisson distributed
and F,,(D) = 1, independent of D. Light for which F (D) > 1 is said to exhibit
super-Poisson behavior in the domain D in which this inequality is obeyed.

F,(D) = (2.15)
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1,§2] BUNCHED LIGHT FROM INDEPENDENT RADIATORS 13

Such light suffers from fluctuations larger than those of the Poisson. When
F,(D) < 1, the photocounts are said to exhibit sub-Poisson behavior. In view
of eq. (2.10) it is readily apparent that F, (D) cannot fall below unity so that
sub-Poisson photocount statistics are not permitted within the framework of
the semiclassical theory of light. A DSSP always exhibits Poisson or super-
Poisson counts. However, sub-Poisson photocount statistics are admitted in
the quantum theory of light, as will become apparent in § 3.1.

2.1.3. Unbunched, bunched, and antibunched light

As indicated earlier, the coincidence rate g®(x,, x,) = 1 for coherent light,
signifying that the joint probability of coincidence of a photoevent at x, and
another at x, equals the product of the marginal probabilities of an event at each
point — that is, photoevents occur independently, or in total randomness.
Photoevents are then said to be unbunched. When g®(x,, x,) > 1, occurrences
of events at the two points are positively correlated, that is, when one occurs,
the other is more likely to occur. Alternatively, when g®(x,, x,) < 1, photo-
events are anticorrelated, that is, when one occurs, the other is less likely to
occur. In the limit when the two space—time points are very close to each other,
that is, when x; ~ x, = x, the normalized coincidence rate is measured by the
function g@(x, x). If g¢@(x, x) > 1, photoevents (at this point x) are said to be
bunched, that is, they have a tendency to be clustered together. Bunching of light
was experimentally illustrated in a number of early experiments (Twiss and
LITTLE [1959], ARECCHI, GATTI and SONA [1966], MORGAN and MANDEL
[1966]).

On the other hand, if g®(x, x) < 1, photoevents at this point are said to be
antibunched, that is, they tend to be separated. Within the framework of the
semiclassical theory, light cannot be antibunched. This is because g®(x, x) can
never be smaller than 1, as indicated by the inequality (2.6). However, as will
become apparent in § 3.1, the generation of antibunched light is possible within
the quantum theory (GLAUBER [ 1963a,b], MoLLow and GLAUBER [1967a,b],
STOLER [1974], KIMBLE and MANDEL [1976], CARMICHAEL and WALLS
[1976a,b], WALLS [1979], LouDpoN [1980, 1983], PauL [1982], PERINA
[1985]), and this phenomenon has indeed been observed in the laboratory
(KIMBLE, DAGENAIS and MANDEL [1977, 1978], DAGENAIS and MANDEL
[1978], RATEIKE, LEUCHS and WALTHER as cited in CRESSER, HAGER,
LeucHS, RATEIKE and WALTHER [1982]). As with sub-Poisson light, the
observation of antibunched light provides an example of nonclassical light
because it is, in fact, a manifestation of a quantum effect.
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An alternative definition of bunching and antibunching is related to the
behavior of the normalized coincidence rate g®(x, x + Ax), as a function of
the separation Ax, in the vicinity of a space—time point x. If the normalized
coincidence rate has its peak value when the two points coincide (Ax = 0) and
decreases when they are separated (Ax > 0), photoevents are more likely to
arrive together and the light is said to be bunched by this definition. If the
coincidence rate increases as Ax increases (positive derivative), then photo-
events are more likely to be separated than to arrive together; the light is then
said to be antibunched by this definition. In view of the inequality (2.7) the
coincidence rate must drop as the points are separated. Therefore, by this
definition as well, the semiclassical theory mandates that light cannot be
antibunched.

Several simple hypothetical normalized intensity correlation functions,
gP() =g, t;rt + t)vst, are illustrated in fig. 2.1. The function in
fig. 2.1a corresponds to bunched light. The other three functions represent
nonclassical light; figs. 2.1c and 2.1d represent antibunching according to the
definition based on the property g®(0) < 1, whereas figs. 2.1b and 2.1d
represent antibunching according to the positive-derivative definition. In this
chapter we use the property g®(x, x) < 1 to define antibunching.

The super- or sub-Poisson nature of a source of light is strongly related to
its bunched or antibunched characteristics (TEICH, SALEH and STOLER

(2)

g (a) g% (b)

1 ¥ 1 /\
T T

g% ©  ¢®m (d)

T

T

Fig. 2.1. Several hypothetical normalized intensity correlation functions g‘®)(z) versus the time
difference 7. This quantity is also referred to as the normalized second-order degree of coherence
or the normalized photoevent coincidence rate. The function in (a) corresponds to bunched light.
The other three functions represent nonclassical light; (c) and (d) represent antibunched light
according to the definition based on the property g2(0) < 1, whereas (b) and (d) represent
antibunched light according to the definition based on the positive derivative at 7= 0. In this
chapter we use the property g’(0) < 1 to define antibunching. (After JAKEMAN [1986]).
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[1983]). This is because the Fano factor F, (D) is directly related to the
normalized coincidence rate g‘¥(x,, x,) (see egs. 2.15 and 2.11),

F,MD)-1= —<n—>J J [gP(x,, x;) - 1] dx, dx,, (2.16)
D* Jplp

where, for simplicity, we have assumed that the average intensity {I(x)) is
constant within the detection domain D, and D = AT. Super- or sub-Poisson
behavior of counts within D depends on whether the normalized coincidence
rate at pairs of points within D is greater or smaller than unity. In the special
case when 4 and T are sufficiently small so that the domain D can be regarded
as a point, that is, D — 0, eq. (2.16) reduces to

[F,(0) - 1] = {(n) [gP(x,x) - 1], 2.17)

indicating that the bunching/antibunching and super/sub-Poisson attributes of
the light are in one-to-one correspondence (TEICH, SALEH and STOLER
[1983)).

2.1.4. Chaotic light

Another important model of light is chaotic (or thermal) light (MANDEL
[1959a, 1963]). It is characterized by an analytic signal V(x) that is a complex
Gaussian stochastic process of circular symmetry in the complex plane. At
every point x, its amplitude | V| has a Rayleigh distribution, whereas its
intensity I has an exponential distribution

-1
PI)=<KI>! —, 2.18
()= eXp(<1>> (2.18)
for which
Var(I) = (I)?. (2.19)

At pairs of points x, and x,, the normalized intensity and amplitude correlation
functions are related by the Siegert relation (SIEGERT [1954])

gP(xy,x;) =1+ [gP(x), x,) 2. (2.20)

The second term on the right-hand side of eq. (2.20) represents bunching. It is
responsible for the effect first observed by HANBURY-BROWN and Twiss
[1956a,b]; see HANBURY-BROWN [1974] for a review.
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Photoelectrons counted in an area 4 and time interval T have a distribution
that can be determined from eq. (2.8). If the time T and area A are sufficiently
small, the integrated intensity W also has an exponential distribution and its
Poisson transform yields the Bose-Einstein distribution,

=_ﬂn_ 2.21
PO = (2.21)

which is characterized by the variance
Var(n) = (n) + (n)2. 2.22)

The first term on the right-hand side of this equation was associated by
EINSTEIN [1909] with the photon (particle) nature of light, since it has a
Poisson particle-like variance (see eq. 2.14). At the same time he associated the
second term with the wavelike nature of light because of its exponential
wavelike variance (see eq.2.19). Equation (2.22) is known as Einstein’s
fluctuation formula for black-body radiation; it provided the first clear indica-
tion of wave-particle duality (WoLF [1979]).

In general, for arbitrary 4 and T, the photocount variance is given by a
generalized version of eq. (2.22) that is associated with the negative-binomial
rather than the Bose-Einstein distribution (MANDEL [1959a]). Using
eq. (2.11), and assuming that the average intensity {I(x)) is constant within
D, we obtain

<n>2
v = . . 3
ar(n) <n> + (22 )

The parameter M, which is known as the degrees-of-freedom parameter
(MANDEL [1963], PERINA [1985], SALEH [ 1978], GOODMAN [1985])), is given
by

1
M= — j |gP(xy, x,)[? dx, dx,, (2.24)
D?* JpJp
with D = AT. The corresponding Fano factor is

(n)
= _ .2
F,(D)=1+ (2.25)

For small 4 and T it is apparent that M = 1 and that the photocounting
distribution reverts to the Bose—Einstein distribution. Chaotic light is rendered
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super-Poisson by the second term comprising the wavelike noise. For large 4
(relative to the characteristic coherence area 4_) and/or large T (relative to the
characteristic coherence time 1), M is large so that eq.(2.23) reduces to
Var(n) = (n), as for the Poisson distribution. In this limit the wavelike
fluctuations are averaged out, leaving only the Poisson particle-like fluctuations
behind.

Light from a black-body radiator is well described by the thermal model (see,
for example, MANDEL and WOLF [1965]). Black-body radiation is a result of
the mutual thermal equilibrium between atoms and photons, in which emitted
photons interact with atoms by absorption and stimulated emission processes.
Feedback from the radiation to the atoms is an important element of the
equilibrium process. It will become apparent in § 2.2, however, that inde-
pendent emissions without feedback from radiation to source can also result
in radiation with the same properties as thermal light.

2.1.5. Chaotic, superchaotic, and subchaotic light
In view of the importance of chaotic light, we regard it as another benchmark
with which light sources can be compared. We coin the term superchaotic to

describe light for which g®(x, x) is greater than 2. Light for which g‘®(x, x)

NORMALIZED COINCIDENCE RATE  g2)(x,x)

0 1 2
- I ; (a)
<
ANTIBUNCHED & BUNCHED
&
A 2
o >
g
SUB-CHAQTIC & SUPER-CHAOTIC

COUNT FANO FACTOR F,(D)

0
1
I

2
} )

SUPER-POISSON

SUB-POISSON

NOSSIOd

Fig. 2.2. (a) Regions and boundaries of the normalized coincidence rate g@®)(x, x) that define

bunched/antibunched and superchaotic/subchaotic behavior for photoevents at the space-time

point x. (b) Regions and boundaries of the Fano factor F, (D) that define Poisson, super-Poisson,

and sub-Poisson behavior for photoevents counted by a detector of space-time volume D (area
A and time interval T').
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is smaller than 2 is referred to as subchaotic. For photoevents counted by a small
detector (D — 0), these regions correspond to F,(0) being greater or smaller
than 1 + {n), respectively. Superchaotic light will then obviously be super-
Poisson, but subchaotic light may be either sub- or super-Poisson.

Figure 2.2 portrays a schematic illustration of the aforedefined regions and
boundaries of the normalized coincidence rate g‘?(x, x) and the count Fano
factor F, (D).

Representative examples for three different measures of the statistical
properties of a light source are illustrated in fig. 2.3: the normalized intensity
correlation function (normalized photoevent coincidence rate) g®(t) versus
the time difference 1, the inter-event-time probability density P(t) versus the
inter-event time 7, and the photoevent counting probability distribution p(n)

PHOTON STATISTICS

g ()
COINCIDENCE ¥
1 [ (e =ce=-m==
ol Ll o
AN —b — 4 ,b
INTER-EVENT
TIME

THINEEE

COUNTING

—— Coherent
Thermal

____________ Antibunched
Sub-Poisson

Fig. 2.3. Representative examples for three measures of the statistical properties of a light source:

the normalized intensity correlation function (normalized photoevent coincidence rate) g‘?(t)

versus the time difference 1, the inter-event time probability density function P(t) versus the

inter-event time 1, and the photon-counting probability distribution p(n ) versus the count number

n. The thin solid curve, the thick solid curve, and the dotted curve correspond to coherent,
thermal (chaotic), and nonclassical light, respectively.
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versus the count number #. The thin solid curve, thick solid curve, and dotted
curve correspond to coherent, thermal, and nonclassical light, respectively.

2.1.6. Inter-event time statistics

As indicated in the Introduction, there are many measures that can be used
to characterize nonclassical light. One measure that has received relatively little
attention in the literature is the inter-event time probability density P(1) versus
7 (SALEH [1978]), illustrated in fig. 2.3.

A measure of this distribution that is analogous to the Fano factor is the
coefficient of variation ¢, which is defined as

__Var@12
(>

where Var(r) and (1) are the variance and mean of the inter-event time
probability density, respectively. Coherent light, associated with the Poisson
distribution, displays an exponential inter-event time probability density
function, as is well known (Cox [1962], PARZEN [1962]), so that ¢ = 1. For
chaotic light ¢ > 1 (SALEH [1978]), as is g¥(x, x) and F, (D). The distribution
P(7)in this case is said to be overdispersed relative to the exponential (for which
¢ = 1). Within the framework of the semiclassical theory, light cannot be
underdispersed relative to the exponential (i.e., it cannot exhibit ¢ < 1). It will
become apparent in § 3, however, that underdispersed light is possible within
the quantum theory.

, (2.26)

2.2. SUPERPOSITION OF INDEPENDENT EMISSIONS

Many common sources of radiation comprise a number of radiators that
radiate independently. Consider N such radiators (as illustrated schematically

Fig. 2.4. Schematic representation of the amplitudes of a number of statistically independent
stationary emissions.
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in fig. 2.4). This model of light is suitable for a great variety of situations,
including radiation from independent luminescent or incandescent points of a
large source, as well as light from independent scatterers such as encountered
in speckle (JAKEMAN [1980al]).

The complex analytic signal of the total radiation can then be expressed as
the sum of N statistically independent contributions, viz.,

V(x) = kfl Vi(x). 2.27)

It will be useful to relate the statistics of the total radiation V(x) to the
statistics of the individual emissions {¥,(x)}. We first consider the case in
which ¥ is deterministic, we then extend the results to permit N to be random
in the following section.

Confining our attention to one space—time point x = (r, t), we write eq. (2.27)
in the form

N
v="Y ¥, (2.28)
k=1

where V = V(x) and V, = V,(x). For simplicity we assume that the complex
random variables ¥, have circular symmetry in the complex plane. (This applies
when the real and imaginary parts of each of the random variables ¥V, are
independent and identically distributed, or when the phase is uniformly
distributed.) It follows that the mean values, as well as all odd-order moments,
of V, are zero. It also follows that the sum V(x) is circularly symmetrical.

The determination of the statistics of the sum V of a set of statistically
independent phasors V,, whose phases are uniformly distributed, is the same
as the well-known random walk problem. Its solution dates back to Lord
Rayleigh. More recent work (in the context of light scattering) includes
contributions by TRouP [1965], MITCHELL [1968], CHEN and TARTAGLIA
[1972], SCHAEFER and PUSEY [1972], PUSEY, SCHAEFER and KOPPEL
[1974], BARAKAT [1974, 1976], BARAKAT and BLAKE [1976], SCHAEFER
[1975], JAKEMAN and PUSEY [1976], and O’DoNNELL [1982].

The moments of ¥ may be related to those of ¥, by the straightforward (but
rather lengthy) use of eq. (2.28) in the definition of the moments, exploiting the
property of statistical independence and the fact that the odd moments vanish.
The simplest moments of / = |V |? are

Iy = k; Ly, (2.29)
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Var(I) = (I>*[1 + 9], (2.30)
where
Ik = |Vk|2 ’
7= ;rin, (2.31)
>
= k7 2.32
Ty ay ( )
[Var(1,) - <{I;>?]
= ) 2.33)
* Ly (

The parameters y, and y represent deviations from chaotic behavior for the kth
emission and for the total field, respectively (see eq. 2.19). The symbol y (with
different modifiers) will be used to denote deviations from chaotic properties
throughout this chapter.

We now move on to two space—time points x,, x,. The correlation functions
of the total field may be related to the correlation functions of the individual
emissions by the following relations, which can be obtained by systematic
algebraic manipulations using the assumptions of circular symmetry and
statistical independence of the different emissions:

g(l)(xns xp) = Z [re(x;) rk(xz)]llzg(kl)(xl’ x,), (2.34)
k
g(Z)(xl’ x,)=1+ |g(l)(x1’ x2)|2 + (xy, X5), (2.35)
where
yxy, X5) = Z rk(xl) r(x3) yi(xq, x,), (2.36)
k
Yk(xl’ xl) = g(kZ)(xh xz) -1- |g(kl)(x17 x2)|2 ’ (2.37)
and
(L)
) = } 2.38)
W @y (

Here g1(x,, x,) and g¥(x,, x,) are the degrees of first-order coherence and
degrees of second-order coherence for the kth emission, respectively. The
functions y(x,, x,) and y,(x,, x,) represent deviations from chaotic behavior
of the superposed light and of the kth emission, respectively (see eq. 2.20).
These functions may attain positive or negative values.
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Although it is difficult to obtain expressions for the photocount probability
distribution for a detector of arbitrary area and arbitrary counting time, an
expression for the photocount variance can be easily obtained by use of
eq. (2.11). The corresponding Fano factor turns out to be

F,D) =1 +%€}+ {nd7y, (2.39)

where 1/M is given by eq. (2.24), and 7 is determined from a similar expression:

1

y=- J Wxy, xz) dx dx, . (2.40)
D* JplJp

The term {n)7 represents the excess nonchaotic contribution to the Fano
factor. For small Tand A (i.e., D —-0), % = y = y(x, x). Since M = 1 we then
have

F,(0)=1+ {(n) +<{n)dy. (2.41)
2.2.1. Chaotic emissions

If the individual emissions are chaotic, it is evident from egs. (2.31), (2.33),
(2.36) and (2.37) that y,(x,, x,), y(x,, x;), and y vanish; furthermore

Var(I) = (1Y%, g@(x;,x) =1+ gP(x, x,)1%,

1+
FD)=1+-"2,

indicating that the resultant total field itself becomes chaotic. This is not
surprising. When the individual emissions are Gaussian (i.e., ¥, are Gaussian),
the sum V is also Gaussian (because the sum of Gaussian random variables
is Gaussian).

2.2.2. Statistically identical emissions

Assume now that the emissions are statistically identical and stationary. An
individual emission is described by the mean and variance of its intensity, (/, )
and Var(l,), and its correlation functions g{"’(x,, x,) and g{?(x,, x,), where
the subscript 0 denotes an individual emission. The deviation from chaotic
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behavior is then described by the parameters

[Var(l,) — <{Iy>?]
- 2.42
o RS (2.42)
P(xy, X3) = ggz)(x,,xz) -1- |g§)])(xlu x2)|2 , (2.43)
1
Yo = 0 J; J.D o(X1, X2) dx; dx; . (2.44)

If « denotes the number of photocounts associated with an individual emission
in a region D, its mean is

a) =nTAy ) , (2.45)

whereas its Fano factor is

F.D) =1+ 4 ¢ay7,, (2.46)
M
where
1
M~ '=— J j |89 (x,, x5)|% dx, dx, . (2.47)
D? JpJp

The corresponding parameters for the superposed radiation are obtained
from eqgs. (2.29)—(2.33):

I =N,
Var(l) = <1>2[1 + }%’] (2.48)
gy, x;) = gP(x), %), (2.49)
g(?')(xuxz) =1+ |g(”(x,,x2)|2 + %Yo(":hxz) s (2.50)
{ny (n)%,
F(D)=1+"2 4% . .
2(D)=1+ Y + v (2.51)

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



24 PHOTON BUNCHING AND ANTIBUNCHING [L§2

A comparison of these properties with those of chaotic light leads us to
observe that the deviation from chaotic behavior is inversely proportional to
the number N of superposed emissions. As N — oo, the superposed light tends
toward chaotic behavior whatever the statistics of the original emissions. This
too, in fact, is expected as a result of the central limit theorem (MIDDLETON
[1967a,b]). A theory of chaotic radiation has been constructed in terms of
superpositions of discrete independent radiators (BERAN and PARRENT
[1964], KARP, GAGLIARDI and REED [1968], LoUDON [1983]). Light emitted
by a collision-broadened source has been modeled as a wave broken into
discrete sections, each with fixed phase. The phase is assumed to change
randomly when a collision occurs, and the intercollision times are taken to be
random (exponentially distributed). In the limit of a large number of collisions,
the result has been shown to approach chaotic behavior (LoUDON [1983]).

The terms (1/N)y,(x,, x,) and (1/N)7y,{n) represent an excess bunching
and an excess Fano factor above and beyond the chaotic values. These terms
may also be negative, resulting in a reduction of bunching below the chaotic
level, as will become apparent in the examples below. Deviations from chaotic
behavior can be observed when N is not large (FORRESTER [1972], KARP
[1975], TEiCH and SALEH [1981a], SALEH and TEICH [1982], SALEH, STOLER
and TEICH [1983]).

Equation (2.51) can also be written in terms of the Fano factor of the
photoevents for an independent emission,

IO _p- S
FuD)- 1=~ 2 =Fo(D) - 1- 2, (2.52)

indicating that the excess Fano factor (above chaotic behavior) for the total
radiation is equal to that for a single emission. When the degrees-of-freedom
parameter M is sufficiently large, as is the case for a large detector area 4 and/or
a large counting time T, so that the wave interference terms (n) /M and (a) /M
are negligible, we obtain

F, (D)= F(D), (2.53)

that is, the Fano factor for the total photocount is approximately equal 1o the Fano
Sactor for the single emission count. This result is obtained by simply treating
photoevents as particles, arguing that the total number of photoevents is simply
the sum of N independent numbers «,, a,,..., o, of photons associated with
the N emissions, each of mean (a) and Fano factor F_(D).
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The way in which the probability distributions P(/) and p(r) approach the
distributions associated with chaotic light, as N increases, has been studied by
a number of authors (for a review see BARAKAT and BLAKE [1980]).

Example: Identical emissions of deterministic intensity. When the individual
emissions have deterministic intensities, we have

1g9(x1, x2)| = gP(x,, %) = 1,

Yo, X2) = -1, Yo=7%=-1,

M=1, F,D)=1.
The total radiation exhibits the following properties:

_(Iy? _1)
Var(I) = (I (1 ¥ (2.54)
1
g2(x;,x,) =2 - v’ (2.55)
1
= -—1. .56
F,(D)=1+ (n) (1 N) (2.56)

It is evident that the superposed light is subchaotic. For N> 1, g@(x,, x,) > 1
and F,(D)> 1, indicating that the superposed light remains bunched and
super-Poisson (as expected for semiclassically described light). Again,
egs. (2.19) and (2.20) are reproduced in the limit of large N, and chaotic
behavior results.

2.3. NUMBER FLUCTUATIONS

When the number of emissions is itself random, the statistical averages
considered in § 2.2 should be regarded as conditioned on a fixed value of N.
A subsequent average over the fluctuations of N is then required to yield the
overall averages. This problem has been studied by a number of authors using
different distributions of N. The model is applicable to radiation emitted from
an ensemble of atoms that are excited at random (FORRESTER [1972], KARP,
GAGLIARDI and REED [1968], KARrP [1975]) and to light scattering from a
random number of scatterers (JAKEMAN [1980a]).
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2.3.1. Poisson number fluctuations

We assume that the number of statistically identical emissions is Poisson
distributed with mean (N},

(NN exp(= (NY) 257

Py = N

This problem has been studied by BARAKAT and BLAKE [1976], PUSEY,
ScHAEFER and KoppeL [1974], SCHAEFER and PuUSEy [1972], and
SCHAEFER [1975]. Averaging the statistical moments derived in § 2.2.2 over
the fluctuations of N gives rise to

1
g‘z)(xl,xz) =1+ |g(l)(x1a xz),2 + mgg)(xl! x;), (2.38)
F,D)=1+ <—Anl> + S(”—;% , (2.59)
where
I,= # j -[ g@P(x, x,) dx, dx, . (2.60)
DJD

Equation (2.59) can also be written in the form

F(D)=1+ <—A’;> +[F (D) -1+ {ad]. (2.61)

The excess coincidence rate above that for chaotic light [the third term of
eq.(2.58)] is proportional to the normalized coincidence rate for a single
emission, which is always nonnegative. The light is therefore superchaotic. This
is to be compared with the deterministic-N case, for which the excess
coincidence rate is proportional to the excess coincidence rate of an individual
emission (eq. 2.50), a term that may be positive or negative. When the number
of emitters N is Poisson distributed, the light is superchaotic; when N is deterministic,
the light is merely bunched.

We now compare the Poisson-N photocount Fano factor, given in egs.
(2.59)-(2.61), with the deterministic-N Fano factor, given in egs. (2.51) and
(2.52). The positive sign in the right-most term in eq. (2.61) reflects an increased
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Fano factor resulting from randomness in the number of emissions. This
distinction is important inasmuch as N is random for most natural sources of
light.

Example: Identical emissions of deterministic intensity. When the individual
emissions have deterministic intensities, as in the example considered in § 2.2.2.,
we have

1
gx,x,)=2+—— (2.62)

(N’

1
FD)=1+<{n>{1+——]). 2.63
(D) {n) < < N>) (2.63)
These results should be compared with those presented in egs. (2.55) and
(2.56). The light is obviously superchaotic and the photocounts are super-
Poisson.

As the mean number of emissions (N) — o0, egs.(2.62) and (2.63)
approach their chaotic limits. It is of interest to note that this asymptotic limit,
which applies when N is Poisson, does not necessarily apply for numbers of
emissions governed by other distributions. The case where N is distributed in
accordance with the negative-binomial (rather than the Poisson) distribution,
for example, has been considered in some detail (JAKEMAN and PUSEY
[1978]). If the intensity of the individual emissions is assumed to fall off
in proportion to 1/{ N}, then in the limit {( N} — oo the amplitude of the total
field is governed by a distribution proportional to a modified Bessel function
of the second kind (the so-called K-distribution), rather than by the Rayleigh
distribution as for chaotic light, regardiess of the distribution of the individual
emissions (JAKEMAN and PUSEY [1976, 1978], JAKEMAN [1980a,b]). This
model has been applied to the study of non-Rayleigh scattering from diffusers
by many authors (e.g., HOENDERS, JAKEMAN, BALTES and STEINLE [1979],
EBELING [1980], JAKEMAN [1982, 1983], JAKEMAN and HOENDERS {1982],
O’DONNELL [ 1982], OLIVER [ 1984]). The K-distribution has also been applied
to the study of laser light propagating through the atmosphere (PARRY and
PuUsEY [1979], ANDREWS and PHILLIPS {1986]).

2.4. EMISSIONS INITIATED AT POISSON TIMES

The independent-radiator model considered in § 2.2 and § 2.3 was formu-
lated under the assumption that the number of radiators is a random variable
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Fig. 2.5. Schematic representation of the amplitudes {¥,(¢)} of a sequence of short-duration

emissions initiated at times {¢;,%;, ..., !, ... } described by a Poisson point process. The function

N() is a stochastic counting process representing the number of radiators that have begun to
radiate prior to time .

N (N deterministic is a special case). This model is not applicable when the
number of active radiators is a random process, that is, a stochastic function
of time N(f). We now proceed to this situation.

Consider radiation formed by a sequence of short-duration emissions
initiated at the times {¢,,¢,,..., %, ... }. Let N(f) represent the number of
radiators that begin to radiate prior to time ¢, as illustrated in fig. 2.5. The
function N(?) represents a stochastic counting process with jumps at the times
{t;,t5, ..., b, .. }, where 2, is the time at which the kth emission is initiated.
We limit ourselves to the case for which N(f) is a homogeneous Poisson
counting process of rate u (events per second). We further assume that the
emissions are random, statistically independent, and identically distributed
(except for the fact that they begin at different times).

The complex analytic signal of the total field can be written as the sum

N{Z)

Vi)=Y Virt-1), (2.64)
k= — o0
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where V,(r, t — 1) represents the kth emission. Each individual emission is
assumed to have known mean intensity {/Iy(r, )), amplitude correlation
function G{’(r,, t,, 1», t,), and intensity correlation function G@(r,, ¢,, 13, 1,).
We wish to determine the statistics of the overall radiation, particularly the
correlation functions G)(r,, r,, 1) and G (r,, r,, 7). It is important to note
that although the individual emissions are nonstationary, the overall field is
stationary because of the stationarity of the underlying emission-time point
process. This is why the correlation functions of the total field are
written as functions of t = ¢, — ¢,, rather than functions of ¢, and ¢, separately.

The function V(r, ) can be regarded as a filtered marked stationary Poisson
process (SNYDER [1975]). Using the properties of shot-noise processes (RICE
[1944], GILBERT and PoLLAK [1960], PArouLIs [1984]), the total radiation
can be shown to have the following statistical properties (SALEH, STOLER and
TEeICH [1983]):

r, 1)) = #J {o(r 1)) dr, (2.65)
0
GO(ry, 1y, 1) = 1 j GP(ry, b1y, t + 1) de, (2.66)
0
g(z)(rh r2$ T) = l + |g(1)(r1’ r2; T)|2 + )’("1; r29 T) ] (2'67)

where the excess normalized coincidence rate

uj GP(ri, byt + 1) dt
0

1572, = 2.68
T T TN (2:68)

is now given by an average over the normalized coincidence rate of an
individual emission. The photoevents have a normalized coincidence rate given

by eq. (2.67) and a photocount Fano factor, determined by the use of egs. (2.11)
and (2.15), which is

F,(D) =1 +S:7>+ (n}7, (2.69)

where 7 is the average of y(r,, r,, ) as given by eq. (2.40). The result is similar
to that obtained for the addition of a Poisson number of identical emissions
(see § 2.3.1).
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2.4.1. Quasi-coherent emissions

As a particular example, we assume that each emission is represented as a
pulse of deterministic field with random phase. For simplicity the spatial
dependence is ignored by limiting our interest to a single point r. The individual
emissions may then be expressed in the form

V. (t — ) = Vo(t) exp(it,) . (2.70)

The phases 6, are drawn from a uniform distribution. This is the model used
by SALEH, STOLER and TEICH [ 1983, Sec. IIA]. The results are

@)y = uj Iy(r)dt, (2.71)
0]

GI(1) = j ” VD) Vot + 1) de, (2.72)
0]

gP(1) =1+ |gV(0)% + —g‘z’(f) (2.73)

K,
where
[ j - 10(,)d,]2
= (2.74)
J I2(H) dt

The quantity 1, is the characteristic decay time of the intensity of an individual
emission, 1,(t) = | V,(t)|2. The quantity
-1_0("-')
1,(0)

depends on the normalized time-averaged autocorrelation function of the
intensity of an individual emission

g@(1) = (2.75)

To(7) = Jw I,@) I,(¢ + 1) dt. (2.76)
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Comparing egs. (2.73) and (2.58) leads us to see that the parameter u1, can
be associated with the average number of independent emissions overlapping
at a given time, that is, (N) = ut,. This interpretation is sensible in view of
the strong underlying similarity between the two models, although in the case
considered here the contributions are not strictly identical because the emis-
sions are initiated at different times.

The radiation emanating from such a process is superchaotic (as is the
radiation modeled in § 2.3). In addition to the usual chaotic fluctuations
manifested by the first two terms on the right-hand side of eq. (2.73), the third
term represents excess bunching. It is directly proportional to g{*(t) and
inversely proportional to ut,, the average number of emissions per emission
lifetime. The third term therefore becomes significant when put, < 1, that is,
when the emissions are sparse and seldom overlap. This result is similar to that
obtained by LouDoON [1980]. On the other hand, when p1, > 1, that is, when
the emissions overlap strongly, V(¢) approaches the complex Gaussian process
that is characteristic of a chaotic field (PICINBONO, BENDJABALLAH and
PouGET [1970]); in this case the third term becomes negligible and the results
for chaotic light apply (CARMICHAEL and WALLS [1976a,b}).

We now examine the photocounting properties of such light, assuming a
point detector with counting time 7, quantum efficiency 1, and incremental area
AA (which is here taken to be unity for convenience). The mean photon count
is

(n) =pcapT, (2.77)

where

(ay =1 j B Iy(t) de (2.78)
0

can be interpreted as the average number of photocounts per emission, and uT
is the average number of emissions initiated within 7. The Fano factor, which
depends on the counting time T, can be written in the form

F(Ty=1+302 4 0T (2.79)
M 7L
where
I =3JT(1 —l)ggﬂ(r)dr. (2.80)
1l T
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Fig. 2.6. Dependence of the degrees-of-freedom parameters M and .# on the ratio T/z, for

exponentially decaying coherent emissions. M is the usual degrees-of-freedom parameter for

chaotic light, whereas .# is the special degrees-of-freedom parameter for shot-noise light. The

dependences of M and . on the ratio T/, are almost symmetrically opposite. The dashed lines
represent unity slope. (After SALEH, STOLER and TEICH [1983].)

It is also convenient to write it in the form

S 2.8
F.(T) 1+M+Jl’ (2.81)

where .4 ~' = I,T/1,, from which

ﬂ-1=3r(1—1)@dz. (2.82)
Tp 0 T 10(0)

It is now apparent that the third term on the right-hand side of the expression
for the Fano factor in eq. (2.81) is independent of the mean count (n). It is
therefore of the same nature as the first term; both represent particle-like noise
as opposed to the wavelike noise represent by the second term. Further
evidence of this is centered on the degrees-of-freedom parameters.

The parameter M in eq. (2.81) is the usual degrees-of-freedom parameter for
chaotic light with amplitude correlation function g¢’(t), whereas the parameter
# in this equation is a special degrees-of-freedom parameter that has been
recently introduced to describe light whose intensity fluctuates in accordance
with a shot-noise random process (TEICH and SALEH [1981a], SALEH and
TEICH [1982], SALEH, STOLER and TEICH [1983]). These parameters are
displayed in fig. 2.6 for exponentially decaying coherent emissions. The
dependences of M and .# on the ratio T/1, are almost symmetrically opposite.
When T < 1,, M ~ 1 while # = 7,/T» 1. As T/ 1, increases, M increases while
M decreases. In the limit 7> 7,, M~ T/t,> | and 4/ ~ 1.
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The value of the ratio 7/1, affects the Fano factor dramatically. For T < 1,,,
T
F,,(T)=l+(n>+@=1+(n>+(a>—. (2.83)
T, T,
As T/tv,-»0, F,(T) approaches 1+ (n), which characterizes the
Bose-Einstein distribution. On the other hand, for 7> 1,

FAT)=1+<a), -(2.84)

which characterizes the Neyman Type-A (NTA) distribution. This distribution
is obtained when each of a Poisson-distributed number of primary events
contributes a Poisson-distributed number of secondary events and the total
number of events are counted (TEICH [ 1981], SALEH and TEICH [1982, 1983],
SALEH, STOLER and TEICH [ 1983]). In our case the primary events correspond
to the emissions and the secondary events correspond to the photoevents
associated with each emission. The processes associated with light of this
nature (shot-noise light), as well as the ensuing photocounting distributions and
pulse-interval distributions, have been studied in great detail in a number of
papers (TEICH and SALEH [1981a,b], SALEH, TAvoLAccT and TEICH [1981],
SALEH and TEICH [ 1982, 1983], MaTsuoO, TEICH and SALEH [1983], SALEH,
StoLER and TEIcH [1983], TEICH and SALEH [1987]).

Spatial effects have not been considered in this presentation. A more general
treatment has been provided by TEICH, SALEH and PERINA [1984], in which
each individual emission is assumed to originate at a random position within
a source of finite volume. This model leads to generalized versions of egs.
(2.65)-(2.69). Expressions have been derived for the photoevent coincidence
rates at arbitrary points located in a detection plane that is at a specified
distance from the source, as well as the photocount Fano factor for a detector
of arbitrary area. The calculations lead naturally to the introduction of a spatial
degrees-of-freedom parameter M,, which plays a role analogous to the
temporal degrees-of-freedom parameter M in determining both the coincidence
rate and the Fano factor.

§ 3. Antibunched Light from Independent Radiators

In § 2 we demonstrated that light composed of many independent emissions
tends toward chaotic behavior; the photoevents are bunched and the photo-
counts are super-Poisson. The individual emissions themselves were con-
strained to be either unbunched or bunched, since the semiclassical theory of
light does not admit antibunched emissions.
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In this section we address the same situations — a superposition of identical
independent emissions, and a superposition of identical independent emissions
initiated at random times. But we now use a quantum formulation of the
problem, which allows the individual emissions to be antibunched and sub-
Poisson. When the emission times are Poisson, we will see that the superposed
radiation is again bunched and super-Poisson, approaching chaotic behavior
when the emissions overlap strongly. We will conclude that sub-Poisson light
cannot be generated by a collection of independent emissions initiated at Poisson
times, even if the emissions are deterministic. The statistics of the times at which
the emissions are initiated must be rendered sub-Poisson in order to generate
antibunched and/or sub-Poisson light.

3.1. QUANTUM THEORY OF OPTICAL COHERENCE: A BRIEF REVIEW

In the quantum theory of coherence (GLAUBER [1963a,b], LoUDON [1983],
PERINA [1985]), amplitude and intensity correlation functions are defined in
terms of the positive- and negative-frequency parts of the optical electric field
operator, E* (x) and E- (x), respectively. The first- and second-order
correlation functions (or coherence functions) correspond to the quantum-
mechanical expectation values

GO (xy, x) = Tr{E~ (x,) E*(x,)} @3.1)
GP(x,,x,) = Tr{BE~ (x)) E~(x,) E* (x,) E* (x,)}, 3.2)

respectively. Here ¢ is the density operator of the field. Normalized versions
of these functions, g("(x,, x,) and g®(x,, x,), are defined in analogy with the
classical theory (see eqs. 2.3 and 2.4) and these go by the same names.

The probability distribution of the number of photon counts collected by a
detector of area 4, in the time interval T, is (KELLEY and KLEINER [1964], LaX
and ZWANZIGER[1973], SHAPIRO, YUEN and MACHADO MATA [1979], YUEN
and SHAPIRO [1980], SHAPIRO [1985])

W™ exp(- W), >

n!

p(n) = < (3.3)

where

W= ”J E-(x) E*(x)dx.
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Here : : denotes normal ordering and time-ordering (LouponN [1983]). D
again denotes the region re A and te[0, T], and # denotes the detector
quantum efficiency. The photon-count mean and Fano factor (ratio of count
variance to count mean) can be obtained from the coherence functions by use
of relations that are identical to those of the semiclassical theory, egs. (2.9) and
(2.16), which we repeat here for convenience:

(n) = nj GM(x, x)dx, (3.4)
D

F,(D) - 1 =<Dl>f j [£®(x,, 1) - 1] dx, dxy, (3.5)
DJD

where D = AT. We have assumed that {/(x)) is constant within D. When the
detector area and counting time are sufficiently small (D — 0), this reduces to

[F,(0) - 1] = (n>[gP(x, %) - 1], (3.6)

which is identical with eq. (2.17). Again, we assume that there are no feedback
paths from detector to source. A quantum theory of detection that is valid in
the presence of such paths has recently been developed (SHAPIRO,
SAPLAKOGLU, Ho, KUMAR, SALEH and TEIcH [1987]).

The difference between the semiclassical and quantum results lies in the
procedures used to calculate G(x,, x,) and G®(x,, x,) and in their physical
interpretation. As in the semiclassical theory, nG‘V(x, x)ATAA represents the
probability that a photoevent is detected within an incremental area A4 and
incremental time AT surrounding a point x. Likewise, as discussed in § 2.1,
g¥(x,, x,) represents the normalized coincidence rate for two photoevents at
x, and x,. However, in the quantum theory, g‘(x,, x,) is no longer defined
or interpreted as a normalized statistical correlation function of the optical
intensity. It is therefore no longer bounded by the inequalities satisfied by
classical correlation functions, viz. egs. (2.6) and (2.7). The function g‘®(x, x)
can dip below unity, thus violating eq. (2.6). Antibunched photon registrations
are consequently possible (see the reviews of LoupoN [1980] and PAuL
[1982]). The correlation function is required to be nonnegative, however
(GLAUBER [1963a)). If g®)(x,, x,) falls below unity over some subregion of D,
the integral in eq. (3.5) can become negative and result in a photon-count Fano
factor below unity, that is, sub-Poisson photocounts. Photon antibunching and
sub-Poisson photon counting statistics are among a handful of optical
phenomena that require the full quantum theory of light for an explanation.
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In the semiclassical theory, when there is no feedback from the detector to
the source, photoevents occur in accordance with a doubly stochastic Poisson
point process. In the quantum theory this is no longer the case. Photoevents
follow a more general self-exciting point process (SHAPIRO [ 1985]), which may
be characterized by its multicoincidence rates (see, for example, PERINA
[1985]).

3.2. SUPERPOSITION OF INDEPENDENT EMISSIONS

An optical field generated by N independent emissions may be described by
the superposition

EA+(x)= ZEA,;‘(x), 3.7
k

where £ o (x) is the positive-frequency part of the field operator for the kth
emission. This, in turn, may be written in terms of the annihilation operators
a, of the different radiation modes as

Ef(x) =Y Vu@)a,. (3.8)

The functions {¥,/(x)} are assumed to be random classical functions with
V., (x) and V,.(x) (corresponding to the kth and k’th emissions) taken to be
statistically independent. This defines what we mean by independent emissions.
Therefore, in addition to the usual quantum-mechanical randomness embedded
in the properties of the operators {a,}, there is a distinct classical
randomness that is associated with the stochastic functions {¥V,(x)}.

When determining the optical coherence functions, we must average over
both kinds of randomness; therefore,

GWO(xy, x,) = (Tr{E~(x)) E* (1)}, 3.9)

GO(x),x,) = (Tr{QE~(x) E- () E* (1,)E* (x))}) (3.10)

where { - ) designates an average over the fluctuations of the classical functions
V,,(x). In the following we assume that the {¥,,(x)} have zero mean, that is,
we restrict ourselves to states for which (Tr{gE; (x)}> =0, so that the
mean values of optical fields vanish. This restriction is convenient in simplifying
the algebraic form of the results.

We are now in a position to determine the coincidence rate and Fano factor
for photoevents associated with the total field. It can be shown that the
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coherence functions of the total field G"(x,, x,) and G‘?(x,, x,) are related
to those of the individual emissions G{"(x,, x,) and G{*(x,, x,) by the same
formulas that we reported in § 2.2 using the classical formulation. This is not
surprising because those relations were derived with the benefit of only classical
arguments. For identical emissions these relations are as follows (see egs. 2.43,
2.44, 2.49-2.52):

gM(xy, x5) = g90(x, x,)

§P (o1, 12) = 1+ 1800, 507 + - doen 52, (3.11)
(n > <">)’o
Fo(D) = 1+= 2+ 22 (3.12)
<n> K%
D - .
Y, [F (D) - o ], (3.13)
where
Yolxy, x2) = gP(xy, %) - 1 — |g(”(x,,x2)|2, (3.14)
—bl—zj J Yo%y, X5) dx; dx, . (3.15)
pJp

The quantity M is the degrees-of-freedom parameter in eq. (2.47) and (a) is
the mean number of photoevents associated with an individual emission.
Equation (3.11) gives

gP(x, x) =2+ — [g‘z’(x. x)-2],

which was also obtained by LouDoON [1980] and applied to radiation from a
few atoms in resonance fluorescence.

When using the preceding relations, the coherence functions of the individual
emissions, g&"(x,, x,) and g{(x,, x,), must be calculated by using quantum
rules.
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3.2.1. Quasi-coherent single-mode emissions

Consider a simple example in which the individual identical emissions are
single-mode emissions (TITULAER and GLAUBER [1965]) characterized by

E; (x) = Vo(x) exp(if,) 4 (3.16)

where V,(x) is an arbitrary deterministic function, the @, are statistically
independent and uniformly distributed random phases, and & is the
annihilation operator for that mode.

The individual emissions then have the following statistical averages:

Ig‘o”(x,, x)=1,
8(02)(-'1’-‘2) =2+, 3.17)

Yo%) = %, Po = Yoo M=1,
F,(D) =1+ (a) + pa), (3.18)

where (a) = (n)/N is the mean number of photoevents per emission and
-2 (3.19)

is a parameter that depends on the quantum state of the individual emissions
(a is the annihilation operator). Note that all averages are independent of x,
and x, because of the single-mode assumption.

It follows that the total radiation has the following properties

1
g2y, %) =2+ — 1, (3.20)
N
1
F,(D) =1+ <n}) +N)’o<”>

=1+ (ny +[F,D)-1-<ad]=F, D)+ (N-1)<a}.
3.21)

Again, the deviation from chaotic behavior is inversely proportional to the
number of emissions N and is directly proportional to the deviation of the Fano
factor for the individual emissions from the chaotic value. If the individual
emissions are themselves chaotic [y, = 0or F (D) = 1 + (a)], the overall
light is chaotic. If the individual emissions are subchaotic but super-Poisson
[-1<y,<0or1<F/D)], the overall light is also subchaotic and super-
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(a)

12 3 4 S N 12 3 4 S N

Fig. 3.1. N-dependence of the statistical properties of light that is composed of a superposition

of N statistically independent and identical emissions: (a) normalized coincidence rate g‘¥(x, x);

(b) Fano factor F,(D). (a) (the slope) and F, represent the mean number of photons and the

Fano factor for an individual emission, respectively. The statistics change from antibunched and
sub-Poisson to bunched and super-Poisson as N increases above 1.

Poisson. If the individual emissions are Poisson [y, = — 1 or F (D) = 1], then
gD (x),x,)=2- 1 , (3.22)
N
1
F,D)=1+ (n) (l —;), (3.23)

reproducing the classical results in eqgs. (2.55) and (2.56).

Finally, if the individual emissions are sub-Poisson [F (D) < 1], the overall
light is subchaotic but super-Poisson if N> 1+ [1 - F(D)]/(a>. The
dependence of g?(x, x) and F,(D) on N for this case is illustrated in fig. 3.1.
As an example, consider individual emissions described by the one-photon
number state (a = 1), for which F_(D) = 0 and y, = - 2. Then,

2
gx,, x) =2 - N (3.24)

F(D)=N-1. (3.25)

For N = 1 (a single one-photon emission) the light is antibunched and sub-
Poisson (by assumption). For N =2 the light is unbunched, since
g¥(x,,x,) = F,(D) = 1. For N > 2 the light is bunched and super-Poisson.

To conclude, when N statistically independent identical antibunched emis-
sions are superposed, the resultant light has a normalized coincidence rate
g (x, x) that increases with increasing N, making the superposed radiation
bunched even for modest N. It also has a photocount Fano factor that increases
linearly with N, so that for sufficiently large N (¥ > 2 in the single-photon
emission case) the overall light becomes super-Poisson.

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



40 PHOTON BUNCHING AND ANTIBUNCHING [1,§3
3.3. EMISSIONS INITIATED AT POISSON TIMES

We now examine the case of statistically independent identical emissions
initiated at Poisson random times. We have already developed the main
equations that relate the statistical properties of the superposed radiation to
those of the individual emissions (see eqs. 2.65~2.68). Those equations are also
applicable here, provided that the correlation functions of the individual
emissions are determined using the quantum theory of light.

3.3.1. Quasi-coherent single-mode emissions
Assume again that the individual emissions are in a single mode described
by
E¢ = Vo) exp(i6,)d (3.26)

where V,(¢) is a deterministic pulse of intensity I,(¢) = | V,(¢)|?, the 6, are
random independent phases, and 4 is the annihilation operator of the
radiation mode. Spatial effects are ignored for simplicity.

An individual emission initiated at ¢ = 0 has the following properties:

gPwr+ =4, (3.27)
Cay =atay g j ) Io(r)de, (3.28)
Fo(o0) =1+ <a) (B-1), (3.29)

where « is the total number of photoevents associated with an individual
emission (over t € [0, o0 ]) and the coincidence rate of its photoevents fis given
by
A 1- A 1- A A
a'a’aa
B= (a'a’aa) . (3.30)

<&T&>2

To determine the properties of the superposed radiation, we substitute in eqs.
(2.72), (2.73) and (2.79) to obtain

Qo

V@) Vot + 1) de
g(7) = = — , (3.31)
J I(t) dr
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gD() = 1+ gV + —EP(), (3.32)
H,
_ LS Iy
F,(T)=1+ Y; +<n >urp (3.33)

where g2(1) = f1,(1)/14(0), Io(1) being the time-averaged correlation
" function of the intensity of an emission pulse (see eq. 2.76), and

r,-2 j T(l - i)g(g)(r)dr, (3.34)
0 T

as in eq. (2.80). Equation (3.33) can be written in the alternate forms

<ny <a>
F,(T)=1+ .
a(T) o +p—= (3.35)
Fr)y=1+ 3" o) -1+ ()] (3.36)
M M

where # is the degrees-of-freedom parameter given by eq. (2.82). Equation
(3.36) is the relation between the Fano factor of the total radiation and that of
an individual emission.

Note that egs. (3.31)—(3.36) are the same as the results obtained from the
semiclassical theory, except for the factor B, which depends on the quantum
state of the individual emissions. For a quasi-coherent state, F,(c0) = 1 and
B = 1, so that the classical results are reproduced exactly. For a chaotic state,
F,(0)=1+ {a) and # = 2, corresponding to superchaotic light. The state
that is likely to generate the least bunching is the one-photon number state (i.e.,
a single-photon emission), for which {(a) =1, F (c0) =0, and = 0. As
evidenced by egs. (3.32)—(3.34), even in this case the stream of emitted photons
remains as bunched as chaotic light.

If the observation time is long (7' 1,), then M = T/7, > 1 and #~ 1. In
that case

F,(T)~ (a) + F,(c0). (3.37)

This is the result that would be obtained by ignoring photon interference,
treating photons purely as particles, and arguing that » is the sum of a
Poisson-distributed random number m of emissions, each containing a random
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number « of photons. For example, if each emission contains a single photon,
then (a) = 1, F () = 0, and F,(T) = 1, indicating that the resulting photon
counts are Poisson. This is not surprising. We have a stream of single photons
emitted about Poisson times; a Poisson number of photons is observed.

3.3.2. Radiation from an atomic beam

Consider radiation emanating from a beam of atoms moving with a constant
velocity v, monitored through a window of length d. The total radiation may
be described by

E+ ()= Z EA‘/: (- )Rt - 1),

where E, (1) represents the kth emission, ¢, is the time at which the kth atom
enters the window region, R,(¢)is a rectangular function of value 1 for € [0, T']
and zero elsewhere, and T = d/v is the atomic transit time across the window.
The length d may represent a scattering region (radiation is then produced by
scattering from the incoming atoms) or a region within which atoms are excited
by an energy source to undergo luminescence or fluorescence. If it is assumed
that the times of atomic entries into the window region are describable as a
homogeneous Poisson point process (of rate u), then the theory presented in
§ 3.2 (egs. 3.11-3.15) can be used to provide

1
g2(1) =1+ gP@)* + —52(),
uT

g3() = <1 - —;) gP(), 1 <T,

=0, elsewhere,

where g{2(1)is the normalized coincidence rate for radiation from a single atom
(assumed to be stationary). In particular,

£D(0) = 2 + = g®(0).
uT

This result is consistent with the results of § 2.3, if uT' = (N ) is taken to be
the average number of radiators. It is immediately obvious that the total
radiation is not only bunched but it is superchaotic, regardless of the nature of
the individual atomic emissions.
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This reveals the root of the difficulty in obtaining sub-Poisson light from
sub-Poisson atomic emissions, for example, atoms undergoing resonance
fluorescence (KIMBLE and MANDEL [1976], CARMICHAEL and WALLS
[1976a,b]). The antibunching and sub-Poisson properties of the resonance-
fluorescence photon clusters cannot be expressed unless the randomness in the
number of radiators is removed (JAKEMAN, PIKE, PUSEY and VAUGHAN
[1977]). This problem may be alleviated to some extent by gating the detector,
as implemented by SHORT and MANDEL [ 1983], but the best that can then be
achieved is the generation of conditionally sub-Poisson photon clusters. This
issue will be addressed in § 5.

In summary, it is apparent that independent emissions initiated at Poisson
times stand no chance of producing unconditionally antibunched or sub-
Poisson photons. The best they can achieve is unbunched, Poisson behavior.
One effective way to alter the situation is to initiate the sub-Poisson emissions
at sub-Poisson times (TEICH, SALEH and STOLER [ 1983], TEICH, SALEH and
PERINA [1984]). This is discussed from a mathematical point of view in the
next subsection and from a physical point of view (in terms of excitation
feedback) in § 7. More delicate implementations may be provided by the
methods outlined in § 6.

3.4. EMISSIONS INITIATED AT SUB-POISSON TIMES

Consider the superposition of a sequence of statistically independent and
identical emissions initiated at times {¢,,¢,,...,%,...} described by an
arbitrary stationary point process (no longer restricted to Poisson). This is
referred to as the excitation process because these times will be determined by
an excitation mechanism, as will become apparent in § 7. Even though the
individual emissions are nonstationary (typically taking the form of pulses
lasting a short time), the overall radiation is stationary because of the assumed
stationarity of the excitation process.

3.4.1. Characterization of the excitation point process

Two of the most important descriptors of a stationary point process are the
rate u (events per second) and the rate of coincidence u?g{®(z) of pairs of
events at times separated by 7. These descriptors are not sufficient to charac-
terize an arbitrary point process completely (Cox [1962], SNYDER [1975],
SALEH [1978]); in general, knowledge of the probability of multicoincidences
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of events at k points, for k = 1,2, ..., oo, is required. If m is the number of
events that occur in a time interval [0, T], then its mean is

{m) =uT (3.38)
and its Fano factor (ratio of variance to mean) is
F.T)=1+ —<m—>, (3.39)
M,
where
MJI=EJ‘GO(1 —1) [2(7) - 1] dx. (3.40)
TJo T

The simplest example is the Poisson point process, for which g{(t) = 1 and
F,,(T) = 1. If g2(0) < 1, the excitation process is said to be antibunched or
anticorrelated, whereas if g{(0) > 1, it is said to be bunched or correlated. The
characteristic time associated with the function [g¥(1) — 1] is denoted <.
Similarly, if F,,(T) < 1, the excitation counts are said to be sub-Poisson (for
this counting time 7T), whereas if F, (T)> 1, the counts are said to be
super-Poisson. These are, of course, the same terms used earlier to characterize
the photoevent point process. The Poisson point process has neither memory
nor afterettects.

For the self-exciting point process (SEPP), on the other hand, the probability
of occurrence of an event at a particular time depends on the times and numbers
of previous occurrences (SNYDER [1975]). Renewal point processes (RPPs)
form an important subclass of SEPPs for which the rate x4 and the normalized
coincidence rate g{?)(t) do characterize the process completely (Cox [1962]).
These are processes for which the interevent time intervals are statistically
independent and identically distributed. The following are important examples
of renewal point processes that exhibit antibunched events and sub-Poisson
counts:

(1). The gamma-.4"process. This process is obtained from a Poisson process
by decimation, that is, by selecting every .4#th event and discarding all others
as illustrated in fig. 1.1d (Cox [1962], PARZEN [1962]). The process is so
named because the inter-event-time interval distribution P(z) (see fig. 2.3) is a
gamma distribution of order .4, For the particular case when .4"= 2 (shown in
fig. 1.1d), it turns out that (TEICH, SALEH and PERINA [1984])

gP(1) = 1 - exp(-4ul1)), (3.41)
F,(T)~1. (3.42)
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(2). The nonparalyzable dead-time-modified Poisson process. This process
is obtained from a Poisson process by deleting events that fall within a specified
dead time t, following the registration of an event, as illustrated in fig. 1.1b
(Cox [1962], PARZEN [1962], RicCIARDI and EsposiTo [1966], MULLER
[1974], CaNTOR and TEIcH [1975], TEIcH and VANNUccI [1978]). It is
characterized by (TEICH, SALEH and PERINA [1984])

[A(r = Ie))!

2@(1) = 1 1}; expl - A(t - I1)] UGt — I5,) (3.43)

- ;_u 1 (-1
Fm(T) ~ (l - “H'-d)2 » (344)
with
=t 3.45
(1 - pa) (343)

where U(?) is the unit step function, A is the initial rate of the process, and u
is the rate after dead-time modification. Its inter-event-time density function is
adecaying exponential function displaced from 1 = 0 to the minimum permissi-
ble inter-event time, 1.

Another example is a pulse train with random time of initiation (LoUDON
[1980], TEICH, SALEH and PERINA [1984]).

3.4.2. Photon statistics for emissions at antibunched times

When the underlying excitation process has known rate y and normalized
coincidence rate g{?(t), but is otherwise arbitrary, what can be said about the
statistics of the radiation ? Because of their finite lifetime, emissions overlap and
interfere (as we have seen in earlier sections). To determine their bunching
properties, it is necessary to know not only the rate of coincidence of the
excitation process at pairs of time instants, but it is also necessary to know
coincidence rates at triple points, and so on. If such information is not
available, the bunching properties of the superposed radiation cannot be
determined.

However, in the limit in which the counting time 7 is much longer than the
lifetime 7, of the individual emissions, interference has a negligible effect on the
total number of collected photocounts. The total number of photons # is then
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simply the sum of the number of photons emitted independently by the individual
emissions. If m is the number of emissions and «, is the number of photoevents
associated with the kth emission, then n = ) 7, . Using the fact that the
{0} are statistically independent and identical, it is not difficult to show
that the mean and variance of n are

(ny =(a)y (m), (3.46)
Var(n) = (a)?*Var(m) + {(m) Var(a), (3.47)

from which it follows that the corresponding Fano factors are related by
F,=(a)F, +F, (3.48)
or
F,=1+[F, -1+ (a)]+ (ad(F,, -1). (3.49)

Equation (3.47) is known as the cascade variance formula (SHOCKLEY and
PIERCE [1938], MANDEL [1959b], BURGESS [1961]). Equation (3.49) shows
that the Fano factor comprises three contributions. The first term is that of a
Poisson process. The second term represents excess noise due to randomness
in the number of photons per emission (if « = 1, then F, = 0 and it vanishes).
The third term admits the possibility of noise reduction due to anticorrelations
in the excitation process (this term vanishes if the excitation process is
Poisson).

As an example, we can apply this formula to the case considered in § 3.3 in
which the excitation process was a Poisson point process. When m is Poisson,
F,, = 1 and eq. (3.48) becomes

F,=<(a) +F,, (3.50)

which reproduces eq. (3.37).

We now consider another example in which each of the individual emissions
is described by a one-photon number state (i.e., single-photon emissions and
o = 1). This corresponds to (a> = 1 and F, = 0, from which eq. (3.48) yields

F,=F,.

This is to be expected. For single-photon emissions the number of photons
counted over a long time interval is approximately equal to the number of
excitations (assuming there are no losses). If the excitation point process is
sub-Poisson, the photons will also be sub-Poisson. It is of interest to note that
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we need not go outside the domain of linear (single-photon) optics to see such
uniquely quantum-mechanical effects.

Equations (3.48) and (3.49) reveal the key to obtaining sub-Poisson photons
from sub-Poisson excitations. In order to have F, < 1, F, must be <1, as is
apparent from eq. (3.48). Furthermore, a necessary condition for F, < 1is that
F,, < | (because the second term in eq. (3.49) is nonnegative). It follows that
for F,, to be less than one, both F, and F,, must be less than one. Therefore,
the generation of a stationary stream of sub-Poisson photons from a superposition
of independent emissions requires both the excitation process and the photons of the
individual emissions to be sub-Poisson.

The implementation of physical mechanisms that lead to this kind of model
are presented in § 7, where various kinds of excitation feedback are used to
generate sub-Poisson excitations. Other ways of producing sub-Poisson light
are to generate correlated photon pairs or to use a quantum nondemolition
measurement, as discussed in § 6. One member of each correlated photon pair
is used to provide a photon feedback signal that controls the twin photon beam.
It might appear that the theoretical framework presented here is not appropriate
for this paradigm because the photon emissions are not independent (correlated
pairs are produced). However, because the control photons are annihilated they
can be viewed as simply modifying the excitation statistics for the surviving
photon beam, which then may be considered to comprise independent emis-
sions. A fully quantum-mechanical analysis of photon-feedback mechanisms
(SHAPIRO, SAPLAKOGLU, HO, KUMAR, SALEH and TEIcH [1987]), such as
those considered in § 6, confirms that the approach presented here is suitable
for describing physical processes involving photon feedback as well as excita-
tion feedback.

3.4.3. Bunching/antibunching properties of emissions initiated at antibunched
times

The determination of the short-time behavior of the photoevents requires
knowledge of the normalized photocoincidence rate g¢®(1). This is not possible
unless the excitation point process is completely specified (higher-order multi-
coincidence rates specified). TEICH, SALEH and PERINA [1984] examined this
problem under the assumption that the excitation point process was a renewal
point process. Under the additional assumption of single-mode individual
emissions, as in eq. (3.26), they showed that

£9(1) = 1+ | gD(D)2 + ——gD(x) + r(3). @3.51)
iEA
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The first three terms on the right-hand side of eq. (3.51) apply when the
excitation process is Poisson (see eq. 3.32). The fourth term, which is given by

’e) = r V(s 1) [g20) - 1]dr, (3.52)

with
ao

V(v 0) = j o) L' + 1~ 1)

+VIE) Vot + D VEE+ )Vt + ¢ + 1)) de
(3.53)

represents the effects of deviation of the excitation process from Poisson. When
the excitation point process is antibunched, this term is negative, thereby
introducing anticorrelation into the photon process. If it is sufficiently strong,
it can counterbalance the bunching effects due to wave interference (second
term) and to the randomness of the individual emissions (third term).

With the availability of eq. (3.51), the Fano factor for the photon counts in
a time interval of arbitrary duration can be determined. The result can be put
in the form (TEICH, SALEH and PERINA [1984])

L [Ffo0) -1+ ()] (m
M

FT=1 ’
A(T) ~ VI

(3.54)

where M and .# are the degrees-of-freedom parameters discussed in § 3.3 and
M’ is a new degrees-of-freedom parameter associated with the term r (7). 4’
depends, in a complex way, on the relation between the counting time T, the
emission lifetime 1,, and the excitation point-process memory time 1, (width
of the function [g{* (1) - 1]). For counting times that are long (T'> 1, 7.),
however, it turns out that M = oo and wavelike (interference) noise is washed
out; 4 = 1 so that the role of noise in the individual emissions is enhanced;
and .#" is given by the degrees-of-freedom parameter for the excitation process
M, given in eq. (3.40). It then follows that eq. (3.54) reduces to eq. (3.49), which
was directly obtained by use of the cascade variance formula.

This problem has been examined in considerable detail by TEICH, SALEH
and PERINA [1984). They also addressed the effects of different locations for
the different emissions, and the rates of photon coincidence at pairs of positions
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in the detection plane. MANDEL [1983] examined photon interference and
spatial correlation effects of light produced by two independent sources, each
containing either a random or a deterministic number of radiators.

3.5. SUMMARY: GENERATION OF ANTIBUNCHED AND SUB-POISSON LIGHT

It has been shown that two key effects regulate the antibunching and
sub-Poisson possibilities for light generated by a two-step process of excitation
and emission: (1) the statistical properties of the excitations themselves and
(2) the statistical properties of the individual emissions. The role of these two
factors is readily illustrated, from a heuristic point of view, in terms of the
schematic presentation in fig. 3.2.

In fig. 3.2a we show an excitation process that is Poisson. Consider each
excitation as generating photons independently. Now if each excitation
instantaneously produces a single photon, and if we ignore the effects of
interference, the outcome is a Poisson stream of photons, which is neither
antibunched nor, obviously, sub-Poisson. This is the least random situation
that we could hope to produce, given the Poisson excitation statistics. If
interference is present, it will redistribute the photon occurrences, leading to the
results for chaotic light (SALEH, STOLER and TEICH [1983]). On the other
hand, the individual nonstationary emissions may consist of multiple photons
or random numbers of photons. In this case, we encounter two sources of
randomness, one associated with the excitations and another associated with
the emissions, so that the outcome will be both bunched and super-Poisson.

In particular, if the emissions are also described by Poisson statistics, and
the counting time is sufficiently long, we recover the Neyman Type-A counting
distribution, as has been discussed in detail elsewhere (TEiCH [1981], TEICH
and SALEH [1981a], SALEH and TEICH [1982, 1983]). Even if the individual
emissions comprise deterministic numbers of photons, the end result is the
fixed-multiplicative Poisson distribution, which is super-Poisson (TEICH
[1981]). Related results have been obtained when interference is permitted
(SALEH, STOLER and TEICH [ 1983)). It is clear, therefore, that if the excitations
themselves are Poisson (or super-Poisson), there is little hope of generating
antibunched or sub-Poisson light by such a two-step process.

In fig. 3.2b we consider a situation in which the excitations are more regular
than those for the Poisson. For illustration and concreteness we choose the
excitation process to be produced by deleting every other event of a Poisson
process. The outcome is the gamma-2 (or Erlang-2) renewal process, whose
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Fig. 3.2. Schematic representation of a two-step process for the generation of light, illustrating

stochastic excitations (first line) with either single-photon emissions (second line) or Poisson

multiple-photon emissions (third line). Interference effects are ignored in this simple represen-

tation. (a) Poisson excitations; (b) antibunched, sub-Poisson excitations (zamma-2); (c) pulse-
train excitations (random phase). (After TEICH, SALEH and PERINA [1984].)

analytical properties are well understood. Single-photon emissions, in the
absence of interference, result in antibunched, sub-Poisson photon statistics.
Poisson emissions, on the other hand, result in super-Poisson light statistics.
Of course, the presence of interference can introduce additional bunching.
Clearly, a broad variety of excitation processes can be invoked for generating
many different kinds of light. A process similar to the gamma-2, and for which
many analytical results are available, is the nonparalyzable dead-time-modified
Poisson process. Resonance fluorescence radiation from a single atom will be
described by a process of this type, since after emitting a single photon the atom
decays to the ground state where it cannot radiate. The superposition of light
from a number of such atoms will wash out the sub-Poisson behavior, however.

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



I,§4] RANDOMIZATION OF SUB-POISSON PHOTON STREAMS 51

Finally, in fig. 3.2c we consider the case of pulse-train excitations (with
random initial time). This is the limiting result both for the gamma family of
processes and for the dead-time-modified Poisson process. In the absence of
interference, single-photon emissions in this case yield antibunched, ideally
sub-Poisson photon statistics. Interference causes the antibunching to dis-
appear, but the sub-Poisson nature remains in the long-counting-time limit.
Poisson emissions give rise to Poisson photon statistics.

The illustration presented in fig. 3.2 is intended to emphasize the importance
of the excitation and emission statistics as determinants of the character of the
generated light. To produce antibunched and/or sub-Poisson photons, both
sub-Poisson excitations and sub-Poisson emissions are required.

The statistical properties of light generated by sub-Poisson excitations, with
each excitation leading to a single-photon emission, have been developed earlier
in this section. The sub-Poisson excitations are characterized by a time
constant 7., which represents the time over which excitation events are
anticorrelated (antibunched). The single-photon emissions, on the other hand,
are characterized by a photon excitation/emission lifetime 7,. The detected light
will be sub-Poisson provided T3> t., T, A> A, where T is the detector
counting time, A is the detector counting area, and A, is the coherence area.
Different methods of sub-Poisson excitation result in different values of 7,
whereas different mechanisms of photon generation result in different values
of 7, and 4.

Invoking these limits assures that all memory of the field from individual
emissions lies within the detector counting time and area. The randomization
of photon occurrences associated with interference therefore does not extend
beyond these limits. Consequently the photon-count statistics are determined
by the only remaining source of variability, which is the randomness in the
excitation occurrences.

In this limit the photons behave as classical particles, and the photon
statistics are governed by the simple rules specified in eqs. (3.48)-(3.50). This
kind of picture also provides the basis for understanding the generation of
sub-Poisson light by a semiconductor laser (YAMAMOTO, MACHIDA, IMOTO,
KiTaGAawA and BIORK [1987]).

§ 4. Randomization of Sub-Poisson Photon Streams

Photon streams often undergo random deletion (thinning). Obvious
examples of importance in quantum optics include optical absorption and the
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photodetection process itself, for which the quantum efficiency of the detector
is invariably less than unity. It has long been known that the Poisson process,
which is probably the most ubiquitous of all point processes, remains Poisson
under the action of such Bernoulli random selection (PARZEN [1962]).

More recently it has been established (TEICH and SALEH [1982], PERINA,
SALEH and TEICH [1983]) that the DSPP photon distribution retains its form
under the effects of such deletion, but with a reduced integrated rate. A specific
example is the negative binomial photon distribution, which, on deletion,
remains negative binomial with reduced mean and an unchanged degrees-of-
freedom parameter M. Another is the shot-noise-driven Poisson (SNDP)
photon-counting distribution, which re-emerges on random deletion with the
same degrees-of-freedom parameter .#, but in this case with reduced mean and
reduced multiplication parameter.

There is no general result of this nature for sub-Poisson photon counting
distributions. On the sub-Poisson side of the Poisson barrier, however, the
binomial distribution retains its form under Bernoulli deletion.

Nevertheless, on either side of the barrier, the Fano factor obeys a
particularly simple relation under the effect of Bernoulli random deletion,
provided that the counting window is sufficiently large. This characteristic is
discussed in § 4.1.

Another source of photon-stream randomization is associated with the
presence of additive independent Poisson photons, such as those arising from
background radiation. The modified Fano factor reduction formula that
accounts for this effect is presented in § 4.2.

Finally, we mention parenthetically that the process of photon detection
often involves the use of devices that operate by means of electron multipli-
cation. Examples are the photomultiplier tube and the avalanche photodiode.
Although the electron multiplication process also adds randomness to the
detected signal, it is possible to minimize the deleterious effects of multiplication
noise by a judicious choice of detection device and mode of operation (TEICH,
MaATsuo and SALEH [1986]).

4.1. BERNOULLI RANDOM DELETION

A photon stream with Fano factor F,,(D) emerges, after random deletion,
with Fano factor F, (D) in accordance with the relation

[F,(D) - 1] = y[F,(D}- 1], T>»rz,1,; A>A,, 4.1
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where 7 is the probability of photon survival (quantum efficiency) and (m )
is the initial mean photon number. This relation may be obtained directly from
eq. (3.48) by using the substitutions {a) =# and F, =1 - 5, which are
appropriate for events governed by the Bernoulli (random-deletion) law. If 7
contains the quantum efficiency of the detector, as well as all other losses,
F, (D) then represents the expected photoelectron (post-detection) Fano factor.
The validity of eq. (4.1) requires that the counting time T be greater than both
the characteristic electron correlation time 7, and the photon correlation time
7,, and that the detection area 4 be greater than the coherence area 4. These
conditions ensure that interference has a negligible effect on the total count
number (see § 3.4 and § 3.5). Furthermore, eq. (4.1) is only applicable for
open-loop photodetection (see SHAPIRO, SAPLAKOGLU, Ho, KUMAR, SALEH
and TEICH [1987]).

Equation (4.1) has been derived both quantum-mechanically (PAUL [ 1966,
1982], MILLER and MISHKIN [1967], GHIELMETTI [1976], YUEN and
SHAPIRO [1978], PERINA, SALEH and TEICH [1983], LoUDON and SHEPHERD
[1984]) and semiclassically (TEICH and SALEH [1982]). It is applicable for
bilinear interactions of boson quantum systems in the rotating-wave approxima-
tion, which lead to Heisenberg—Langevin equations involving only annihilation
operators (PERINA, SALEH and TEICH [1983]). Such interactions leave the
initial statistics of the system unchanged (in particular, a coherent initial state
remains coherent). Equation (4.1) is also applicable for interactions in which
photons interact with electrons and atoms whose fermion properties play no
role. The semiclassical derivation gives the correct result because of the
correspondence between semiclassical and normally ordered correlation
functions, for which vacuum fluctuations play no role.

It is useful, perhaps, to point out that, in contradistinction to the Fano factor,
the magnitude of the second-order correlation function g‘®(x, x) is independent
of n. This is because g(®(x, x) reflects the joint detection of pairs of photons
(coincidences) at the space~time point x. Random deletion has the effect of
providing fewer such pairs at each value of x, thereby reducing the accuracy
of the estimated correlation function.

4.2. ADDITIVE INDEPENDENT POISSON PHOTONS

In the presence of additive independent Poisson photons, as well as Bernoulli
deletion, the expression analogous to eq. (4.1) is

[F,(D)-1]=nf[F,(D)-1], T»r,7; A>A.. 4.2)
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Here, n represents the signal-plus-additive-background photon-count (or post-
detection photoelectron) random variable and F,(D) is the overall photon-
count (or photoelectron) Fano factor. The quantity f (0 < < 1) is governed
by the presence of Poisson additive counts (e.g., background light). In the
absence of such counts, = 1.

If the additive Poisson noise count mean is { p >, then Var{p> = {(p>.In
the case where the Bernoulli selection occurs before the addition, § turns out
to be (TEICH and SALEH [1982])

-1
ﬁ=<1 +ﬂ> , 4.3)
nim)
whereas when the Bernoulli selection occurs after the addition,
-1
ﬁ=(1+<”>) : (4.4)
(m)

Equation (4.2) clearly shows that all photon distributions move toward the
Poisson barrier under the action of Bernoulli deletion and/or additive indepen-
dent Poisson background events. However, no amount of deletion or additive
noise will permit this barrier to be crossed from either direction.

4.3. ANALOG RELATIONS

The analog version of eq. (4.2) is useful when the detected photocurrent (or
the excitation current discussed in § 7.1.2)is continuous rather than a sequence
of discrete events. It can be used to relate the power spectral densities of an
excitation current S,,(w) and a detected photocurrent S,(w). The ratios
S, (w)/2e {i;> may be regarded as Fano factors F,(T}), where j = m, n, and the
i;> are the mean values of the respective currents. Here the counting times
T; play the role of inverse bandwidths of the filters involved. In the limits
T;» 1., 1, and for w < l/7,, 1/1,, we obtain

S, (w) S (@) ) 11
T = -1, <—, —; >A,. (4.5
<2e<i,,) 1) nﬁ(Ze(im) w<T T A»4 *3)

e 'p
The quantity 8 accounts for the admixture of independent Poisson background
events as discussed earlier.
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§ 5. Observation of Antibunched and Conditionally Sub-Poisson Photon
Emissions

Antibunching was the first characteristic of nonclassical light to be observed
in the laboratory. It is an effect that generally becomes less pronounced as the
number of radiators increases (this is a result of the increase of accidental
coincidences between uncorrelated photons). In 1977 KiMBLE, DAGENAIS and
MANDEL [1977] carried out a series of experiments in which they excited
sodium vapor with laser light. This led to the production of antibunched
resonance fluorescence radiation (KIMBLE, DAGENAIS and MANDEL [1977,
1978], DAGENAIS and MANDEL [1978]). Similar results were achieved by
RATEIKE, LEUCHS and WALTHER, as cited in CRESSER, HAGER, LEUCHS,
RATEIKE and WALTHER [1982], using a longer interaction time. Antibunching
has also been observed in parametric downconversion by using an event-
triggered optical shutter (WALKER and JAKEMAN [1985b]) and in correlated
atomic photon emissions (GRANGIER, ROGER and ASPECT [1986]). More
recently GRANGIER, ROGER, ASPECT, HEIDMANN and REYNAUD [1986]
observed that a multi-atom source in a four-wave-mixing configuration gives
rise to antibunched pairs of fluorescence photons traveling in opposite
directions.

Antibunching and sub-Poisson behavior need not necessarily accompany
each other as discussed in § 3 (TEiCH, SALEH and STOLER [1983]);
nevertheless, they sometimes do. From an experimental point of view it is
generally easier to observe antibunching than sub-Poisson statistics (SHORT
and MANDEL [1984], WALKER and JAKEMAN [1985b]). The observation of
antibunching and sub-Poisson behavior in resonance fluorescence reflects the
fact that the atom makes a quantum jump to its ground state at the time a
photon is emitted. The inability of the atom to radiate in the ground state may
be viewed as an enforced dead time (TEICH and VANNuccl [ 1978]) following
a photon emission, during which further emissions are prohibited (KIMBLE and
MANDEL [1976]). This regularizes the resonance-fluorescence photon emis-
sions from a single atom, so that it produces an antibunched and sub-Poisson
cluster of photons while it traverses the experimental apparatus.

In § 5.1 we discuss the generation of conditionally sub-Poisson resonance-
fluorescence photons from single atoms. The use of parametric down-
conversion for producing conditionally sub-Poisson single photons is con-
sidered in § 5.2. Finally, the destruction of sub-Poisson behavior resulting from
the incorporation of excitation statistics (removal of the conditioning) is
discussed in § 5.3. Techniques for the generation of unconditionally sub-
Poisson light are presented in § 6 and § 7.
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a)
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Fig. 5.1. Schematic diagram illustrating the generation of conditionally sub-Poisson photons.

(a) Configuration for resonance fluorescence where the entry of a single atom into the field of view

of the apparatus gates the detector open for a brief time. (b) Configuration for correlated photon

pairs (e.g., spontaneous parametric downconversion or “°Ca correlated photon emissions), where
one partner of a photon pair gates the detector open for a brief time.

5.1. CONDITIONALLY SUB-POISSON PHOTON CLUSTERS FROM RESONANCE
FLUORESCENCE

SHORT and MANDEL [1983, 1984] observed individual clusters of sub-
Poisson emissions from isolated sodium atoms. The effect is observable only
if there is a single atom in the field of view of the apparatus at any given time
and if it remains there during the photon counting time. In the Short—Mandel
experiment this was achieved by enforcing two conditions: (1) the beam of
sodium atoms was made sufficiently weak so that the average interatomic
separation was ~ 10 us in time or ~ 1 cm in distance; (2) the detector was
gated on for a counting time 7' = 200 ns by means of an auxiliary detector that
registered the arrival of the atom in the apparatus. A schematic representation
is provided in fig. 5.1a; the excitation process was such that the source
consisted of only a single atom.

A block diagram of their experimental apparatus is presented in fig. 5.2. A
highly collimated sodium atomic beam is intersected perpendicularly by two
circularly polarized dye-laser beams, tuned to the 3%S,,, F =2 to 3°P,,,
F = 3 Na transition, and stabilized in frequency to 1-2 MHz. The two inter-
section regions are in a weak magnetic field parallel to the dye laser beams.
Optical pumping in the first region prepares the sodium atoms to be in the
3%S,,2, F = 2, mg = 2 magnetic sublevel. The only allowed dipole transition is
between this and the higher 3°P, ,, F = 3, m = 3 magnetic sublevel, so that
the atoms behave essentially as a two-level quantum system. The exciting laser
beam causes the atom to shuttle back and forth between the two levels, emitting
resonance fluorescence photons.
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Part of the fluorescence radiation in a region in the center of the second
intersection is collected by a microscope objective and imaged onto a
rectangular aperture where the field is split into two parts (see fig. 5.2). The light
from a 50 pm-long region of the atomic beam, which the atom enters first, is
directed to photomultiplier tube A (PMT A), whereas the light from an adjacent
425 um-long region is sent to photomultiplier tube B, where the principal
photon counting process takes place. When PMT A detects the arrival of an
atom in the apparatus by registering a photon count, a 90 ns delay is invoked
(to allow the atom to move from region A into region B), after which PMT B
is gated on to allow the resonance fluorescence photons to be counted during
the counting time T~ 200 ns. The atom remains in region B during the
measurement about 98 %, of the time. A histogram is constructed of the number
of photon counts registered by PMT B during this time. This is normalized to
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Fig. 5.2. Experimental apparatus for the observation of conditionally sub-Poisson photon
clusters from resonance fluorescence. (After SHORT and MANDEL [1984].)
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provide the experimental photon-counting distribution p(n, T'). Special efforts
were made to minimize background and dark counts.

In each of the 24 x 10° measurements the detector was gated on when it was
ascertained that an atom was in the field of view of the apparatus. The
collection of a single photon-counting distribution took many hours. After
collection of the data, corrections were made for additive background light,
occasional pairs of atoms in the apparatus, dead time in the counting elec-
tronics, and PMT afterpulsing. The experiment provided a corrected count
mean (n) =~ 6.5 x 1072 and a Fano factor F,(T)~ 0.9978 + 0.0002, indi-
cating that the resonance-fluorescence photon clusters were slightly sub-
Poisson. The results are in good accord with theoretical calculations for
resonance fluorescence (SHORT and MANDEL [ 1984], MANDEL [ 1979], Cook
{1980, 1981], LENSTRA [1982]).

5.2. CONDITIONALLY SUB-POISSON SINGLE PHOTONS FROM PARAMETRIC
DOWNCONVERSION

It is easier to observe conditionally sub-Poisson photon emissions by means
of spontaneous parametric downconversion. In this process photons from a
coherent beam of light are split into lower-frequency signal and idler photons
in a crystal that lacks inversion symmetry (LOUISELL, YARIV and SIEGMAN
[1961], BURNHAM and WEINBERG [1970]). If a signal photon is detected at
some position within a short time interval 7, there is an idler photon in a
one-photon state at a corresponding position at the same time (HONG and
MANDEL [1986]).

HoNG and MANDEL [1986] conducted a parametric downconversion
experiment that made use of an argon-ion laser pump beam at 351.1 nm and
a potassium dihydrogen phosphate (KDP) crystal. The downconverted signal
and idler photons were collected by lenses and sent to two counting photo-
multiplier tubes. The idler counter was gated on by the signal counter, as
represented schematically in fig. 5.1b. The idler photon-counting probability
distribution, conditioned on the occurrence of a signal photon, was therefore
measured. Under the paradigm of the experiment, if the collection efficiencies
were unity and there were no dark current or background photons, the
conditional idler counting distribution would be very nearly ideal, that is,
p(n) = 9, corresponding to F = 0. The experimental results lay far from this,
however, exhibiting a post-detection Fano factor F,(T) = 0.998. The dilution
of sub-Poisson behavior resulted largely from the low detector quantum
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efficiencies. Correction of the experimental result for background light and
random deletion resulted in a photon-counting distribution near the theoretical
ideal. Hong and Mandel point out that this scheme achieves a close approxima-
tion to a localized one-photon state.

In principle, the same configuration could be applied to other correlated
photon-emission processes, for example, cascaded two-photon atomic emis-
sions. Consider the experiment performed by ASPECT, GRANGIER and ROGER
[1981, 1982], in which two photons emitted from a single *°Ca atom (the
4p? 'S, - 4sdp 'P, - 4s? 'S, cascade) were used in a polarization correlation
experiment to demonstrate a strong violation of the generalized Bell
inequalities. (It is interesting to note that REID and WALLS [1984] demon-
strated that the violation of these inequalities is associated with nonclassical
light.) Instead of the coincidence experiment they carried out, however, imagine
a photon-counting experiment in which the registration of the upper (green)
photon triggers a photon counter maximally sensitive to the lower (violet)
photon. The violet photon will clearly be detected in Bernoulli fashion, since
individual spontaneous atomic emissions represent single photons that may or
may not be detected. As such, the emissions are conditionally sub-Poisson.
Unlike the parametric downconversion experiment, however, the spatial
atomic-emission pattern gives rise to photons that are not well localized. Thus
even a perfect detection system triggered by the first photon will not result in
a probability 9, , for the second photon.

5.3. DESTRUCTION OF SUB-POISSON BEHAVIOR BY EXCITATION
STATISTICS

In the experiments just discussed the detector was gated on for a brief time
in such a manner as to allow only photons from a single excitation event to be
detected. Most emissions in nature (e.g., atomic photon emissions) are intrinsi-
cally sub-Poisson, and this character could be readily observed if we were able
to gate a detector to respond only during the appropriate short time interval.

Constructing a true sub-Poisson light source from a collection of such
emissions is difficult, however, because we are faced with randomness in the
excitations rather than a single deterministic excitation event. In the resonance-
fluorescence experiment the excitation statistics are determined by the random
number of atoms in the field of view; indeed this number is not usually regulated
(FORRESTER [1972], CARMICHAEL and WALLS [1976a,b], CARMICHAEL,
DRUMMOND, MEYSTRE and WALLs [1978], JAKEMAN, PIKE, PUSEY and

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



60 PHOTON BUNCHING AND ANTIBUNCHING [I,§5

VAUGHAN [1977]). In the correlated photon-emission experiments these
statistics are determined by the occurrence times of the signal photons. When
these times follow a Poisson process, as is usual, the resulting stationary source
of light will, in fact, be super-Poisson, as is understood from § 3.3.2 and
illustrated schematically in fig. 5.3. The sample functions in the top row
represent conditionally sub-Poisson emissions from resonance fluorescence
(top left) and from “°Ca violet photons (top right). The character of the results
changes drastically when Poisson excitation statistics are taken into account
and the gating interval is not preferentially chosen. The resulting photon counts
then become super-Poisson for resonance fluorescence radiation (bottom left)
and Poisson for correlated photon emissions (bottom right).

The equivalent of a single excitation event can be achieved if a single atom
(or atomic ion) undergoing resonance fluorescence can be trapped in the field
of view. There will then be no fluctuation in the atomic number. This has
recently been accomplished by DIEDRICH and WALTHER [1987], who showed
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Fig. 5.3. Generation of conditionally sub-Poisson and unconditionally super-Poisson or Poisson

light. Top left: sample function for a conditionally sub-Poisson resonance-fluorescence photon

cluster. Bottom left: Poisson entries of atoms into the apparatus and unsynchronized gating result

in unconditionally super-Poisson resonance-fluorescence radiation, Top right: sample function

for a conditionally sub-Poisson “’Ca violet photon emission. Bottom right: Poisson entries of *°Ca

atoms into the apparatus and unsynchronized gating lead to unconditionally Poisson green and
violet photons.
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that the emitted radiation, though obviously very weak, was both antibunched
and unconditionally sub-Poisson.

It is evident that making a source of unconditionally sub-Poisson photons
requires that the excitations be rendered sub-Poisson (see § 3.5 and TEICH,
SALEH and PERINA [1984]). This is shown schematically in fig. 5.4. In the top
row, sample functions are presented for conditionally sub-Poisson emissions
from *°Ca pairs (top left) and for a single-photon atomic emission resulting
from an electron impact excitation (top right). By the use of a suitable feedback
circuit, the green photons can trigger an optical gate to provide selective passage
of their violet partners. This can be accomplished in such a way that both the
excitations and the violet emissions are unconditionally sub-Poisson (bottom
left). A closely related technique was used by RARITY, TAPSTER and JAKEMAN
[1987] to produce unconditionally sub-Poisson light in a parametric down-
conversion experiment. The generation of unconditionally sub-Poisson light by
the use of photon feedback methods such as these is the topic of § 6 (see
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Fig. 5.4. Generation of conditionally and unconditionally sub-Poisson light. Top left: sample

function for a conditionally sub-Poisson “°Ca violet photon emission. Bottom left: selective gating

of violet photons by green photons leads to production of unconditionally sub-Poisson violet

photons (see § 6). Top right: sample function for a conditionally sub-Poisson single-photon

emission resulting from an electron impact excitation. Bottom right: sub-Poisson electron exci-

tations (resulting, for example, from space charge) lead to unconditionally sub-Poisson photon
emissions (see § 7).
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especially § 6.2.1 and § 6.2.2). Electron excitations can also be made sub-
Poisson by the use of feedback; one example entails the use of space-charge
effects that operate by Coulomb repulsion. The generation of unconditionally
sub-Poisson light by the use of excitation feedback methods is the topic of § 7
(see especially § 7.1.1).

§ 6. Generation of Antibunched and Sub-Poisson Light by Photon
Feedback

The previous section was concerned with methods useful for observing
antibunched and sub-Poisson individual emissions, which was achieved by
gating the detector for a specific brief time interval. However, the generation
of a stationary source of sub-Poisson light cannot be arranged so easily.

The principal mechanisms for generating cw sub-Poisson light rely on photon
feedback or excitation feedback. In this section we consider photon feedback,
that is, configurations in which the photons generated by the process at hand
also provide the feedback signal. The simplest example is a process in which
photon pairs are produced with one member of the pair being used to control
its twin. This condition of dual purpose means that nonlinear optics must be
invoked to achieve the effect.

In addition, the particular feedback process that is used may be intrinsic to
the physical light-generation mechanism or it may take the form of an external
feedback path. These two possibilities are illustrated schematically in fig. 6.1.
In § 6.1 we briefly discuss methods that rely on feedback intrinsic to a physical
process; historically, these comprised the first proposals for generating non-

i U

EXCITATION SUB-POISSON
PROCESS PHOTONS

b) SOURCE
EXCITAT Ot SUB-POISSON
PROCESS PHOTONS

Fig. 6.1. Schematic diagram illustrating the generation of sub-Poisson light by means of photon

feedback. (a) Feedback process intrinsic to the physical light-generation mechanism.

(b) Feedback process carried by way of an external path. The feedback may take the form of an
electrical signal or an optical signal.
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classical light. This discussion is followed, in § 6.2, by a discussion of several
configurations in which the feedback signal from the photons is carried
externally. In § 6.3 we discuss the limitations of such methods. A quantum-
mechanical theory applicable to these methods shows that it is possible, at least
in principle, to synthesize a quantum light beam with arbitrary prescribed
photon-counting statistics (SHAPIRO, SAPLAKOGLU, Ho, KUMAR, SALEH and
TEICH [1987]).

6.1. METHODS USING FEEDBACK INTRINSIC TO A PHYSICAL PROCESS

The earliest proposals for generating nonclassical light originated some 20
years ago with TAKAHASI [1965], MoLLow and GLAUBER [1967a,b], and
STOLER [1970, 1971, 1974]; these authors suggested the use of degenerate
parametric amplification for generating antibunched and quadrature-squeezed
light (see also YUEN [1976]). Since that time there have been numerous
suggestions for the use of other nonlinear processes, including two-photon and
multiphoton absorption, four-wave mixing, Raman and hyper-Raman scatter-
ing, interference in parametric processes, resonance fluorescence, and optical
bistability and multistability. All of these interactions, in one way or another,
involve higher-order (nonlinear) optical effects.

Viewed in an elementary way, nonlinear optical processes can introduce
antibunching by removing selected clusters of photons from the incident
(usually Poisson) pump beam, leaving behind an antibunched residue. The
example of a two-quantum nonlinear absorber, operating by coincidence
decimation, was illustrated in fig. 1.1c. Photon pairs arriving closer in time than
the intermediate-state lifetime of the absorber are successful in effecting a
two-photon transition and are removed from the beam (CHANDRA and
PRAKASH [1970], TORNAU and BAcH [1974], SIMAAN and LouDoN [1975],
EVERY [1975], LoUDON [1976]). A number of review articles and books have
considered the various schemes that rely on intrinsically nonlinear optical
effects (LOUDON [1980], PAUL [1982], WALLS [1983], PERINA [1984, 1985],
ScHUBERT and WILHELMI [ 1980, 1986]); the reader is referred to these for
details.

Although parametric amplification was the first process suggested for
generating nonclassical light, it has been so used only recently. Wu, KIMBLE,
HaLL and Wu [1986] generated strongly quadrature-squeezed light at
1.06 pm using parametric downconversion in a MgO : LiNbO, crystal. Indeed,
a variety of nonlinear optical interactions have recently been used to generate
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quadrature-squeezed light (SLUSHER, HOLLBERG, YURKE, MERTZ and
VALLEY [1985], SHELBY, LEVENSON, PERLMUTTER, DEVOE and WALLS
[1986], MAEDA, KUMAR and SHAPIRO [ 1987]). However, it appears that none
of these nonlinear effects with feedback intrinsic to a physical process has yet
been used to directly generate antibunched or sub-Poisson light.

6.2. METHODS USING EXTERNAL FEEDBACK

The photon feedback signal may be externally carried to the excitation
process or the source, as illustrated schematically in fig. 6.1b. If the feedback
is carried on the external path as an electrical signal, the photon timing
information must be imparted to it in a special way. This is because the
conventional process of detection involves the annihilation of photons as part
of the process of creating an electrical signal. In usual circumstances the choice
is therefore to have either the photons or the electronic residue of their
detection. However, several special schemes have recently been suggested for
imparting photon timing information onto a electrical signal while leaving the
photons intact.

The first such suggestion appears to have been provided by SALEH and
TEICH [1985], who proposed a scheme making use of correlated photon pairs
from cascaded atomic emissions. In this case the photons from one of the
atomic transitions are detected in the conventional manner to provide an
external feedback signal. This signal is used to selectively permit certain
photons from the second atomic transition to be passed through a gate (by
means of the decimation process illustrated in fig. 1.1d). Since the photons are
always emitted in correlated pairs, the selected twins survive and contribute to
the light at the output. This configuration is illustrated schematically in fig. 6.2a
and discussed in § 6.2.1.

There are many variations on this theme. The external feedback signal could
be used to control the twin photon beam optically by means of dead-time
deletion or rate compensation, instead of by decimation as discussed above (see
fig. 1.1). Or the feedback signal could be used to control the source of the
photons (the atoms) or the excitation process (the furnace), as illustrated in
figs. 6.2b and 6.2c, rather than the twin beam. As an example of source control,
the feedback signal from the control photon beam could be used to increase
the rate of “°Ca atoms entering the system when the detection rate is low and
to decrease it when the detection rate is high. (A feedback signal of this kind
was used by ASPECT [ 1986] and his co-workers for atomic beam stabilization;
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Fig. 6.2. Schematic diagram illustrating the generation of sub-Poisson light by correlated photon

pairs and external feedback. One of the twin photon beams is annihilated to generate the control

signal. (a) Optical control of one beam by its twin; (b) photon-source control; (c) excitation
control.

however, the generation of nonclassical light requires that the characteristic
feedback time 1, be short in comparison with the counting time 7.) Nonlinear
optics schemes other than two-photon emissions can also be used to generate
photon pairs; parametric downconversion is considered in § 6.2.2.

Furthermore, the feedback signal need not be carried electrically; it could be
carried optically (e.g., on an optical fiber) with the attendant advantage of
higher speed, as discussed in § 6.2.3.

Finally, in § 6.2.4 we discuss the use of a quantum nondemolition (QND)
scheme for generating sub-Poisson light. This technique was suggested by
YAMAMOTO, IMOTO and MACHIDA [1986a,b]. It allows the measurement of
photon number at the output of a semiconductor laser, by means of the optical
Kerr effect, without photon destruction, and the subsequent rate compensation
of the laser excitation.

6.2.1. Correlated photon pairs from cascaded atomic emissions

The correlated atomic photon-pair emitters comprise a collection of excited
atoms undergoing spontaneous cascaded emissions. For illustrative purposes
we focus on the 4p2 'S, — 4sdp 'P, - 4s2 'S, green/violet cascade in *“°Ca.
This system was used by ASPECT, GRANGIER and ROGER [1981, 1982] and
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ASPECT, DALIBART and ROGER [1982] as the basis of a polarization correla-
tion experiment that demonstrated a strong violation of the generalized Bell
inequalities.

A block diagram illustrating the use of “°Ca photon pairs for generating
nonclassical light is presented in fig. 6.3. A beam of “°Ca atoms is selectively
excited to the 4p? 'S, state by means of optical pumping. This is the source.
The atoms decay by the spontaneous emission of a green photon (at a
wavelength of 551.3 nm) and a violet photon (at 422.7 nm). The two photons
are correlated in emission times and in polarization. The green fluorescence
light is collected by a lens and passed through a polarizer and green-
transmitting interference filter to a photomultiplier tube (PMT)/discriminator,
which produces the control signal. The green photoelectron events, in turn, feed
a digital electronic trigger circuit that produces brief pulses of duration T,
(= 10 ns) in accordance with a rule for selection, to be discussed subsequently.
The violet fluorescence light is collected from the other side of the source. It
is fed through a polarizer and violet-transmitting interference filter, into an
optical delay path, and then through an optical gate that is opened for a period
of 1, s each time a pulse arrives from the selected trigger circuit. The optical
delay path is adjusted so that the electrical trigger pulse (arising from the
registration of a green photon) and its companion violet photon arrive at the
optical gate simultaneously.

POLARIZER AND POLARIZER AND
VIOLET-TRANSMITTING GREEN-TRANSMITTING
FILTER FILTER

Yo ATOMS PMT/ SELECTED
EXCITED TO DISCRIM. |—»] TRIGGER
an?'S, STATE (GREEN) CIRCUIT

OPTICAL
DELAY
PATH

4

OPTICAL
GATE AN\/V]M
S

UB-POISSON
VIOLET PHOTONS

Fig. 6.3. Block diagram for sub-Poisson light generation using correlated photon pairs, in this
case cascaded photon emissions from “°Ca atoms. (After SALEH and TEICH [1985].)
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Fig. 6.4. Sample functions of the green and violet photon events for the scheme shown in fig. 6.3.
The thinned violet process displayed in (e) represents a low-flux source of weakly sub-Poisson
light. (After SALEH and TEICH [1985].)

Several representative sample functions of the photon events are presented
in fig. 6.4. A simple picture of this kind assumes that the photon occurrences
are sufficiently sparse so that their wavepackets do not overlap. This is
equivalent to assuming that the degeneracy parameter & = ut, (where p
represents the photon rate and 1, is the emission lifetime) is low, which is the
condition under which such an experiment must be operated. The emission of
the green photons from suitably excited calcium atoms may be represented as
a Poisson point process (designated “green process” in row a). Some fraction
of the green photons produces unitary events at the output of the green PMT
(designated “thinned green process” in row b). As discussed in § 4, a Poisson
photon process remains Poisson under Bernoulli random deletion, but with a
rate that is reduced (TEICH and SALEH [1982], PERINA, SALEH and TEICH
[1983]).

The thinned green events are then used to produce trigger pulses (of duration
1,) in accordance with a prespecified rule designed to render the trigger process
sub-Poisson. As an example, a trigger pulse may be produced upon the
registration of every .#"th green photon. (This selective deletion rule is illustrated
for A= 2 in row c, designated “trigger pulses for optical gate”.) This is the
same rule denoted as decimation in fig. 1.1d. It is well known from renewal
point-process theory that the selective deletion of every 4'th event from a
Poisson process (denoted a gamma-.4"process) leads to a counting process that
becomes increasingly sub-Poisson as .4 increases, provided that the counting
time 7 is sufficiently long (see § 3.4.1 and TEICH, SALEH and PERINA [1984],
eq. A24). Alternatively, another mechanism such as dead time can be used to
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make the trigger pulses sub-Poisson (see § 3.4.1 and TEICH and VANNUCCI
[1978]). The trick is that for each green photon, and therefore for each trigger
pulse, there is a large probability that a violet companion photon is following
closely behind (roughly within the intermediate-state lifetime 7, = 5 ns). The
optical gate permits the violet photons to pass only during the times when it
is open, and those times form a sub-Poisson counting process. Assuming for
the moment that no violet photons are lost, row d illustrates the “violet process”
which, in our example, is clearly also described by the gamma-.4"counting
process. Of course, not all of the violet photons survive, so that what actually
passes through the optical gate (designated “thinned violet process” in row e)
is a randomly deleted version of the gamma-.4"photon-counting process. In
accordance with the results presented in § 4, a randomly deleted sub-Poisson
photon point process remains sub-Poisson but moves toward the Poisson
barrier.

Using eq. (4.1), the Fano factor for a Bernoulli-deleted gamma-.4"photon-
counting process is easily shown to be (SALEH and TEICH [1985])

1
F(T)=1 - 1-—]), )
W(T) =1 ﬂv( JV) (6.1)

where #, is an effective quantum efficiency for the violet photons. For an
experimental configuration similar to that used by ASPECT, GRANGIER and
ROGER [1981], the photon Fano factor is estimated to be F,(T) = 0.9990.
Folding in the violet-PMT quantum efficiency provides an estimated photo-
electron Fano factor (SALEH and TEICH [1985]) F, (T) = 0.9999, which is
close to unity but should be measurable.

6.2.2. Correlated photon pairs from parametric downconversion

WALKER and JAKEMAN [1985a] recognized that a similar result can be
achieved by using photon pairs generated by the process of spontaneous
parametric downconversion (see also JAKEMAN and WALKER [1985] and
JAKEMAN and JEFFERSON [1986]). This effect may be described as the
splitting of a single photon into two (correlated) photons of lower frequency.
The effect was first observed experimentally by BURNHAM and WEINBERG
[1970]. The time uncertainty in the emission of the photon pairs can be short;
it is determined by the inverse bandwidth of the detected light (HONG and
MANDEL [1985], FRIBERG, HONG and MANDEL [1985]).

The first parametric downconversion experiment conducted by WALKER
and JAKEMAN [1985b] used a configuration similar to that shown in fig. 6.2¢.
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One member of each correlated photon pair was detected. This event provided
an electrical feedback signal, which controlled an optical shutter in the excita-
tion beam. The optical shutter was closed for a fixed dead-time period 1,
following the detection of an event. Poisson photons obtained from a He—-Cd
laser operated at 325 nm served as the excitation process. This UV light was
passed through an acousto-optic shutter (the control gate) and impinged on an
ammonium dihydrogen phosphate (ADP) nonlinear crystal (the source), which
produced red photon pairs by parametric downconversion. The signal light
generated had an experimental second-order correlation function g‘®(1) that
increased with 7, as 7 increased from 0. This indicates photon antibunching,
in accordance with the positive-derivative definition provided in § 2.1.3. How-
ever, because g'?(7) was always greater than unity, the light generated in this
experiment was not sub-Poisson; this was attributed to long-term laser power
fluctuations.

More recently, RARITY, TAPSTER and JAKEMAN [ 1987] succeeded in using
this technique to produce sub-Poisson light. A block diagram of their apparatus
is presented in fig. 6.5. The experimental arrangement is similar to that used
in the antibunching experiment just described; fiber-optic light guiding and a
single-photon-counting avalanche photodiode were added. The source of
downconverted photons in this case was a potassium dihydrogen phosphate
(KD*P) crystal, and the control gate acted on the signal channel rather than
on the excitation channel so that the configuration is similar to that shown in
fig. 6.2a rather than 6.2c. The observed effect was small but statistically
significant; the postdetection Fano factor turned out to be F = 0.9998 with a
photoelectron counting rate ~30s~! and a switching time ~ 19 us.

TRIGGER CHANNEL

PHOTODIOODE

SHUTTER

KD*p

CRYSTAL

1

OPTICAL

PULSE
GENERATOR

CORRELATOR

Fig. 6.5. Block diagram of the parametric downconversion experiment used by RARITY, TAPSTER
and JAKEMAN [1987] to generate sub-Poisson light. (After RARITY, TAPSTER and JAKEMAN
[1987].)
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TAPSTER, RARITY and SATCHELL [ 1988] modified this experiment by using
analog rate compensation of the pump power (see fig. 1.1f) provided by the
control beam, using an electro-optic modulator. They generated ~ 60 pW of
sub-Poisson light with a remarkably low Fano factor F = 0.78. This appears
to be the lowest Fano factor yet reported for the direct generation of sub-
Poisson light. However, the bandwidth over which the light was sub-Poisson
was quite limited (~ 60 Hz) and the overall quantum efficiency of the process
was very low (~6x 107'"). Also recently, HEIDMANN, HoORoOWICZ,
REYNAUD, GIACOBINO and FABRE [1987] used a two-mode optical para-
metric oscillator operating above threshold to generate high-intensity twin
beams exhibiting strong quantum correlations.

A number of techniques have been suggested to enhance the nonclassical
degree of the light (see, for example, WALKER [1986, 1987]). Suggestions have
also been made for the use of other related schemes (YUEN [1986], STOLER
and YURKE [1986], SRINIVASAN [1986b]), some of which are closely con-
nected with overflow count deletion (MANDEL [1976a]), which is illustrated in
fig. 1.1e.

6.2.3. All-optical systems using correlated photon pairs

In the examples discussed in the previous two subsections the feedback
signal, although initiated by the photons in one of the twin beams, was carried
electrically. This electrical signal was then used to control an optical beam. This
external signal can also be carried optically (e.g., on an optical fiber) and used
for direct optical control of the excitation or signal beams. The potential
advantage in short-circuiting the electrical link is the high speed inherent in
all-optical systems. A general block diagram of a system of this type is shown
in fig. 6.6. The correlated photon-pair generator might be a parametric down-
converter. The control signal is carried on an optical fiber to a nonlinear optical
mechanism, which modifies the excitation in opposition to the control signal,
that is, it provides negative feedback. Mechanisms that achieve this are
second-harmonic generation and the photochromic effect (which is usually

OPTICAL FIBER

NONLINEAR CORRELATED
LASER Ay OPTICAL LAAAAYPHOTON-P A IR MYVAAMAAAAS
MECHANIBM
GENERATOR SUB-POISSON
PHOTONS

Fig. 6.6. Block diagram of a general all-optical system using correlated photon pairs, optical
feedback, and a nonlinear optical mechanism that rate-compensates the excitation beam.
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quite slow, however). Rate compensation can be used so that operation is not
restricted to a single-file photon stream.

6.2.4. Quantum-nondemolition measurements

Quantum nondemolition (QND) measurements, in which an observable may
be measured without perturbing its free motion, have been studied in the
context of gravitational-wave detection and quantum optics (BRAGINSKY and
VORONTSOV [ 1974], CAVES, THORNE, DREVER, SANDBERG and ZIMMERMAN
[1980], BRAGINSKY and VYATCHANIN [1981, 1982], MILBURN and WALLS
[1983]). IMoTO, HAus and YamMaMoTo [1985] recently presented a
theoretical treatment illustrating that a QND measurement of the photon
number in a signal beam can be made, without photon destruction, by use of
the lossless optical Kerr effect. In the proposed measurement scheme the phase
of a probe wave passed through the Kerr medium provides information about
the refractive-index change, which, in turn, is dependent on the signal photon
number in the medium. Precision in the photon number measurement is
provided at the expense of increased uncertainty in the canonically conjugate
signal phase variable (CARRUTHERS and NIETO [1968]), subject to the
minimum value provided by the Heisenberg uncertainty principle.

YaMaMmoTo, IMOTO and MACHIDA [1986a] further proposed that the
results of such a QND photon-flux measurement at the output of a semi-
conductor diode injection laser could be negatively fed back to control the rate
of excitation of the laser, thereby producing sub-Poisson photons by rate
compensation, in the manner shown in fig. 1.1f. They calculate that the phase
noise of the signal beam is increased in an amount such that the number—phase
minimum uncertainty product is preserved. Their scheme is illustrated in the
block diagram of fig. 6.7. The (single) photon beam at the output of the laser
gives rise, without loss of photons, to an electrical feedback signal that controls
the laser excitation rate. The feedback signal is actually obtained from a probe
laser in conjunction with a Kerr nonlinear interferometer, as is evident from
fig. 6.7. More recently, YAMAMOTO and HAus [1986] showed that under
proper conditions a quasi-QND measurement of photon number, followed by
a phase measurement, leads to a doubling of the noise associated with photon
number and phase as required for the simultaneous measurement of two
noncommuting variables.

A QND signal can also be obtained by means of other nonlinear optical
processes, such as four-wave mixing (MILBURN and WALLs [1983]). The
principle of QND detection has recently been verified by LEVENSON, SHELBY,
REID and WALLS [1986].

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



72 PHOTON BUNCHING AND ANTIBUNCHING [1,§6

probe
laser
1]
1
NI . .
loser R==—=== =—==——2> sub-Poissonian
X L ! state
|
! optical Kerr medium |
A
L SETEETIEE -~
]
+

negotive feedback

Fig. 6.7. Block diagram of the scheme proposed by YAMAMOTO, IMOTO and MACHIDA [1986a]

for generating sub-Poisson (photon-number-squeezed) light. A quantum nondemolition (QND)

measurement of the laser-output photon number is used to control the laser excitation rate. (After
YaMaMoto and Haus [1986].)

6.3. LIMITATIONS OF PHOTON-FEEDBACK METHODS

As indicated in § 1, a useful source of sub-Poisson light will exhibit a photon
Fano factor F,(T) that is substantially below unity and will produce a large
photon flux @ (corresponding to a large average photon number {n)) with
a reasonably large overall quantum efficiency 7. Ideally, the device should also
be small in size and produce a directed output so that the light can be coupled
to an optical fiber. The structure should be designed in such a way that light
loss is minimized (see § 4).

Nonlinear optics methods (see § 6.1) generally employ a laser pump that
emits Poisson-distributed photons. In such cases F,(T) and % will be the
principal limiting factors in producing a useful source; they are determined by
the efficiency with which pairs or clusters of photons can be separated from
the pump beam. The photon flux will generally be unlimited and 7 can be small,
since it is determined by the intermediate state lifetime of the nonlinear process.

Methods employing correlated photon pairs (see § 6.2.1 to § 6.2.3) can, in
principle, exhibit small values of F,(T), but @, # and T will be limited. The
limitation on the photon flux arises from the use of dead-time and selective-
deletion gating, which require single-file events for the technique to operate.
Rate compensation is a preferable feedback mechanism from this point of view,
but 7 will still be limited by the photon-pair generation mechanism. The photon
flux may also be limited by the necessity of avoiding photon interference effects
(thereby requiring that the degeneracy parameter not exceed unity). 7 is limited
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by the particular configuration: the intermediate-state lifetime for two-photon
atomic emissions (t, ~ 5 ns in “°Ca), the dead-time (gating time) in parametric
downconversion with optical dead-time gating (74 &~ ns—us); and the pair
event-time difference in correlated photon-pair generation with optical-fiber
feedback (1 < 0.1 ns for parametric downconversion).

If the light is to be used in an application such as lightwave communications,
the switching time (or symbol duration) T should be able to be made small so
that the device can be modulated at a high rate (SALEH and TEICH [1987]).
However, T must be sufficiently large in comparison with the characteristic
response time of the system 1 to ensure that the sub-Poisson character of the
photons is captured in the counting time.

Although sub-Poisson light generated by photon feedback may not be useful
for the transmission of information (see § 8), it should be pointed out that there
are specialized applications in which the use of correlated photon pairs and
post-detection processing (e.g., subtraction, correlation) are potentially useful
(JAKEMAN and RARITY [1986]).

The limitations of QND techniques are not yet well understood. Outstanding
questions include (1) the assumption of losslessness of the Kerr medium,
(2) the role of signal/probe interference (self-phase modulation), (3) the charac-
teristic time constant of the process, and (4) the achievable value of F,(T).
Some of these questions have begun to be answered, as described by
LEVENSON, SHELBY, REID and WaLLS [1986].

It will become evident in § 7 that excitation-feedback methods are governed
by a different set of constraints which are often less restrictive.

§ 7. Generation of Antibunched and Sub-Poisson Light by Excitation
Feedback

We now consider excitation feedback, which is an alternative technique for
generating sub-Poisson light. In this case the excitation process itself is
rendered sub-Poisson by means of feedback, as illustrated schematically in
fig. 7.1a (compare with fig. 6.1). Excitation-feedback methods provide the
greatest promise for producing sources with small photon Fano factor, large
photon flux, high overall efficiency, small size, and the capability of being
modulated at high speeds (small T). Excitation feedback methods are also
called “direct generation methods”.

Excitation feedback methods effectively operate by permitting a sub-Poisson
number of electrons to generate a sub-Poisson number of photons (one photon
per electron); the photons may be viewed as representing a nondestructive
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Fig. 7.1. Schematic diagram illustrating the generation of sub-Poisson light by means of excitation
feedback: (a) feedback process intrinsic to physical excitation mechanism; (b) feedback process
intrinsic to source. Excitation feedback can also be carried externally, as considered subsequently.

measurement of the electron number. This is to be distinguished from the QND
configurations considered in § 6. There, a sub-Poisson number of photons
generates an electrical current, which signals the photon number without
destroying the photons (by means of a phase measurement). It is far easier to
achieve a measurement of the electron number than the photon number because
of the robustness (non-zero rest mass) of the electrons. Unlike photons, they
are not destroyed by conventional measurement techniques.

A number of the limitations inherent in photon-feedback mechanisms, as
discussed in the previous section, are avoided:

(1) Photons naturally gravitate toward Poisson-counting statistics and shot-
noise fluctuations (SALEH, STOLER and TEICH [1983]). It is difficult for the
nonlinear-optics methods to undo this natural Poisson photon noise. Electrons,
on the other hand, are often governed by quieter thermal-noise fluctuations
(MoOULLIN [1938], WHINNERY [1959], LAMPERT and RosSE [1961]), thereby
permitting F,(7T') to be made smaller.

(2) Nonlinear-optics schemes in which Poisson photons are first generated
(subject to a source power constraint) and subsequently converted into sub-
Poisson photons cannot provide an enhancement of the channel capacity for
applications such as lightwave communications as discussed in § 8 (SALEH
and TEICH [1987]).

(3) Sub-Poisson electron-excitation configurations produce light by means
of efficient single-photon transitions; high overall quantum efficiencies and
large values for the photon flux are therefore readily achieved. Nonlinear-optics
methods, on the other hand, rely on (relatively) inefficient multiple-photon
transitions. Furthermore, they are subject to photon interference effects, which
can limit the degeneracy parameter (and therefore the photon flux) to small
values (SALEH and TEICH [1985]).
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Fig. 7.2. Schematic representation of photoemission and inverse photoemission (illustrated by

the Franck-Hertz effect). Energy relations and flux relatons are shown, as are sample functions

of the excitation and final statistics; i, represents the average electron current and / is the average

light intensity (or photon flux). The generated photons behave like classical particles in a

photon-counting paradigm, provided that the detector counting time and area are sufficiently
large {T'> 1,, 7,; A > A.). (After TEICH and SALEH [1985].)

(4) Electron excitations, especially those mediated by physical processes
(e.g., space charge), can attain a small characteristic response time <,
so that fast switching can be achieved.

It is useful to view the conversion of electron excitations into single-photon
emissions in terms of the process of inverse photoemission. A comparison
between photoemission and inverse photoemission is schematically illustrated
in fig. 7.2. For photoemission (fig. 7.2a) a photon impinges on a metal or atom
and liberates an electron. The maximum kinetic energy of the electron (KE_,,.,)
is equal to the photon energy (4 v) minus the work function of the material (e¢)
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in accordance with Einstein’s photoelectric equation, as shown in fig. 7.2b. The
flux relation displayed in fig. 7.2c demonstrates that the average photocurrent
i, is proportional to the average light intensity or photon flux (7). Finally,
sample functions of the photon point process (excitation statistics) and the
resulting electron point process (final statistics) are represented in fig. 7.2d.
They are related by a Bernoulli transform, which results from the non-unity
quantum efficiency of the photodetector (partition noise), as discussed in § 4.
The electrons liberated from the photocathode accurately sample the photon
number, provided that the detector counting time T and sampling area A are
properly adjusted (TEICH, SALEH and PERINA [1984]).

'The processes are essentially reversed for inverse photoemission. For clarity
we expressly consider the Franck—Hertz effect as an example. In fig. 7.2a an
electron strikes an atom, loses its kinetic energy, and excites the atom. The atom
then decays to a lower energy state and in the process emits a single photon
by means of spontaneous emission. The energy of the emitted photon is equal
to the energy supplied to the electron by an external field (E) less the
cathode—emitter contact potential e @, as shown in fig. 7.2b. Only electrons with
kinetic energy corresponding to the discrete energy levels of the atom (indicated
by crosses) are effective in producing photons. In fig. 7.2c we show that the
average photon flux is proportional to the average electron current. Because
this mechanism involves ordinary spontaneous (or stimulated) emission, it is
afirst-order optical process and can be expected to produce a high photon flux.
Finally, in fig. 7.2d we illustrate the electron point process (excitation statistics).
It is portrayed as quite regular because of the space-charge regularization. The
photon point process (final statistics) is a Bernoulli-deleted version of the
electron point process as a result of optical loss.

As in the case of sub-Poisson light generation by photon feedback, the
feedback control signal may be intrinsic to the physical mechanism providing
the excitation or it may be carried externally. Methods that make use of
feedback intrinsic to a physical process, such as space-charge-limited excita-
tions (in which the physical process is Coulomb repulsion), are considered in
§ 7.1. In § 7.1.1 we discuss the space-charge-limited Franck—Hertz experiment
(TEICH and SALEH [ 1985]), which provided the first source of unconditionally
sub-Poisson light. In § 7.1.2 we discuss a solid-state version of the
Franck—Hertz experiment that should lead to sub-Poisson recombination
radiation. This is followed, in § 7.1.3, by a discussion of the potential improve-
ments to be realized by the cascading of sub-Poisson electron excitations and
stimulated emissions.
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Methods that make use of an external feedback signal are considered in
§ 7.2. The method reported in § 7.2.3 makes use of an in-loop auxiliary optical
source, which emits light that effectively mimics the sub-Poisson electron
current. External current stabilization schemes are discussed in § 7.2.4. Finally,
a discussion of the limitations applicable to excitation-feedback methods is
provided in § 7.3.

Although our attention is directed principally to excitation feedback, it is of
interest to point out that there are other related schemes which may be useful.
A schematic representation in which source feedback is used is shown in
fig. 7.1b. For example, this mechanism could be used, at least in principle, to
convert the sub-Poisson individual emissions observed by SHORT and
MANDEL [1983] into a c¢w sub-Poisson source. As illustrated in fig. 5.3, the
Poisson nature of the atomic entries into their apparatus (random source
statistics) precludes the production of cw sub-Poisson light. However, if the
source were a cold ion beam rather than an atomic beam, it could be rendered
sub-Poisson by virtue of the ionic Coulomb repulsion. The source feedback
could then be used to convert the sub-Poisson individual emissions into
unconditionally sub-Poisson light provided, of course, that the emissions
themselves were sufficiently sub-Poisson. The experiment carried out by
DieDRICH and WALTHER [1987], in which resonance fluoresence was
observed from a single trapped ion, can be viewed as a degenerate example of
source feedback.

7.1. METHODS USING FEEDBACK INTRINSIC TO A PHYSICAL PROCESS

We now consider several methods that make use of the sub-Poisson excita-
tions inherent in an electric current. Current supplied from a dc source, such
as a battery for example, is naturally sub-Poisson as a result of the intrinsic
Coulomb repulsion of the electrons (the principal source of noise is Johnson
noise). In such cases it suffices to drive an emitter operating by means of
single-photon transitions with such a current. Thus, a simple LED driven by
a constant current source should emit sub-Poisson photons.

Coulomb repulsion, which is the underlying physical feedback process for
space-charge-limited current flow, is ubiquitous when excitations are achieved
by means of charged particle beams. The single-photon emissions may be
obtained in any number of ways. In § 7.1.1 they arise from spontaneous
fluorescence emissions in mercury vapor, in § 7.1.2 they represent spontaneous
recombination photons in a semiconductor, and in § 7.1.3 they are stimulated
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recombination photons. These methods all operate by transferring the anti-
clustering properties of the electrons, ultimately arising from Coulomb
repulsion, directly to the photons.

1.1.1. Space-charge-limited Franck—Hertz experiment

Unconditionally sub-Poisson ultraviolet photons have been generated by the
use of a space-charge-limited Franck—Hertz experiment (TEICH and SALEH
[1983, 1985], TEICH, SALEH and STOLER [1983], TEICH, SALEH and
LARCHUK [1984]). The essential element of the experiment was a collection of
mercury atoms excited by inelastic collisions with a low-energy space-charge-
limited (quiet) electron beam. The space-charge reduction of the usual shot
noise associated with thermionically emitted electrons can be substantial
(MouLLIN [1938], THompsoN, NoORTH and HARRIS [1940, 1941],
WHINNERY [1959], SRINIVASAN [1965, 1986a]). Fano factors for the electron
stream with values F, < 0.1 are typical, and values as low as 0.01 are possible.
After excitation each atom emits a (sub-Poisson) single photon by means of the
Franck-Hertz (FH) effect (FRANCK and HERTZ [1914], FRANCK and
JORDAN [1926]). This scheme is of the form represented in fig. 7.1a.

A block diagram of apparatus used in the experiment is shown in fig. 7.3. The
light was generated in a specially constructed 25 mm-diameter UV-transmitting
Franck—Hertz tube, filled with 0.75 g Hg. The radiation impinged on a
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Fig. 7.3. Block diagram of the space-charge-limited Franck—-Hertz experiment that produced
unconditionally sub-Poisson light at 253.7 nm. (After TEICH, SALEH and LARCHUK [1984] and
TEICH and SALEH [1985].)
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UV-photon-counting photomultiplier tube (PMT) in a special base that
provided preamplification, discrimination, and pulse shaping. The output of
this circuitry was fed to electronic photon-counting equipment, which measured
the probability distribution p(n, T) for the detection of n photoelectrons in the
time T. The mean count {n) and the Fano factor F,(T") were calculated from
p(n, T). The details of the experiment have been described by TEICH, SALEH
and LARCHUK {1984] and by TEICH and SALEH [1985].

A representative set of raw data for the post-detection Fano factor F,,(T) (the
average for a set of experiments) versus the detected photon count rate u
(kilocounts/s) is shown in fig. 7.4. Data are presented for Poisson filament light

©
w
r.
e
T

° FILAMENT LIGHT
—— LASER LIGHT {632.8nm)
0990 | -+~ FRANCK-HERTZ LIGHT {253.70m)

163 P, — 6'sy Hg TRANSITION)

PHOTON-COUNT VARIANCE-TO-MEAN RATIO F,(T)

0.988 1 i 1 i 1 1
10 20 30 40 50 60 70 80

DETECTED PHOTON COUNT RATE u (kent/sec)

Fig. 7.4. Average post-detection photon-count variance-to-mean ratio (Fano factor) F,(T) ver-

sus detected photon count rate y (kilocounts/s), for T = 1.0 us. The error bracket ( + 0.0004) is

the same for all data points. The Fano factor for Franck-Hertz light lies below that for Poisson

light for several (sufficiently small) values of the count rate u. The overall negative slope of the

data is a result of dead time in the photon-counting apparatus. (After TEICH, SALEH and
LARCHUK [1984] and TEICH and SALEH [1985].)
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(open circle), Poisson filament-plus-laser light (solid circles and solid-line
segments), and sub-Poisson Franck—Hertz-plus-filament light (triangles and
dashed-line segments). Because of afterpulsing and dead-time effects in the
measuring apparatus, the experimental results for the FH light must be
compared with those for Poisson light (rather than with a theoretical Poisson
distribution) at each value of u. The filament-plus-laser light provided an
excellent Poisson photoelectron distribution because of the short counting time
(T = 1 ps) and the extremely low value of the PMT quantum efficiency for light
at these wavelengths. The standard deviation (SD) for a measurement of F,(T')
that consists of L = 107 samples turned out to be ~(2/L)"? ~ 0.0004. This
calculated value for the SD was experimentally verified by carrying out many
series of runs and is the same for all data points.

In the range u < 30 kilocounts/s ({n) < 0.03), values of the Fano factor for
the Franck—Hertz light were below those of the Poisson light by between 2 and
3 standard deviations (depending on the details of how the estimates are made).
A number of corrections (PMT afterpulsing, PMT cosmic-ray events, dead
time in the photon-counting system, and Poisson filament background counts)
were applied to the raw data to obtain an absolute experimental estimate of the
post-detection Fano factor F, (T) for the Franck—Hertz light, which turned out
to be ~0.998 at T = 1 us. At higher count rates the Franck-Hertz light was
consistently noisier than the Poisson light. There are several possible explana-
tions for this observation; these include the diminished role that dead time may
play for sub-Poisson processes, the increase in the degeneracy parameter of the
light, and the possibility of stimulated photoluminescence.

The theoretical Fano factor was calculated from eq. (4.2). Using appropriate
estimates for the experimental arrangement (n = 0.0025, f~ 0.3, and F_ ~ 0.1)
provides an expected Fano factor F,(T) = 0.999, in good accord with the
observed value. The small degree of sub-Poisson behavior is principally the
result of optical losses in the experimental apparatus.

7.1.2. Space-charge-limited excitation of recombination radiation

As indicated earlier a useful source of sub-Poisson light should exhibit a
photon Fano factor that is substantially below unity while producing a large
photon flux with high efficiency, preferably in a directed beam. It should also
be small in size and rapidly switchable.

This has led to a proposal for a semiconductor device structure in which
sub-Poisson electron excitations are attained through space-charge-limited
current flow, and single-photon emissions are achieved by means of recombi-
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nation radiation (TEICH, CAPASSO and SALEH [1987]). Again, this scheme is
of the form represented in fig. 7.1a. A device of this nature will emit sub-Poisson
recombination radiation. The energy-band diagram for such a space-charge-
limited light-emitting device (SCL-LED) is illustrated in fig. 7.5. Sub-Poisson
electrons are directly converted into sub-Poisson photons, as in the space-
charge-limited Franck—Hertz experiment, but these are now recombination
photons in a semiconductor. In designing such a device, carrier and photon
confinement should be optimized and optical losses should be minimized. The
basic structure of the device is that of a p*—i-n* diode. Near-infrared
recombination radiation is emitted from the LED-like region.

The current noise in such a space-charge-limited diode (SzE [1969]) can be
low. It has a thermal (rather than shot-noise) character (LAMPERT and ROSE
[1961], NICOLET, BILGER and Z1JLSTRA [1975a,b]). The current noise spectral
density S, (w) for a device in which only electrons participate in the conduction
process is given by (TEICH, CAPASSO and SALEH [1987])

Se(w) _ 8k8
2e i,y eV’

where {i.) is the average forward current in the device. { ¥, ) is the applied
forward-bias voltage, k is Boltzmann’s constant, @ is the device temperature in
K, w is the circular frequency, and e is the electronic charge.

Using egs. (4.1) and (4.5), the degree of sub-Poisson behavior of the detected
photons is then expected to be (TEICH, CAPASSO and SALEH [1987])

7.1)

Fig. 7.5. Energy-band diagram of a specially constructed, solid-state space-charge-limited light-

emitting device under (a) equilibrium conditions and (b) strong forward-bias conditions. The

curvature of the intrinsic region under forward-bias conditions indicates the space-charge poten-
tial. (After TEICH, CAPASsO and SALEH [1987].)
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F(T)=1+ "(e§50> - 1), (1.2)

provided that background light is absent (§ = 1). For a space-charge-limited
diode, such as that shownin fig. 7.5, it is estimated that 8k8/e { V> =~ 0.1 when
#=300K and {V,)> = 2V (corresponding to <{i, » ~ 33 mA). This ratio can
be further reduced by cooling the device. If a dome-shaped surface-emitting
GaAs/GaAlAs configuration and a Sip-i-n photodetector are used, the
overall quantum efficiency is estimated to be # ~ 0.1125, yielding an overall
estimated post-detection Fano factor F,(T) ~ 0.899. A commercially available
standard LED should provide F,(T) = 0.973. In both cases T can be as short
as ~1ns.

The space-charge-limited light-emitting device therefore promises sub-
Poisson light with properties that are significantly superior to those of the
mercury-vapor space-charge-limited Franck—Hertz source discussed in the
previous subsection (F,(T)~ 0.998 with T = 1 us). Indeed, the degree of
sub-Poisson behavior of the recombination radiation from the SCL-LED is
limited essentially only by the geometrical collection efficiency.

7.1.3. Sub-Poisson excitations and stimulated emissions

The properties of the light generated by the SCL-LED might be subject to
improvement if stimulated emissions are permitted. These include improved
beam directionality, switching speed, spectral properties, and coupling to an
optical fiber. This could be achieved by the use of an edge-emitting (rather than
surface-emitting) LED configuration, with its waveguiding geometry and super-
fluorescence properties (single-pass stimulated emission). Although eqgs. (4.1)
and (4.5) were explicitly derived for independent photon emissions, they will
apply even if the photon emissions are not independent, as is the case when
stimulated emission plays arole, provided that T » 1, 1.; 4 » A_, where 7_and
A_ are now the coherence time and coherence area of the superfluorescent
emission, respectively. The effect of the stimulated emissions is to extend 7, into
1. and to reduce the coherence area A_. From a physical point of view the
photons still behave as classical particles in this regime, since each electron
gives rise to a single photon and there is no memory beyond the counting
interval T.

There will likely be further advantage in combining space-charge-limited
current injection with a semiconductor laser structure rather than with a LED
structure. This method would provide increased emission efficiency as well as
additional improvement in beam directionality, switching speed, spectral
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properties, and coupling. This will be beneficial when the laser can be drawn
into a realm of operation in which it produces a state more akin to a number
state than a coherent state (the coherent state has Poisson photon-number
fluctuations and minimal phase fluctuations) (FiLIPOWICZ, JAVANAINEN and
MEYSTRE [1986], YAMAMOTO, MACHIDA and NILSSON [1986], YAMAMOTO,
IMoTo and MACHIDA [1986b], YAMAMOTO and MACHIDA [1987]).
MacHIDA, YAMAMOTO and ITAYA [1987] have shown that this mode of
operation can be attained in a semiconductor laser oscillator, within the cavity
bandwidth and at high photon-flux levels, if the pump fluctuations are
suppressed below the shot-noise level, using external feedback to achieve the
pump quieting (see § 7.2.4). Related suggestions have been made by SMIRNOV
and TrRoOSHIN [1985] and by CARROLL [1986].

7.2. METHODS USING EXTERNAL FEEDBACK

A number of external-feedback mechanisms can be used to ensure that the
current flowing in a circuit is sub-Poisson. These include both opto-electronic
and current-stabilization schemes. In § 7.2.1 we discuss the use of two
negative-feedback schemes that rely on the use of a light source and detector
in a feedback loop. However, under ordinary conditions the use of a
beamsplitter to extract a portion of these in-loop photons is not useful for
producing nonclassical light, as discussed in § 7.2.2.

In § 7.2.3 we discuss the possibility of generating sub-Poisson photons from
sub-Poisson electrons by making use of external excitation feedback and an
in-loop auxiliary optical source. Sub-Poisson electrons flow through the
auxiliary source and produce sub-Poisson photons en route. The photon
number represents a nondestructive measurement of the electron number. The
robustness of the electrons permits them to emit recombination photons
without being destroyed. In this sense this configuration is like the
Franck-Hertz experiment in which we begin with atoms and electrons and end
with atoms, electrons and photons. The QND measurement discussed in
§ 6.2.4, on the other hand, begins with atoms and photons and ends with atoms,
photons and electrons, which is a more difficult process to achieve.

Finally, in § 7.2.4 we discuss the generation of sub-Poisson electrons by
means of an electronic scheme, namely, external current stabilization.

7.2.1. Opto-electronic generation of sub-Poisson electrons

Sub-Poisson excitations can be generated by the use of external feedback.
Two opto-electronic experiments incorporating external feedback have been

M. C. Teich and B. E. A. Saleh, "Photon Bunching and Ant bunching," in
Progress in Optics, vol. 26, edited by E. Wolf (North-Holland, Amsterdam, 1988),
ch. 1, pp. 1-104.



84 PHOTON BUNCHING AND ANTIBUNCHING ,§7

DEAD-TIME
TRIGGER
CIRCUIT

LASER} oPTICAL
LIGHT | GATE

DETECTOR COUNTER

Fig. 7.6. Generation of antibunched and sub-Poisson electrons by external feedback, as studied
by WALKER and JAKEMAN [1985a].

used to generate sub-Poisson electrons. One of these experiments was carried
out by WALKER and JAKEMAN [1985a] (see also BROWN, JAKEMAN, PIKE,
RARITY and TAPSTER [1986]) and the other by MACHIDA and YAMAMOTO
{1986] (see also YAMAMOTO, IMOTO and MACHIDA [1986a]). The simplest
form of the experiment carried out by WALKER and JAKEMAN [1985a] is
illustrated in fig. 7.6. The registration of a photoevent at the detector operates
a trigger circuit, which causes an optical gate to be closed for a fixed period of
time 7, following the time of registration. During this period, the power P, of
the (He—He) laser illuminating the detector is set precisely equal to zero so that
no photoevents are registered. This is the dead-time optical gating scheme
shown schematically in fig. 1.1b and discussed in § 6.2.2. Sub-Poisson photo-
electrons were observed.

MACHIDA and YAMAMOTO’S [1986] experiment (fig. 7.7) has a similar
thrust, although it is based on rate compensation (see fig. 1.1f). They used a
single-longitudinal-mode GaAs/AlGaAs semiconductor injection laser diode
(LD) to generate light and a Si p~i—n photodiode (PD) to detect it, as shown
in fig. 7.7a. Negative electrical feedback from the detector was provided to the
current driving the laser diode. A sub-shot-noise spectrum and sub-Poisson
photoelectron counts were observed.

The similarity in the experimental results reported by WALKER and
JAKEMAN [1985a] and by MACHIDA and YAMAMOTO [1986] can be under-
stood from a physical point of view. In the configuration used by the latter
authors, the injection-laser current (and therefore the injection-laser light
output) is reduced in response to peaks of the in-loop photodetector current
i,. This rate compensation is essentially the same effect as that produced in the
Walker—Jakeman experiment where the He-Ne laser light output is reduced
(in their case to zero) in response to photoevent registrations at the in-loop
photodetector. The feedback acts like a dead time, suppressing the emission
of light in a manner that is correlated with photoevent occurrences at the
in-loop detector.
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Fig. 7.7. (a) Generation of antibunched and sub-Poisson electrons by external feedback using rate
compensation, as investigated by MACHIDA and YaAMAMoTO {1986}. (b) The removal of in-loop
photons by a beamsplitter leads to super-Poisson light at the out-of-loop detector (D), as
understood from the arguments of WALKER and JAKEMAN [1985a) and SHAPIRO, TEICH, SALEH,
KUMAR and SAPLAKOGLU [1986]. (After MACHIDA and YaMaMoOTO [1986}.)

7.2.2. Extraction of in-loop photons by a beamsplitter

Unfortunately, these simple configurations cannot generate usable sub-
Poisson photons, since the feedback current controlling the source is generated
from the annihilation of the in-loop photons. Indeed, any ordinary attempt to
remove in-loop photons by means of a beamsplitter, such as that made by
MAcHIDA and YAMAMoOTO [1986], as illustrated in fig. 7.7b, will lead to
super-Poisson light. This result can be understood in terms of the arguments
of WALKER and JAKEMAN [1985a}, SHAPIRO, TEICH, SALEH, KUMAR and
SAPLAKOGLU [1986], and SHAPIRO, SAPLAKOGLU, Ho, KUMAR, SALEH and
TEICH [1987].

A heuristic explanation for this phenomenon is as follows. The point process
registered at the in-loop detector (D, ) is a self-exciting point process (SEPP),
providing sub-Poisson counts. Because there is no feedback from the out-of-
loop detector (Dg), however, it registers a doubly stochastic Poisson point
process (DSPP). The laser-diode current fluctuations, regulated by the events
at the in-loop detector, provide a form of asynchronous modulation of the light
power seen by the out-of-loop detector, thereby leading to a photocount
variance that is greater than the photocount mean. The result is confirmed by
the experiments of WALKER and JAKEMAN [1985a].

From a quantum-mechanical point of view, the culprit is the open port of the
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beamsplitter used for the extraction of light. It is possible, at least in principle,
to use a beamsplitter to extract sub-Poisson photons if the open port of the
beamsplitter is filled with squeezed-vacuum radiation (CAVES [ 1987]).

When components other than beamsplitters are used, the electrical feedback
technique can be useful in generating sub-Poisson light. Two examples
involving photon feedback have already been cited: the use of correlated
photon pairs (as discussed in § 6.2.1to § 6.2.3) and when a QND measurement
may be made (as discussed in § 6.2.4).

7.2.3. Use of an in-loop auxiliary optical source

One of the more direct ways of producing antibunched and sub-Poisson light
from a system making use of external feedback is to insert an auxiliary optical
source in the path of the sub-Poisson electron stream, as suggested by CAPASSO
and TEICH [1986]. Two alternative configurations are shown in fig. 7.8. The
character of the photon emitter is immaterial; it has been chosen to be a
light-emitting diode (LED) for simplicity, but it could be a laser. In fig. 7.8a the
photocurrent derived from the detection of light is negatively fed back to the
LED input. It has been established both experimentally (MACHIDA and
YAMAMOTO [1986]) and theoretically (SHAPIRO, TEICH, SALEH, KUMAR and
SAPLAKOGLU [1986]) that, in the absence of the block labeled ‘“‘source”,
sub-Poisson electrons (i.e., a sub-shot-noise photocurrent) will flow in a circuit
such as this. This conclusion is also valid in the presence of this block, which
in this case acts simply as an added impedance to the electron flow.

Incorporating this element into the system offers access to the loop and
permits the sub-Poisson electrons flowing in the circuit to be converted into
sub-Poisson photons by means of dipole electronic transitions. This process
is achieved by replacing the detector used in the feedback configurations of
MACHIDA and YAMAMOTO [1986] and WALKER and JAKEMAN [1985a] with
a structure that acts simultaneously as a detector and a source. The sub-Poisson
electrons emit sub-Poisson photons and continue on their way. The con-
figuration presented in fig. 7.8b is similar, except that the (negative) feedback
current gates the light intensity at the output of the LED in the manner of
Walker and Jakeman, rather than the current at its input in the manner of
Machida and Yamamoto. Any similar scheme, such as selective deletion
(SALEH and TEICH [1985]) could be used as well.

Two possible solid-state detector/source configurations have been suggested
(Capasso and TEICH [1986]). The scheme shown in fig. 7.9a makes use of
sequential resonant tunneling (CAPASso, MOHAMMED and CHo [1986]) and
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Fig. 7.8. Gengration of antibunched and sub-Poisson photons by insertion of an auxiliary source
into the path of a sub-Poisson electron stream, as proposed by CAPAsso and TEICH [1986]. Wavy
lines represent photons; solid lines represent the electron current; 7 signifies the feedback time
constant. The schemes represented in (a) and (b) make use of the sub-Poisson electron production
methods illustrated in figs. 7.7 and 7.6, respectively. (After CAPAsSsO and TEICH [1986].)

single-photon electronic dipole transitions between the energy levels of a
quantum-well heterostructure. The device consists of a reverse-biased

p'-i-n* diode, where the p* and n* heavily doped regions have a wider
bandgap than the high-field, light-absorbing/emitting i region. This arrangement

ensures both high quantum efficiency at the incident photon wavelength (to

which the p* window layer is transparent) and high collection efficiency (due

to the waveguide geometry) for the light generated by the electrons drifting in

the i layer. An edge-emitting geometry is therefore appropriate. To maximize

the collection efficiency, some of the facets of the device could be reflectively

coated. The scheme shown in fig. 7.9b is similar, except that it uses the impact

excitation of electroluminescent centers in the i region by drifting electrons. Of
course, the ability of configurations such as these to generate sub-Poisson light

requires a number of interrelations among various characteristic times

associated with the system, much as those represented in eq. (4.1).
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Fig. 7.9. (a) Representative energy-band diagram of a quantum-well detector/source device (see

fig. 7.8). The energy of the incident photon emitted by the LED is denoted hw,. Detection and

source regions are shown. Photons of energy # s, are emitted by means of electronic quantum-

well transitions. (b) Representative energy-band diagram of a detector/source device with elec-

troluminescent centers impact-excited by energetic photoelectrons, emitting photons with energy
hw,. (After Capasso and TEICH [1986].)

An estimate of the degree to which this mechanism will give rise to sub-
Poisson light is, of course, provided by the Fano factor. The relevant relations
are similar to those for the Franck-Hertz source, since the emissions are
independent. However, in this situation a single electron may give rise to
multiple photons, since there is a number of stages in the device. We consider
a sub-Poisson electron counting process e, each event of which independently
generates a random number of photons « in the source. The overall photon-
number Fano factor F, (T) can then be represented in terms of the Fano factor
for the electron number F.(7) and the Fano factor for the source random
variable F (7). From eq. (3.48), the relationship is

F,=(a)F. +F,, (7.3)
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where () is the average number of photons generated in the source by each
electron.

For the case at hand it is reasonable to assume that the source random
variable is Bernoulli distributed in each stage of the device, with the probability
that an electron gives rise to a photon denoted #,. No generality is lost by
considering the multilayer superlattice case, which consists of « independent
stages. The source statistics will then be described by a binomial random
variable with {a) = un, and Var(a) = un.(1 — #.). In the presence of random
deletion arising from other factors (e.g., finite geometrical photon-collection
efficiency, absorption, external detection) and background or dark photons,
these results remain valid if #, is replaced by the quantity nf, where 7 is the
overall quantum efficiency from electrons to detected photons and f is the
factor representing the admixture of independent dark and/or background
events (see § 4.2). Equation (7.3) then gives rise to

[F, - 1] = nBluF, - 1], (7.4)

which differs from eq. (4.2) in that it depends on u. It is evident that sub-Poisson
behavior is achieved when F, < 1/u. The lowest Fano factor at the output is
achieved when u = 1. In this case the photon counting process is simply a
randomly deleted version of the electron counting process so that eq. (7.4)
reduces to eq. (4.2).

Assuming that f =~ 1, numerical estimates for the Fano factor turn out to be
similar for both structures illustrated in fig. 7.9, viz. F, =~ 0.968 (under the
assumption that the photodetector has an external quantum efficiency of 0.8).
This provides a substantial potential improvement over the value observed in
the space-charge-limited Franck—Hertz experiment. However, the Fano factor
is not as low as that attainable by the SCL-LED, principally because of low
radiative efficiency in the tunneling scheme. Furthermore the external feedback
mechanism is likely to be slower than the internal feedback scheme of the
SCL-LED.

7.2.4. Use of a current source with external compensation

Probably the simplest way of achieving sub-Poisson electron counting
statistics and single-photon emissions is by discharging a capacitor C through
a circuit containing a photon emitter such as a light-emitting diode (LED). The
current waveform then will be a nonstationary pulse with time constant
Tre = RC (where R is the resistance of the circuit). Steady-state current
stabilization can be achieved by the use of a constant voltage source in series
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with a sufficiently large external resistor R (YAMAMOTO, MACHIDA and
NILSSON [1986], YAMAMOTO and MACHIDA [1987]), or in series with some
other optoelectronic component with suitable /-V characteristic.

Strong sub-Poisson light has recently been generated in two experiments that
make use of external compensation. TAPSTER, RARITY and SATCHELL [ 1987]
carried out an elegantly simple experiment, using a high-efficiency commercial
GaAs LED fed by a Johnson-noise-limited high-impedance current source.
They achieved a Fano factor F, ~ 0.96 over a bandwidth of about 100 kHz,
with a current transfer efficiency # in excess of 11%,. MACHIDA, YAMAMOTO
and ITaya [1987] fed a InGaAsP/InP single-longitudinal-mode distributed-
feedback laser oscillator, operating at a wavelength of 1.56 um, with a current
source whose fluctuations were suppressed by the use of an external high-
impedance element. These authors obtained an average Fano factor F, ~ 0.96
over a bandwidth of about 100 MHz, with a minimum Fano factor F,, ~ 0.93.
They calculate that the radiation produced by their device is in a near
number—~phase minimum-uncertainty state (JACKIW [1968]), in the frequency
range below the cavity bandwidth (which is in excess of 100 GHz for a typical
semiconductor laser). These results are impressive. It should be kept in mind,
however, that the characteristic electron anticorrelation time 7, in external
feedback circuits such as these is likely to be larger than 1, for space-charge-
limited electron excitations, as pointed out earlier.

7.3. LIMITATIONS OF EXCITATION-FEEDBACK METHODS

We have shown that the generation of sub-Poisson light is best achieved by
the use of sub-Poisson electron excitations, mediated by a physical mechanism
such as space charge, and a single photon emission for each excitation. This
method is in general superior to nonlinear-optics methods. A space-charge-
limited light-emitting structure that operates in this manner has been discussed.

In all cases using external feedback, the characteristic anticorrelation time
of the excitations 7, is determined by the feedback time constant of the loop
1. A lower limit on the feedback time constant is imposed by the response time
and transit time of carriers through the device and by the RC characteristics
of the feedback circuitry. In general, an internal feedback process such as space
charge will provide a more effective means of providing sub-Poisson excitations
than external feedback. This is because an internal physical process is likely
to result in a smaller value of 1, than will external electronic circuitry. Con-
figurations making use of space-charge-limited excitations will therefore have
the capacity of being switched faster than those making use of external
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feedback, although this distinction is not likely to be important if external
switching can be used.

§ 8. Information Transmission using Sub-Poisson Light

Sub-Poisson light may find use in the study of optical interactions in various
disciplines, ranging from the behavior of the human visual system at the
threshold of seeing (TEICH, PRUCNAL, VANNUCCI, BRETON and McGiLL
[1982]) to optical precision measurement (JAKEMAN and RARITY [1986]). In
this section we consider the potential use of sub-Poisson light in direct-detection
lightwave communication systems and other information carrying applications.
Systems of this kind that have been developed to date make use of Poisson or
super-Poisson light (GAGLIARDI and KARP[1976], HELSTROM [ 1976], SALEH
[1978], KOGELNIK [1985], HENRY [1985], SENIOR [1985]).

There are essentially two classes of mechanisms by means of which uncon-
ditionally sub-Poisson photons may be generated. Sub-Poisson photons can be
produced from a beam of initially Poisson (or super-Poisson) photons, repre-
sented by the photon-feedback examples of § 6 (see fig. 1.1). Alternatively,
unconditionally sub-Poisson photons may be directly generated from sub-
Poisson excitations, as represented by the examples of § 7.

In §§ 8.1 and 8.2 we discuss the channel capacity of a lightwave communica-
tion system based on the observation of the photoevent point process,
demonstrating that it cannot in principle be increased by the use of sub-Poisson
light. In § 8.3, on the other hand, we show that the channel capacity of a
photon-counting system can be increased by the use of sub-Poisson light (SALEH
and TEICH [1987]). The channel capacity is the maximum rate of information
that can be transmitted through a channel without error. The capacity of the
photon channel has been the subject of a number of studies over the years
(STERN [1960], GOorDON [1962], PIERCE, POSNER and RoDEMICH [1981],
YamamMoTo and Haus [1986]). In § 8.4, we provide an example in which the
use of sub-Poisson light produced from Poisson light either degrades or
enhances the error performance of a simple binary ON-OFF keying photon-
counting system, depending on where the average power constraint is placed.
Finally, in § 8.5, we conclude with a discussion pertaining to some limitations
on direct-detection communications using sub-Poisson light.
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Poisson Sub-Poisson
point process point process
N (X) My (X)
rate rate
POISSON [Pt X[ PHOTON- |AL(X)
MODULATOR [—> PHOTON >— STATISTICS P—---4 RECEIVER
SOURCE MODIFIER
Signal X{ Signal estimate X,

Fig. 8.1. Idealized lightwave communication system employing a Poisson photon source and a
photon-statistics modifier.

8.1. COMMUNICATING WITH MODIFIED POISSON PHOTONS

Consider the transformation of a Poisson beam of photons (represented by
a Poisson point process N, of rate y,) into a sub-Poisson beam of photons
represented by a point process M, of rate 4,, as illustrated in fig. 8.1. The events
of the initial process N, are assumed to be observable (e.g., by the use of
correlated photon beams or a QND measurement) and their registrations used
to operate a mechanism which, in accordance with a specified rule, leads to the
events of the transformed photon process M,. The rate 4, of the process M, is
thereby rendered a function of the realizations of the initial point process N, at
prior times, i.e., 4, = 4,(N,.; ¢’ <1).

Several examples of transformations of this kind that have been suggested
for use in quantum optics have been discussed earlier and were illustrated in
fig. 1.1. They include dead-time deletion, coincidence decimation, decimation,
and overflow count deletion. We proceed to illustrate that none of these
modifications can increase the channel capacity C of a communication system
based on photoevent point-process observations.

If a constraint is placed on the rate of the initial Poisson process y, < ..,
then it is obvious that C cannot be increased by the modification N,— M,. This
is simply a consequence of the definition of channel capacity: it is the rate of
information carried by the system without error, maximized over all coding,
modulation, and modification schemes. Can the modification N, » M, increase
the channel capacity if the constraint is instead placed on the rate of the
modified process 4, (i.e., 4, < 4,,,,)? We address this question for an arbitrary
self-exciting point process in the next section.
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8.2. COMMUNICATING WITH SUB-POISSON PHOTONS DESCRIBED BY A
SELF-EXCITING POINT PROCESS

Consider a self-exciting point process M, of rate A,(M,.; t' < ). This is a
process that contains an inherent feedback mechanism in which present event
occurrences are affected by the previous event occurrences of the same point
process. Of course, the modified Poisson processes N, — M, introduced above
are special cases of self-exciting point processes.

An example of a system that generates a self-exciting point process is that
of rate compensation (by linear feedback) of a source which, without feedback,
would produce a Poisson process. Let each photon registration at time ¢, cause
the rate of the process to be modulated by a factor h(z — ¢,) (which vanishes
for 1 < 1,). In linear negative feedback the rate is 4, = 4, — 3 (¢ - 1;), where
Ao is a constant. If the instantaneous photon registration rate happens to be
above the average then it is reduced, and vice versa. This process is schemati-
cally illustrated in fig. 1.1f for two adjacent sub-intervals T, and T,.

Now consider a communication system that uses a point process M,(X)
whose rate 4,(X) is modulated by a signal X,. The process M,(X) can be an
arbitrary self-exciting point process (e.g., it can be sub-Poisson) which includes
processes obtained by the feedforward- or feedback-modification of an
otherwise Poisson process. Neither feedforward nor feedback transformations
can increase the capacity of this channel, as provided by Kabanov’s theorem
(KaBanov [1978]), and its extensions (Davis [1980], LazAR [1980]):

Kabanov’s theorem. The capacity of the point-process channel cannot be increas-
ed by feedback. Under the constraint Ay < 4, € A, the channel capacity Cis

1+ Aofs
C=10[1<1+i> -(1+ﬁ)1n<1+i)], (8.1)
e Ao s Ao

where s = 4., — 4. When 4, = 0 (no dark counts), this expressions reduces
to

C = fmax (8.2)

When the capacity is achieved, the output of the zero-dark-count point-process
channel is a Poisson process with rate 4, = 4_,,/¢ (the base ¢ has been used
for simplicity). The channel capacity has also been determined under added
constraints on the mean rate. A coding theorem has also been proved.
Kabanov’s theorem is analogous to the well-known result that the capacity of
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the white Gaussian channel cannot be increased by feedback (KADOTA,
ZAKAI and Z1v [1971]).

In summary, no increase in the channel capacity of a point-process lightwave
communication system may be achieved by using photons that are first
generated with Poisson statistics and subsequently converted into sub-Poisson
statistics regardless of whether the power constraint is placed at the Poisson
photon source or at the output of the conversion process. Nor may an increase
in channel capacity be achieved by using feedback to generate a self-exciting
point process.

8.3. COMMUNICATING WITH SUB-POISSON PHOTON COUNTS

The conclusions of §§ 8.1 and 8.2 are valid only when there are no restrictions
on the receiver structure. The conclusion is different if the receiver is operated
in the photon-counting regime, in which information is carried by a random
variable n representing the number of photoevents registered in time intervals
of prescribed duration T (rather than by the photon occurrence times).

The capacity of the photon-counting channel is given by (GoRDON [1962])

C= B[(n) ln(l + L) +In(1 + <n>)], (8.3)
(n

where (n) is the mean number of counts in T and B = 1/T. Two limiting
expressions emerge:

1
_ n{—), <1,
C=B{(n) n<<n>> {ny <€

C=BIn({n)), (ny > 1. (8.4)

If an added constraint is applied to the photon counts, such that they must obey
the Poisson counting distribution, the capacity is further reduced. In that case,
the limiting results analogous to eq. (8.4) are

1
C= — <
B{n> ln(<n>>, {ny €1,

=3iBIn((n)), (ny» 1. (8.5)

In the case of photon counting, therefore, an increase in the channel capacity
can in principle be realized by using sub-Poisson light. However, in the small
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mean-count limit {n) < 1 (very short T), the capacity of the Poisson counting
channel approaches that of the unrestricted counting channel, and the advan-
tage of sub-Poisson light disappears. This is not unexpected in view of the result
obtained from Kabanov’s theorem for the point-process channel.

8.4. PERFORMANCE OF A SUB-POISSON PHOTON-COUNTING RECEIVER

The channel capacity provides a limit on the maximum rate of error-free
information transmission for all codes, modulation formats, and receiver
structures. As such, it does not specify the performance (error probability)
achievable by a communication system with prescribed coding, modulation,
and receiver structure.

It is therefore of interest to examine the performance of a system with
specified structure. We consider a binary ON-OFF keying (00OK) photon-
counting system (GAGLIARDI and KARP [1976], HELSTROM [1976], SALEH
[1978], KOGELNIK [1985], HENRY [ 1985], SENIOR [1985]). The information
is transmitted by selecting one of two values for the photon rate 4,, in time slots
of (pulse) duration T'. The receiver operates by counting the number of photons
received during the time interval T'and then deciding which rate was transmitted
in accordance with a likelihood-ratio decision rule (threshold test). For
simplicity, it is assumed that background light, dark noise, and thermal noise
are absent so that photon registrations are not permitted when the keying is OFF
(i.e., false alarms are not possible). Furthermore, the detector quantum effi-
ciency is initially taken to be unity so that system performance is limited only
by the quantum fluctuations of the light.

A measure of performance for a digital system such as this is the error
probability P,. In the simplified system described above, errors are possible
only when the keying is ON and 0 photons are received (a miss). For a Poisson
transmitter, with equal a priori probabilities for oN and OFF, P, is (HENRY
[1985])

P_(Poisson) = 3 exp(- (n)), (8.6)

where (n) denotes the mean number of photons in the time T (that is, the
number of photons/pulse). To minimize P,, {(n) is made equal to its maximum
allowed value {n) ... This result is now compared with those obtained for
sub-Poisson light derived from an initially Poisson source. The outcome will
depend on where the mean photon-number constraint is placed. Two trans-
formations are explicity considered: dead-time deletion and decimation.
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It will become evident from these examples that system performance can be
enhanced by using sub-Poisson light, provided that the power constraint is
applied to the sub-Poisson light. No enhancement of system performance
emerges in converting Poisson photons into sub-Poisson photons when the
average power constraint is at the Poisson source.

8.4.1. Dead-time-modified-Poisson photon counts

For a nonparalyzable dead-time modifier that is always blocked for a dead
time period 1, at the beginning of the counting interval T, the passage of 0
photons arises from the emission of 0 photons in the time T - 1,4, independent
of the number of emissions during 7,. The error probability for this system is
therefore

P_(dead-time) = %exp[ -{nd (1 - T—;)] . (8.7

To minimize error under the constraint (n) < <{(nd_.., Wwe take
{n) = {n) .« The error probability is obviously larger than that for the
Poisson channel (eq. 8.6) so no performance enhancement can be achieved by
use of this modifier with this constraint.

If, instead, the dead-time modifier is always unblocked at the beginning of
each bit then the passage of 0 photons can arise only from the emission of 0
photons in the time 7, and the dead-time has no effect on the error rate in this
simple system. Calculations for the unblocked counter in the presence of false
alarms, however, demonstrate that the presence of dead time always does, in
fact, degrade system performance with such a constraint (TEICH and CANTOR
[1978]). Although these detailed calculations were carried out for electrical
dead time, the results are also applicable for optical dead time when the photon
detection efficiency n = 1.

On the other hand, if the constraint is placed on the mean photon count {(m
after dead-time modification ({(m> < {(m).,), it can be shown that there
exists a value of (m)> ., below which performance is degraded, and above
which performance is improved, relative to the Poisson channel.

8.4.2. Decimated-Poisson photon counts

We assume that the decimation parameter A= 2 (i.e., every other photon
of a Poisson sequence of events is selected) and that the decimation process
isreset at the beginning of each bit (i.e., the first photon in each bit is not selected).
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The error probability is then
P_(decimation) = 3(1 + (n))exp(- (n)), (8.8)

which again represents a degradation of performance in comparison with the
Poisson channel (under a constraint {n) < {(n).,). In this case, the error
rate is increased because there are two ways for the passage of 0 photons to
arise in the time 7" from the emission of 0 photons or from the emission of 1
photon.

However, if the constraint is placed on the modified process then, once again,
there exists a value of {m) . below which performance is degraded and
above which it is improved, relative to the Poisson channel.

8.4.3. Binomial photon counts

We conclude by considering the effects of photon deletion. We do this in the
context of an ideal sub-Poisson source that generates a deterministic photon
number. This is an important consideration because random photon deletion
is inevitable; it results from absorption, scattering, and the finite quantum
efficiency of the detector, as discussed in § 4. It is well known that such
deletions will transform a deterministic photon number into a binomial photon
number (MANDEL [1976a]), which always remains sub-Poisson but
approaches the Poisson boundary as the photon-survival probability »
decreases (TEICH and SALEH [1982]). MANDEL [1976a] has shown that the
information rate per symbol carried by such a counting channel will be greater
than that for the Poisson channel, but will approach the latter as n approaches
0. A source that emits a binomial photon number at the outset (STOLER, SALEH
and TEICH [1985], DATTOLI, GALLARDO and TORRE [1987]) retains its
binomial form, but exhibits a reduced mean, in the presence of random deletion
(TeICcH and SALEH [1982]).

The performance of such a binary 0OK photon-counting receiver, in the
absence of background, is limited by the binomial fluctuations of the detected
photons. In this case, it is easily shown from the binomial distribution that

P_(binomial) = LF2<7 >/~ (8.9)

where F,, = 1 — y is the Fano factor of the photon-counting distribution and
where {n’ ) represents the mean number of photons/bit (2{n’ > = {(n) since
there are 2 bits per pulse in 00K). The Poisson result in eq. (8.6) is recovered
as F,,— 1. The probability of error represented by eq. (8.9) is plotted as a
function of the mean number of photons per bit {(n’ >, with the Fano factor
F, as a parameter, in fig. 8.2. System performance improves as F, decreases.
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Fig 8.2. Error probability (P.) versus mean number of photons per bit {n’) for the binomial
channel, with the Fano factor F, as a parameter. System performance clearly improves as F,,
decreases below unity.

Solving eq. (8.9) for the mean number of photons per bit (s’ ) provides

N (l—Fn)], (gﬁ)
N Z[ln(l/F,,) " 2P.)’ (8.10)

which leads to a direct-detection quantum limit that is < 10 photons/bit (<20
photons/pulse) for 00K, if F,, < 1 and P, = 10~ °. The mean number of photons
per bit (n’ ) is plotted as a function of F, in fig. 8.3. The usual quantum limit
({n'> = 10 photons/bit) emerges in the limit F, =1 where the binomial
distribution goes over to the Poisson.

8.5. LIMITATIONS ON COMMUNICATING WITH SUB-POISSON LIGHT

Sub-Poisson light sources can, in principle, be useful in lightwave communi-
cations systems. However, their use will only be practical if they can be made
to exhibit high photon flux, low Fano factor, and a short feedback time
constant, and if losses in the system as a whole are minimized. Fortunately,
photomultiplier tubes and even avalanche photodiodes can (at least in principle)
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Fig. 8.3. Mean number of photons per bit {n’) as a function of the Fano factor F, for the
binomial channel. The well-known “quantum limit* (10 photons/bil) emerges as the binomial
distribution goes over to the Poisson distribution (F, - 1).

detect sub-Poisson light in an essentially noise-free manner (TEcH, MAISUOD
and SALEH [1986]). The short feedback time constant permuts the signalng
rate to be high. In conventional systems (i.e., those using Poisson light this
rate is determined by the time character of the soutce and receiver, subject to
there being a sufficiently large number of photons per bit (HENRY {1985}
However, for systems using sub-Poisson photons, the symbol duratiot T must
exceed the anticorrelation time of the photons (1, or ;) so that the sub-Poisson
nature of the signal is captured (see § 7). Solid-state implementatrons of
single-photon emission devices driven by sub-Poisson currents should therefore
be constructed in such a way that 1, is made as small as possible (TEICH,
CAPASSO and SALEH [1987]).
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