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Abstract
We review quantum key distribution schemes that are noise-immune (require
no alignment). For both polarization and time-bin qubits, we present three
noise-immune schemes: round-trip, one-way, and symmetric. In the round-
trip schemes, the signal travels back and forth between the legitimate users
(Alice and Bob); in the one-way schemes, the signal travels only from Alice
to Bob; in the symmetric schemes, a central source sends signals to Alice and
Bob. The primary benefit of the symmetric configuration is that both Alice
and Bob may have passive setups (neither Alice nor Bob is required to make
active changes for each run of the protocol). We show that all the schemes can
be implemented with existing technology.
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10.1 Introduction
Of all the capabilities afforded by quantum information science [1], quantum
key distribution (QKD; for a review, see Reference [2]) currently shows the
most promise for practical implementation. Accordingly, there has been a con-
certed effort to develop QKD schemes that mitigate the technical challenges
associated with existing approaches. Among the successes in this effort are the
development of noise-immune (alignment-free) schemes for polarization [3]
and time-bin [4–7] qubits. A further advance is the development of a sym-
metric scheme for time-bin qubits in which neither Alice nor Bob is required
to make active changes to their setups [8]. Here we use the term symmetric to
describe QKD schemes in which a central source distributes some number of
photons to both Alice and Bob, so that they share entanglement. This is in con-
trast to round-trip and one-way configurations, in which the photons move
according to Bob→Alice→Bob, and Alice→Bob, respectively. Here we show
that symmetry and noise-immunity can be combined in a single implementa-
tion, for both polarization and time-bin qubits. Beginning with polarization-
coded QKD, we first present a round-trip scheme in which noise-immunity is
achieved by sampling the channel birefringence twice (once on the way from
Bob to Alice and once on the way back). Second, we show how Klyshko’s “ad-
vanced wave interpretation” (AWI) [9] can be used to transform this round-
trip scheme into a one-way scheme imbued with passive detection. Third, we
apply the AWI again to obtain a symmetric noise-immune scheme in which
both Alice and Bob have passive setups. We then repeat these three steps for
time-bin-coded QKD. For each scheme, we present a feasible implementation
that relies only on current technology.

10.2 Noise-Immune Polarization-Coded
Schemes

10.2.1 Round-Trip Noise-Immune
Polarization-Coded QKD

The left column of Figure 10.1 shows the space-time diagrams of three noise-
immune polarization-coded QKD schemes. For polarization qubits, noise-
immune means that the scheme is immune to channel birefringence. The first
scheme [Figure 10.1(A)] requires a round trip and is active (both Alice and
Bob are required to make changes to their respective setups). The scheme
runs as follows. Bob randomly chooses between polarization states |V〉 and
|H〉 + |V〉 (here, and for the rest of this chapter, we suppress normalization
factors) and sends a single photon in that state to Alice. Alice uses a Faraday
mirror to reflect that single photon back, and she also sends along an auxil-
iary unpolarized photon. Alice encodes a single bit by controlling the time
ordering of the two photons she sends to Bob. Bob then measures each pho-
ton in the basis associated with the state of the initial photon he sent. Without
knowing which state Bob sent to Alice, Eve cannot deterministically learn
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Alice’s Faraday rotator. Using Faraday rotation as an example, the AWI asso-
ciates the single-photon transformation

Hin → Vout Vin → Hout (10.1)

with the two-photon state

|HinVout〉 + |Vin Hout〉. (10.2)

In going from Equation (10.1) to Equation (10.2), the propagation direction
for Hin and Vin is reversed. To preserve the handedness of the coordinate
system, one of the transverse directions must be reversed as well. This may be
accomplished by replacing Vin with −Vin. Thus we see that the AWI associates
Faraday rotation with the polarization singlet state |HV〉 − |VH〉.

10.2.2 One-Way Noise-Immune
Polarization-Coded QKD

We arrive at the one-way scheme of Figure 10.1(B) by “folding” the input
arm of the Faraday rotator of Figure 10.1(A) along the dashed line, thereby
replacing a round-trip single-photon space-time diagram with a one-way,
two-photon space-time diagram (the dotted line connecting the two photons
indicates entanglement). What follows is a passive-detection version of the
three-photon scheme presented in Reference [3]. Alice sends three photons
to Bob, with the first two (case 1), the last two (case 2), or the first and last
(case 3) in the singlet state and the other photon unpolarized. Bob makes his
measurements using the passive setup shown on the right side of Figure 10.2.
By appropriate postselection, this setup effectively makes a random choice
of two out of the three photons and brings them together on a nonpolarizing
beam splitter, which serves to distinguish the singlet state from the other three
Bell states [12]. Ignoring the first Mach–Zehnder interferometer (with relative

Alice Bob

τ τ4 τ

Figure 10.2 A schematic of one-way noise-immune polarization-coded QKD [see
Figure 10.1(B)]. Alice sends three photons to Bob, with the first two (case 1), the last
two (case 2), or the first and last (case 3) in the singlet state and the other photon unpo-
larized. The delay in Bob’s first and second interferometer are 4τ and τ , respectively.
Bob’s apparatus effectively makes a random choice of two out of the three photons and
brings them together on a nonpolarizing beam splitter, which serves to distinguish
the singlet state from the other three Bell states [12]. The operation of the protocol is
described in the text.
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delay 4τ ) for the moment, we see that the second interferometer (with relative
delay τ ) enables the first two, or the last two, photons to meet at the second
beam splitter of this interferometer. If these two photons are in the singlet
state, they will leave by opposite ports. The contrapositive is also true: if they
leave by the same port (and are detected by one of the pairs of detectors on
each output port), then one can infer that they were not in the singlet state.
Returning to the first interferometer, we see that this interferometer provides
an opportunity for the first and last photons to be analyzed in a similar way.
Thus Bob’s apparatus probabilistically chooses a pair out of the three photons
sent by Alice and determines whether the pair is in the singlet state or in some
orthogonal state [22]. Based on his detections, Bob can rule out at most one of
the three cases corresponding to Alice’s possible signal states. Therefore, after
Bob has made his detection, Alice announces whether the run was a “data
run” (cases 1 or 2), or a “test run” (case 3). The data runs are used to share key
material, and the test runs are used to monitor the eavesdropper. The scheme
is noise-immune because the singlet state is immune to collective rotation.

10.2.3 Symmetric Noise-Immune
Polarization-Coded QKD

We can apply the AWI one more time to get a six-photon symmetric scheme
[Figure 10.1(C)] from the three-photon one-way scheme by folding along the
dotted line in Figure 10.1(B). As indicated in Figure 10.1(C), this would yield
a six-photon entangled state. It is currently not practical to create such a state;
however, we can still implement the scheme using three pairs of entangled
photons in the state

|�+〉14|�+〉25|�+〉36, (10.3)

where |�+〉 = |H H〉 + |VV〉. The execution of the protocol is similar to the
one-way polarization protocol, except that instead of randomly choosing a
three-photon state and sending it to Bob, Alice uses the the apparatus depicted
in Figure 10.3 to choose randomly which pair of photons is in the singlet state.
For example, if Alice obtains a triple coincidence that indicates that photons

S

Alice Bob

6 5 41 2 3

(same as Bob)
τ τ4 τ

Figure 10.3 A schematic of symmetric noise-immune polarization-coded QKD [see
Figure 10.1(C)]. A central source (S) emits three entangled pairs, so that Alice and Bob
each get one from each pair. The scheme works much the same as the one-way scheme
of Figure 10.2, except that Alice’s apparatus makes a passive choice of the signal state
that Bob receives, as described in the text.
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pulse from a laser (L) into a Mach–Zehnder interferometer via a circulator
(C). This interferometer splits the pulse into an advanced amplitude (P1) and
a retarded amplitude (P2). The amplitudes travel through phase modulators
(PM) on Bob’s side and Alice’s side, and are then attenuated (AT) to the single
photon level and reflected by Alice back to Bob. Although both P1 and P2 will
again be split at Bob’s Mach–Zehnder interferometer, by gating his detector
appropriately, Bob can postselect those cases in which P1 takes the long path
and P2 takes the short path on the return trip. Thus the interfering amplitudes
experience identical delays on their round trip, ensuring insensitivity to drift
in Bob’s interferometer.

The role of the phase modulators can be readily understood by examining
the space-time diagram of this protocol [see Figure 10.4(B)]. The eight boxes
(A1–A4, B1–B4) refer to the phase settings on the two modulators as the two
amplitudes pass through each of them twice. For example, B2 refers to the
phase acquired by the delayed amplitude of the pulse that Bob sends to Alice,
while B4 refers to the phase acquired by the same amplitude as it travels back
from Alice to Bob. It should be understood that B1–B4 refer to settings of the
same physical phase shifter at different times (and similarly for A1–A4). The
probability of a detection at Bob’s detector is given by

Pd ∝ 1 + cos[(B2 − B1) + (A2 − A1) + (A4 − A3) + (B4 − B3)]. (10.4)

From this expression we see that only the relative phase between the phase
modulator settings affects the probability of detection. Thus, by setting
B1 = B2 and A1 = A2, Alice and Bob can implement the interferometric ver-
sion of BB84 [14] by encoding their cryptographic key in the difference settings
�φA ≡ A4 − A3 and �φB ≡ B4 − B3. Since the resulting expression

Pd ∝ 1 + cos (�φA + �φB) (10.5)

is independent of the time delay in Bob’s interferometer and the absolute
phase settings in either modulator, Alice and Bob are able to achieve high-visi-
bility interference without initial calibration or active compensation of drift.

10.3.2 One-Way Noise-Immune Time-Bin-Coded
QKD

In this section, we describe a one-way noise-immune time-bin-coded QKD
scheme. The scheme also allows for Bob’s apparatus to be passive. Before pre-
senting the full scheme, we review a non-noise-immune QKD scheme that mo-
tivates the technique used to combine noise-immunity and passive detection.

The two-photon quantum key distribution scheme described in Refer-
ence [8] has the remarkable property that both Alice and Bob use passive
detection (i.e., they are not required to switch between conjugate measure-
ment bases). In Reference [2], Gisin et al. suggest applying the AWI to generate
an associated one-photon scheme. We present a specific implementation of
this one-photon scheme here to show that it achieves passive detection by
enlarging the Hilbert space (see Figure 10.5). Let the advanced and delayed
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in Reference [6], just as the preceding single-photon scheme follows from
the traditional phase-coding implementation. Let the states |1〉 and |2〉 in
Figure 10.6 be associated with the poles of the Poincaré sphere. Instead of
using equatorial states and forcing Bob to postselect those cases for which
the advanced (delayed) amplitudes take the long (short) path, we use two
equatorial points (|3〉 and |4〉) and the poles themselves to make up Alice’s
four signal states. Signal states that are consistent with a given joint detection
are presented in the chart. As seen in Figure 10.5, each photon can lead to six
different detection events. Thus, since the new protocol involves two photons,
there are 36 possible detection events (see Figure 10.6).

The protocol operates as follows. As in BB84, Alice and Bob publicly
agree on an association of each of the four signal states (see Figure 10.6) with
logical values 0 or 1 (i.e., 1 → 0, 2 → 1, 3 → 0, 4 → 1). For each run of the
experiment, Alice randomly chooses one of the four signal states and sends
it to Bob. When Bob detects both photons in their respective middle time
slots, he has effectively measured in the {3, 4} basis (the “phase” basis). When
Bob detects both photons in their early time slots, or both photons in their late
time slots, he has effectively measured in the {1, 2} basis (the “time” basis) [25].
After the quantum transmission, Alice and Bob publicly announce their bases.
On the occasions when their bases match, Bob is able to infer the state that
Alice sent, based on his detection pattern using the chart in Figure 10.6. As
in single-qubit BB84, the occasions in which their bases do not match are
discarded. The scheme achieves passive detection (Bob is not required to make
any active changes to his apparatus) and noise-immunity (the phase delay in
Bob’s interferometer does not affect any measured probabilities). The intrinsic
efficiency of the scheme is 1/4, compared to 1/2 for single-qubit BB84.

A proposed implementation for the source employed in Figure 10.6 is
presented in Figure 10.7. First, a pair of noncollinear, polarization-entangled
photons is produced via type-II spontaneous parametric down-conversion
from a nonlinear crystal pumped by a brief pulse [26]. Second, the modu-
lating element M performs one of four functions (filters one of the two po-
larization modes, or introduces one of two relative phases between the two
polarization modes), based on Alice’s choice of signal states. Third, the two

+
–SPDC

M

Source

P

Figure 10.7 A proposed implementation for the source employed in Figure 10.6.
SPDC is a nonlinear crystal pumped by a brief pulse to produce a noncollinear,
polarization-entangled two-photon state via spontaneous parametric down-conver-
sion. The action of elements M and P is described in the text.
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beams are combined with a relative temporal delay that matches the tem-
poral delay that Bob will subsequently introduce with his Mach–Zehnder
interferometer. This stage converts the photon pair from a pair of spatially
defined polarization-entangled qubits to a pair of polarization-defined time-
bin-entangled qubits. Finally, the element labeled P (for polarization) delays
and rotates one of the polarization modes by a duration much greater than
the delay of the third step, so that the delayed portion of the state is in the
same polarization mode as the nondelayed portion. Thus the two photons
sent from Alice to Bob have the wavepacket structure illustrated at the top of
Figure 10.6.

There are two noteworthy aspects of the configuration in Figure 10.7. First,
the technique introduced in Reference [8] for creating time-bin-entangled pho-
tons pairs only leads to superpositions of the correlated possibilities (i.e., |EE〉
and |LL〉). The source presented in Figure 10.7 enables arbitrary superposi-
tions of the anticorrelated possibilities (i.e., |EL〉 and |LE〉). Furthermore, the
correlated states can easily be created from this source by rotating the polariza-
tion axes at element M in Figure 10.7. In this way, all four time-bin-entangled
Bell states can be conveniently generated with this source. Second, the inter-
ference in Bob’s interferometer results from the indistinguishability of photon
amplitudes that were initially in the same polarization mode. This is in con-
trast to configurations in which photon amplitudes from different polarization
modes are made indistinguishable by use of a polarization analyzer. Thus the
reduction in visibility that has come to be associated with extremely brief
pump pulses [15] will not be present in this scheme. Note that a symmetriza-
tion method has been developed to restore visibility for experiments using
polarization-entangled photons created by such a short pulse pump [16,17].

10.3.3 Symmetric Noise-Immune Time-Bin-Coded
QKD

In the symmetric time-bin scheme of Figure 10.1(F), the source produces a
four-photon entangled state. As it is currently not practical to create such a
state, we achieve the same result in Figure 10.8 by using two entangled pairs
in the state

(|EE〉13 + |LL〉13)(|EE〉24 + |LL〉24), (10.6)

where E and L stand for early and late, respectively. The source apparatus
consists of three switches, while Alice and Bob simply have Mach–Zehnder
interferometers. The switches in the source behave as follows. The first switch
(SW1) directs photon 1 along the lower path and photon 2 along the upper
path. The action of the second switch (SW2) is indicated by the labels t and
r, which stand for transmit and reflect, respectively. Thus for the early am-
plitude of photon 1 and the late amplitude of photon 2, SW2 reflects; other-
wise it transmits. The third switch (SW3) directs the photons 5 and 6 onto
the same output fiber. By postselecting only those occasions when one pho-
ton is found in the positions labeled 5 and 6, Alice effectively creates the
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Figure 10.8 A schematic of symmetric noise-immune time-bin-coded QKD [see
Figure 10.1(F)]. A central source (S) emits two separately entangled photon pairs [see
Equation (10.6)]. One photon from each pair is sent to Bob. The other two photons
are sent through a series of three switches. The first switch (SW1) directs photon 1
along the lower path and photon 2 along the upper path. The action of the second
switch (SW2) is indicated by the labels t and r, which stand for transmit and reflect, re-
spectively. The third switch (SW3) directs photons 5 and 6 onto the same output fiber.
By postselecting the cases in which one photon is in position 5 and one photon is in
position 6, Alice effectively creates the four-photon entangled state in Equation (10.7).
This state is then analyzed by Alice and Bob with their Mach–Zehnder interferome-
ters, each of which has a delay equal to τ . The protocol used to establish a shared key
is described in the text.

four-photon entangled state

|ELLE〉5634 + |LEEL〉5634. (10.7)

When all the amplitudes follow the pattern (E →long path, L → short
path) in Alice’s and Bob’s Mach–Zehnder interferometers, Alice and Bob an-
nounce that they have measured in the phase basis, and they use the chart
in Figure 10.9 to infer the bit value. When one photon on each side does not

Alice

Bob

Figure 10.9 Possible joint detection patterns for the scheme of Figure 10.8. The expres-
sion (+, −) indicates that the + detector fired for the first photon and the − detector
for the second. Given that the source produces the state in Equation (10.6), when all
the amplitudes follow the pattern (E → long, L → short) in Alice’s and Bob’s Mach–
Zehnder interferometers, the unchecked joint detection patterns do not occur because
of destructive interference. Thus Alice and Bob may use a publicly known encoding
(e.g., {(+, +), (−, −)} →0, {(+, −), (−, +)} →1) to agree on a secret key bit.
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follow the pattern (E → long, L → short), Alice and Bob announce that they
have measured in the time basis. On these occasions, they each know which
of the superposed terms in Equation (10.7) was realized, and they use this
knowledge to establish a shared bit. The scheme is noise-immune because on
the phase-basis occasions, each leg of the two Mach–Zehnder interferometers
is traversed by one of the four photons. Thus the relative phase along the
two paths of each interferometer factors out and does not affect the measured
results. The scheme is passive because neither Alice nor Bob is required to
make active changes to their apparatus.

The security of the scheme derives from the fact that only the state in Equa-
tion (10.6) will produce the correlations that Alice and Bob measure. Therefore
the source can be controlled by the adversary without compromising security.
This technique can be viewed as the time-bin analog of the polarization based
entanglement distillation experiment described in Reference [18].

10.4 Discussion
We have presented round-trip, one-way, and symmetric noise-immune QKD
schemes that can be implemented with existing technology for both polariza-
tion and time-bin qubits. The noise-immunity of the schemes makes active
compensation of interferometric drift and channel birefringence unnecessary.
The round-trip methods are the simplest, since they do not involve entangle-
ment. However, the bidirectional flow of signals leaves an opportunity for an
eavesdropper to compromise the security of the link by sending signals into
the apparatus of Alice and/or Bob and measuring the state of the reflected
signal. The one-way schemes remove this security concern at the cost of re-
quiring a multi-photon entangled state. A further advantage of the one-way
schemes presented here is that they do not require Bob to make active changes
to his apparatus. Finally, the symmetric schemes presented here achieve noise-
immunity while requiring neither Bob nor Alice to make active changes to
his/her apparatus. The cost of this simplicity is a doubling of the number of
photons involved in each run of the protocol.

It is interesting to observe that discoveries in the field of quantum in-
formation (entanglement swapping and entanglement distillation) can be
naturally related to other areas of quantum information theory (quantum er-
ror correction and decoherence-free subpaces) via the AWI, as demonstrated
in Figure 10.1. Since the central goal of quantum computation is a “folding in
time” of a classical computation, the AWI may yield insight into the mecha-
nisms behind the speed-up achieved by certain quantum computation algo-
rithms.
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this approach is that the number of optical elements required is increased. The
passive schemes described in this chapter, like that in Reference [8], are “in-
trinsically passive,” in that they achieve passive operation without increasing
the number of optical elements required.

23. The idea of using pole states is explored in Reference [19]; however, that paper
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24. A similar idea is presented in Reference [20]. In that paper, Alice uses four
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