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21.1 Introduction 
Imaging is the estimation of the spatial distribution of a physical object by 
measuring the optical radiation it emits, or by making use of an optical wave that 
interacts with the object, via reflection or transmission, for example, before being 
measured by a detector.1 The resolution of an imaging system is limited by the 
inability to localize the optical field at points of the object. Under otherwise ideal 
conditions, resolution is limited by diffraction. The sensitivity of an imaging 
system is limited by the uncertainty in the measurement. Under ideal conditions, 
this is determined by photon noise, which depends on the statistical fluctuations 
of the light.  
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424  Chapter 21 

 In conventional imaging systems, an extended detector, such as a CCD 
camera or an array detector, measures the spatial distribution of the optical 
intensity, which is proportional to the photon flux density. In interferometric 
systems, the spatial distribution of the optical field is inferred from measurements 
of the optical intensity. 2 
 With the emergence of coherence theory,2–5 imaging systems based on 
measurements of the second-order coherence function at pairs of points in the 
detection plane were developed. An example is the imaging of an incoherent 
object based on the van Cittert-Zernike theorem. Imaging systems based on 
measurement of intensity correlation, or the photon coincidence rate, at pairs of 
points, were developed in the 1960s. A classic example of the photon-correlation 
imaging of an object emitting thermal light is stellar imaging using a Hanbury-
Brown–Twiss intensity-correlation interferometer.4–7 
 More recently, two-photon light, which may be generated via spontaneous 
parametric downconversion in a second-order nonlinear optical crystal,8 has been 
used for imaging.9–17 This type of two-photon (or biphoton) imaging, which has 
come to be called quantum imaging, is also based on the measurement of photon 
coincidence by the use of photon-counting array detectors or by scanning two 
photon-counting detectors at pairs of points.   
 To compare the resolution and sensitivity of imaging systems based on the 
aforementioned types of measurements, it is necessary to derive expressions for 
the measured quantities in terms of the object distribution. The point-spread 
functions based on such expressions can be used to assess the resolution.  One 
measure of the sensitivity of the imaging process is the signal-to-noise ratio 
(SNR) of the measured variables. The statistical nature of the light source must 
be known in order to determine the SNR.1,5  
 The purpose of this chapter is to compare the resolution and sensitivity of 
photon-correlation imaging systems that make use of thermal light and two-
photon light. We will henceforth refer to these two imaging modalities as 
classical and quantum photon-correlation imaging, or simply classical and 
quantum imaging, respectively. Clearly, light in other quantum states can also be 
used for imaging.  

21.2 Classical Photon-Correlation Imaging 
Consider the imaging system shown schematically in Fig. 21.1. The source emits 
quasi-monochromatic, spatially incoherent light with intensity  , 
where   . The emitted light reaches the two detectors via two linear 
systems with impulse response functions  and . The object may 
reside in either of these systems, or in the source itself. The two systems may 
also be combined as one system in which the object resides.  

 Is (x)
x = (x, y)

h1(x1,x) h2 (x1,x)

Based on coherence theory and a systems description of the imaging 
process,2,18,  the second-order coherence function G(1) (x1,x2 ) = E*(x1)E(x2 )  is 

related to the source intensity and the impulse response functions by the integral,  
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Figure 21.1 Imaging system. 

.  (21.1) G(1) (x1,x2 ) = ŹIs (x)h1
*(x1,x)h2 (x2 ,x)∫ Źdx

The range of the integrals is [-∞, ∞] throughout, unless otherwise indicated.   

21.2.1 Ghost imaging 
If the object resides in the first system and has a complex amplitude 
transmittance (or reflectance) O , then  is linearly related to     

Consequently, if   is measured as a function of   with x  fixed, the 
measurement would be linearly related to O  so that the imaging system is 
coherent [i.e., it measures the complex amplitude transmittance (or reflectance)]. 
For example, consider an object placed in one branch of the system at a distance 

   from the source, with a lens used to collect the transmitted light and focus it 
onto detector 1. The other branch of the system contains a lens of focal length f 
placed in the space between the source and detector 2 at distances  and  , as 
shown in Fig. 21.2. For such a system, Eq. (21.1) leads to diffraction-limited 
imaging if the focusing condition  

(x) h1(x1,x) O(x).

G (1) (x1, x2 ) x1 2

(x)

d1

d2 d3

1
d2 − d1

+
1
d3

=
1
f

   (21.2) 

is satisfied. This type of imaging is peculiar since the light field that is 
transmitted through the object is collected and observed with a point detector at 
the fixed point  . The image is acquired by scanning detector 1 at all points    
and by observing the light that has not interacted with the object. This type of 
image may be dubbed ghost imaging, although that appellation historically 
originated in the context of quantum imaging.   
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Figure 21.2 Ghost-imaging system. 

21.2.2 Van Cittert–Zernike theorem 

As another example, assume that the object itself is the source, i.e., O , 
and assume that the two systems are combined into a single 2-f optical system, as 
shown in Fig. 21.3, whereupon 

(x) = Is (x)

h1(x1,x) = h2 (x1,x) ∝ exp −i
2π
λf

x1.Źx
⎛

⎝⎜
⎞

⎠⎟
,  (21.3) 

Where  is the wavelength of the light and f is the focal length of the lens.  In 
this case, Eq. (21.1) provides 

λ

G (1) (x1,x2 ) ∝ O(x)exp −i
2π
λf

(x2 − x1).Źx
⎡

⎣
⎢

⎤

⎦
⎥∫ Źdx .   (21.4) 

When measured as a function of the position difference , the coherence 

function   

x1 − x2

G (1)  is proportional to the Fourier transform of . Equation (21.4) is 
the van Cittert–Zernike theorem and is the basis of a well-known technique for 
measuring the angular diameter of stars.2–6 

O(x)

f Object/ 
Source 

x 

Figure 21.3 Photon-correlation imaging of the source.    
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Noise in Classical and Quantum Photon-Correlation Imaging 427

21.2.3 Hanbury-Brown-Twiss interferometer 
The intensity-correlation function, which is a special fourth-order coherence 
function,18 at the positions x1 and x2 is G(2) (x1,x2 ) = I1(x1)I2 (x2 ) . If the
incoherent light is thermal (which at one time was called chaotic), the rate of 
photon coincidence is related to the second-order coherence function by the 
Siegert relation,5 

G (2) (x1,x2 ) = G (1) (x1,x1)G (1) (x2 ,x2 ) +
1
M

G (1) (x1,x2 )
2
, (21.5) 

where   M ≥ 1 is a factor (known as the degrees of freedom) that increases with 
increase of the ratio of the detector response time to the optical coherence time. 
This equation is the basis of the Hanbury-Brown-Twiss effect.4–7 Thus, the 
measurement of the intensity-correlation function G  and the intensity 

at    at all points permit the magnitude of the second-order coherence 
function  to be determined. This principle has served as the basis of a number of 
schemes for ghost imaging with thermal light.19–22 A fundamental difficulty in 
such systems is the small relative magnitude of the second term on the right-hand 
side of Eq. (21.5) when the coherence time of the detected field is much smaller 
than the detector’s response time.5  

(2) (x1,x2 )

G(1) (x,x)

21.3 Quantum Photon-Correlation Imaging 
We now consider a light source that emits photons in pairs. The coherence 
properties of such light must be described using quantum coherence theory.18 For 
each pair, the quantum state is  

  ( , ) 1 ,1sd d ′′ ′Ψ = ψ∫∫ x xx x x x , (21.6)

where  is the two-photon wave function, i.e., the probability that the 

photons are emitted from positions x and 

( , )′ψ x x

′x  is 2( , )s ′ψ x x . In an entangled state, 
 so that the photons are emitted from a common 

position, although that position is random with probability density 

( , ) = ( ) ( )s s′ψ ξ δ −x x x x x′
2( )sξ x .  

 Such light may be generated by spontaneous parametric downconversion 
(SPDC) from a thin planar nonlinear crystal. For each annihilated pump photon, a 
pair of photons, the signal and idler, are generated in a two-photon, or biphoton, 
state. In this case, the complex function ( )sξ x  in Eq. (21.6) is proportional to the 
conjugate of the optical field of the pump. This spatially entangled state emerges 
as a result of conservation of momentum, which makes the directions of the 
photons anticorrelated.  
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If the two photons are directed through systems with impulse response 
functions  and , and directed to two detectors, as in Fig. 21.1, 
then it can be shown that the probability of detecting photons simultaneously 
with detectors at positions x1 and x2 is 

1 1( , )h x x 2 1( , )h x x

2(2)
1 2 1 2 1 2

ˆ ˆ( , ) : ( ) ( ) : ( , )G I I= = ψx x x x x x , (21.7)

i.e., is simply the square magnitude of the two-photon wave function

.  (21.8) 1 2 1 1 2 2( , )  ( ) ( , ) ( , ) s h hψ = ξ∫x x x x x x x xd

The similarity between Eq. (21.8) for the two-photon wave function 
 and Eq. (21.1) for the second-order coherence function  is 

remarkable. The source function 
1 2( , )ψ x x (1)

1 2( , )G x x
( )s xξ  plays the role of the intensity of the 

incoherent source Is(x), and, except for a conjugation operation in the incoherent 
case [Eq. (21.1)], the impulse response functions of the optical systems play 
similar roles. The origin of this similarity may be attributed to the fact that both 
the second-order wave function and the two-photon wave function satisfy the 
Wolf equations.23  

For thermal light, in accordance with the Siegert relation set forth in Eq. 
(21.5), the two-photon coincidence rate is proportional to 

2(1)
1 2( , )G x x , to which 

a background term is added, whereas in the two-photon case, the photon 
coincidence rate is simply 2

1 2( , )ψ x x . The background term, which typically 
dominates Eq. (21.5), as discussed earlier, is absent in the two-photon case, as 
was recognized by Belinskii and Klyshko.9 

21.3.1 Ghost imaging 
If the imaging configuration depicted in Fig. 21.2 is used with a two-photon 
source, then diffraction-limited imaging is attained if the condition 

2 1 3

1 1
d d d f

1
+ =

+
(21.9)

is satisfied.12 The sign change in Eq. (21.9), in comparison to Eq. (21.2), is 
attributed to the conjugation in the imaging equation.  

21.3.2 Van Cittert–Zernike theorem 
If the imaging configuration depicted in Fig. 21.3 is used with a two-photon 
source, which is itself the object, then the imaging equation becomes 
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Noise in Classical and Quantum Photon-Correlation Imaging 429

(1)
1 2 2 1

2( , )  ( )exp ( ).  G O i
f

d
⎡ ⎤π

∝ − +⎢ ⎥λ⎣ ⎦
∫x x x x x x x .   (21.10) 

This equation is identical to Eq. (21.4) except for a change in sign. When 
measured as a function of 1 2+x x , the coherence function  is proportional to 
the Fourier transform of . For example, if  is uniform, then 

, i.e., if a photon is observed at , then another must be 
detected at .   

(1)G
( )O x ( )O x

(1)
1 2 2 1( , ) ( )G ∝ δ +x x x x 1x

1−x

21.3.3 Quantum microscopy and lithography 
The intensity correlation may be measured at the same position by making use of 
a single detector responsive to the rate of two-photon absorption. For two-photon 
light in an entangled state, 2(2)

1 1 1 1( , ) ( , )G = ψx x x x , with  

,  (21.11)2
1 1 1( , )  ( ) ( , ) s hψ = ξ∫x x x x x xd

h
2

( , )h x x

in the special case when the two optical systems  and  collapse into a single 
imaging system , as can be shown by use of Eq. (21.8). The imaging system is 
therefore linear with impulse response function . For example, for a 2-f 
Fourier optics system,  is given by Eq. (21.3). The squaring operation 
increases the frequency by a factor of two. For example, for a two-slit object, the 
system creates a sinusoidal pattern at twice the spatial frequency. This feature 
plays a role in quantum (entangled-photon) microscopy24,25 and photoemission,26 
and is, in essence, the principle behind quantum lithography,27 which exploits 
entanglement to enhance resolution. This enhancement cannot be attained by 
making use of a classical thermal-imaging system.   

1h 2h

1( , )h x x

1

21.4 Noise in Photon-Correlation Imaging 
In this section we compare the accuracy of classical and quantum imaging 
systems by determining the error of measurement of the photon-correlation 
functions in each case. It is convenient to define the normalized photon-
correlation function (2) (2)

1 2/( )g G I I= , the normalized second-order coherence 
function , and the normalized two-photon wave function 

, where  and  are the intensities (or the mean number of 
photons) at the two detectors.  For classical imaging, Eq. (21.5) becomes 

(1) (1) 1/ 2
1 2/( )g G I I=

1/ 2
1 2/( )I Iϕ = ψ 1I 2I

2(2) (1)11  g g
M

− = ,  (21.12)
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while for quantum case, Eq. (21.7) becomes 

2(2)g = ϕ .  (21.13)

The detectors measure estimates of the functions  and I, which we label 
 and , respectively. These estimates are used to calculate estimates of 

(2)G
(2)Ĝ Î (2)g  

via the relation (2) (2)
1 2

ˆ ˆ ˆˆ /( )g G I I= . We now proceed to determine the errors in the 
estimate (2)ĝ  in the classical and quantum cases.  

The uncertainty in the measurement of the intensity-correlation function 
(2)

1 2 1 2
ˆ ˆ( , ) : ( ) ( ) :G I I=x x x x  stems from the finite time available to measure the 

average intensity products. This function is usually measured by registering the 
number of photon counts  and  detected in each of the two detectors during 
a sequence of short time intervals, each of duration T, and averaging the product 
of the counts,5 

1n 2n

(2)
1 2

1

1ˆ ( ) ( )
N

m

G n m n
N =

= ∑ m .  (21.14)

Here, the index m refers to the mth time interval and N is the total number of 
intervals observed. The total duration of the measurement is NT. Likewise, an 
estimate of the intensity is measured at each detector by computing the averages 

1

1ˆ ( ),     1,2
N

j i
m

I n m i
N =

= =∑ .  (21.15)  

Clearly, if , the measured functions  and  equal exactly the true 
functions  and , respectively. 

N →∞ (2)Ĝ îI
(2)G i

 The normalized measurement errors e in the classical (C) and quantum (Q) 
cases are defined by the following normalized variances: 

I

(2)
2
C 2(2)

ˆVar{ }

1

ge
g

=
⎡ ⎤−⎣ ⎦

,       
(2)

2
Q 2(2)

ˆVar{ }ge
g

=
⎡ ⎤⎣ ⎦

.   (21.16) 

For comparison, we define the ratio   

2
C
2
Q

eR
e

= .   (21.17) 
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If R >1, then quantum imaging offers a statistical advantage, and vice versa.  
 Computation of the variances in Eq. (21.16) is a lengthy process, particularly 
in the classical case for which the photon counts obey Bose-Einstein statistics. 
We assume that the photon counts  are statistically independent for the 
different counting intervals. Since it is difficult to determine the variance of the 
ratio 

( )in m

(2) (2)
1 2

ˆ ˆ ˆˆ /( )g G I I= , we assume that the errors are sufficiently small so that 

we can use the relation  to simplify the computation in 
terms of statistical moments of . To further simplify the computation, we have 
also assumed that the thermal light in the classical case has a Lorentzian 
spectrum, i.e., an exponential coherence function, with coherence time . The 
following expressions result: 

ˆ ˆ1/ (1/ )[1 ( ) / ]I I I I≈ − − I

in

cτ

2 2 2 4 2 4
2
C 2 4 2 4 4

C C

1 1 1 2 4 2 1 5 10 11
2

M g g g g ge
N g n g n g

⎡ ⎤+ + − + −
= + +⎢ ⎥γ ⎣ ⎦

γ ,  (21.18) 

2
Q 2 2

Q

1 1 1e
N g n

= .  (21.19)

Here, the symbol g is used to denote (1)g  or ϕ , for the classical and quantum 

cases, respectively, and Cn and Qn  are the mean number of photon detected in 
each time interval in the classical and quantum cases, respectively. The quantity 
M is the degrees-of-freedom parameter, which is a function of the ratio .   c/Tγ = τ

As expected, the errors  and  depend on Ce Qe N  for both cases, but the 
dependence on the mean number of photons, the ratio , and the quantity 
g, which is to be ultimately estimated, are different. It is useful to take the 
following two limiting cases: 

c/Tγ = τ

Case 1. If the mean number of counts in both cases are equal and small, i.e., 
C Q  1 n n= , then 

2 2

1 12 2

1( ),    ( )M gR f g f g
g
+

= =
γ

 .  (21.20)    

The quantity R can then be substantially greater than unity, as can be seen from 
the plots of 1( )f g  and M γ  in Fig. 21.4, for thermal light with Lorenzian 

spectrum, for which 2 22 /( 2 1)M e− γ= γ + γ − . It follows that quantum imaging 
can offer a significant statistical advantage under these conditions.28,29  
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Case 2. In reality, the mean number of photons in the quantum case is typically 
small, i.e., Q 1n , since the generation of a high flux of biphotons is generally 
difficult. Assuming strong thermal light, i.e., C 1n , we obtain the ratio  

2 2 2
Q

2 22
C

5 10 11( ),    ( )
2

n 4

2

M g gR f g f g
n g

+ −
= =

γ
.  (21.21)

As shown in Fig. 21.4, the factor 2 ( )f g  can be large. Also, M and are 
greater than unity and can be large for large values of . These factors favor 
quantum imaging. However, it is the ratio of the mean counts 

/M γ
γ

Q Cn n  that can be 
sufficiently small, allowing classical imaging to outdo quantum imaging.  

Figure 21.4 Factors affecting the error ratio R. 

21.5 Conclusion 
Imaging based on photon-correlation measurement with thermal light exploits the 
photon-bunching effect, which is accompanied by a large background. Two-
photon light, on the other hand, comprises complete bunching since the photons 
arrive simultaneously, and it therefore offers the same possibilities for imaging 
without the background attendant to thermal light. Both systems offer 
possibilities for coherent imaging, including ghost imaging, which is not a unique 
feature of quantum imaging.30 Because the only difference in the imaging 
equations is a conjugation factor, quantum imaging offers no advantage in 
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Noise in Classical and Quantum Photon-Correlation Imaging 433

resolution in a configuration using two detectors. In the degenerate case for 
which the two detectors become one, i.e., if the detector is a two-photon 
absorber, the quantum paradigm offers a factor of two advantage in resolution.  
 The sensitivity of the classical and quantum imaging systems are, of course, 
different because the noises associated with the sources are different. Quantum 
imaging has a significantly greater signal-to-noise ratio—if the same mean 
number of photons are used. Because the generation of a high two-photon flux is 
difficult, this advantage has not yet been exploited in real imaging systems. 
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