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14.1 Introduction

Some random phenomena occur at discrete times or locations, with the
individual events largely identical, such as the detection of particles from
radioactive decay. A stochastic point process [8] is a mathematical con-
struction which represents these events as random points in a space. Such
a process may be called fractal when a number of the relevant statistics of
the point process exhibit scaling with related scaling exponents, indicating
that the represented phenomenon contains clusters of points over all (or a
relatively large set of) time or length scales. In this chapter, we consider
point processes on a line, which model a variety of observed phenomena in
the biological sciences.
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Figure 14.1

Representations of a point process. (a) The events are repre-
sented by a sequence of idealized impulses, occurring at times tg,
and forming a stochastic point process dN(t). For convenience of
analysis, several alternative representations of the point process
are used. (b) The counting process N(t). At every event occur-
rence the value of N(t) augments by unity. (c¢) The sequence of
counts {Z;}, a discrete-time, nonnegative integer-valued stochas-
tic process, is formed from the point process by recording the
number of events in successive counting windows of length 7. (d)
The sequence of counts {Z;} can be conveniently described in
terms of a count index k. Information is lost because the pre-
cise times of event occurrences within each counting window are
eliminated in this representation. Correlations in the discrete-

time sequence {Z;} can be readily interpreted in terms of real
time.

14.1.1 Mathematical Descriptions of Stochastic Point
Processes

Figure 14.1 shows several representations that are useful in the analysis
of point processes. Figure 14.1(a) demonstrates the modeling of a point
process as a series of impulses occurring at specified times t;. Since these
impulses have vanishing width, they are most rigorously defined as the
derivative of a well-defined counting process N (t) (Figure 14.1[b]), a mono-
tonically increasing function of t, that augments by unity when an event
occurs. Accordingly, the point process itself is properly written as dN(¢),
since it is only strictly defined within the context of an integral.

The point process is completely described by the set of event times {t},
or equivalently by the set of interevent intervals. However, the sequence of
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counts depicted in Figure 14.1(c) also contains much information about the
process. Here the time axis is divided into equally sized contiguous counting
windows of length T seconds to produce a sequence of counts {Zx}, where
Zy = N[(k+1)T)— N[kT] denotes the number of events in the kth window.
As illustrated in Figure 14.1(d), this sequence forms a discrete-time random
process of nonnegative integers. In general, information is lost in forming
the sequence of counts, although for a regular point process the amount
lost can be made arbitrarily small by reducing the size of the counting
window T'. An attractive feature of this representation is that it preserves
the correspondence between the discrete time axis of the counting process
{Zx} and the absolute “real” time axis of the underlying point process.
Within the process of counts {Z;}, the elements Zy and Zi, refer to the
number of counts in windows separated by precisely T'(n — 1) seconds, so
that correlation in the process {Zy} is readily associated with correlation
in the underlying point process dN (t).

14.1.2 Fractal Stochastic Point Processes (FSPPs) Exhibit
Scaling

The characterization of a stochastic process involves a complete descrip-
tion of all possible joint probabilities of the various events occurring in the
process. Different statistics provide complementary views of the process;
no single statistic can in general describe a stochastic process completely.
We call a stochastic point process fractal if it exhibits scaling in many of its
statistics. Such scaling leads naturally to power-law behavior, as demon-
strated in the following. Consider a statistic f which depends continuously
on the scale  over which measurements are taken. Suppose changing the
scale by a factor a effectively multiplies the statistic by some other factor
g(a), related to the factor but independent of the scale:

flaz) = g(a)f(z). (14.1)
The only nontrivial solution of this scaling equation is

f(z) =bg(z) with g(z) = z° (14.2)

for some constants b and ¢ [22, 26]. Thus, statistics with power-law forms
are closely related to this concept of a fractal.

For example, consider a commonly encountered first-order statistic for
a stochastic point process, the interevent interval histogram (IIH). This
estimates the interevent-interval probability density function (IIPDF) p(t)
by computing the relative frequency of occurrence of interevent intervals as
a function of interval size. This measure highlights the behavior of the times
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between adjacent events, but reveals none of the information contained in
the relationships among these times, such as correlation between adjacent
time intervals. For a fully fractal point process, the IIPDF follows the form
of Equation 14.2, so that p(t) ~ t° over a certain range of ¢, where ¢ < —1.

A number of statistics may be used to describe an FSPP, and each statis-
tic which scales will, in general, have a different scaling exponent ¢. Each
of these exponents can be simply related to a more general parameter «,
the fractal exponent, where the exact relation between these two exponents
will depend upon the statistic in question. For example, the exponent ¢
of the IIPDF defined above can be related to the fractal exponent a by
c=—(1+4a).

The fractal exponent ¢ defined above is also related to the more com-
monly encountered Hurst exponent H [24, 29]. The relationship is ambigu-
ous, however, since some authors [11-13, 24, 41] use the formula o = 2H +1
for all values of «, while others [5] use a = 2H — 1 for @ < 1 to restrict H
to the range (0,1). In this chapter, we avoid this confusion by considering
« directly instead of H.

14.1.3 The Standard Fractal Renewal Process

Comparing existing methods of estimating the fractal exponent of point
processes with techniques based on wavelets requires a benchmark fractal
stochastic point process. Perhaps the most easily described FSPP is the
standard fractal renewal process (SFRP) [7, 18, 19, 20, 23]; we focus on
this process because of its relative ease of analysis, its simple and straight-
forward simulation, and its usefulness in describing a variety of real-world
processes.

For the SFRP, the times between adjacent events are independent ran-
dom variables ¢t drawn from the same fractal probability distribution. In
particular, the IIPDF p(¢) decays essentially as a power law; we illustrate
this with a particular form with abrupt cutoffs

p(t) =

—(a+1)
o {t for0< A<t< B (14.3)

A-e —~ B~ | 0 otherwise,

with « the fractal exponent and A and B cutoff parameters. The SFRP
exhibits fractal behavior over timescales lying between A and B. This
process is fully fractal: it exhibits scaling both in the IIPDF and in the
second-order statistics that we discuss in Section 14.2.
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14.1.4 Examples of Fractal Stochastic Point Processes in
Nature

Many phenomena are readily represented by FSPPs or by functions de-
rived from them. We provide several examples drawn from the biological
sciences. We have carried out similar analyses for physical phenomena such
as trapping in semiconductors [18, 19} and noise and traffic in communica-
tion systems [27].

Biological Ion-Channel Openings

Ion channels reside in cell membranes, permitting ions to diffuse in or
out [28]. These channels are usually specific to a particular ion, or group
of related ions, and block the passage of other kinds of ions. Further, most
channels have gates, and thus the channels may be either open or closed.
In many instances, intermediate conduction states are not observed. Some
ion channels may be modeled by a two-state Markov process [10], with one
state representing the open channel and the other representing the closed
channel. This model generates exponentially distributed dwell times in
both states, which are, in fact, sometimes observed. However, many ion
channels exhibit independent power-law-distributed closed times between
open times of negligible duration [17] and are well described by an SFRP
[20, 21, 30].

Auditory-Nerve-Fiber Action Potentials

Many biological neurons transmit information by means of action poten-
tials, which are localized regions of depolarization traveling down the length
of an axon. Action potentials on a given axon are brief and largely identical
events, so their reception at another neuron (or at a recording electrode)
may be well represented by a point process. FSPPs have been shown to
describe the action potentials in primary auditory nerve fibers in a number
of species [16, 30, 31, 33, 34]. Over short timescales, nonfractal stochastic
point processes prove adequate for representing such nerve spikes, but over
long timescales (typically greater than one second) fractal behavior becomes
evident. Furthermore, estimators of the rate of the process converge more
slowly than for nonfractal processes, displaying fluctuations which decrease
as a power-law function of the time used to estimate the rate [32]. With
the inclusion of the refractory effects of nerve fibers, an FSPP model can
be shown to provide an excellent approximation for modeling the behavior
of nerve spikes in auditory fibers in several species over all time scales and
for a broad variety of statistical measures {16, 21, 31, 33, 34]; only four
parameters are required. This process may well arise from superpositions
of fractal ion channel transitions in inner ear sensory cells, as described
briefly in the section on biological ion channel openings [20, 21].
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Visual-System Action Potentials

As with auditory nerve fibers, some neurons in the visual system trans-
mit information by means of action potentials, and FSPPs provide suitable
models for describing the behavior of these neurons [36]. The gamma re-
newal process, which is nonfractal, has proved to be a useful model for some
of these processes over short timescales [37]. However, nerve spike trains
recorded from both cat retinal ganglion cell and lateral geniculate nucleus
neurons, like those recorded from primary auditory neurons, exhibit fractal
behavior over timescales greater than one second, as will become appar-
ent in Section 14.2. This necessitates the use of an FSPP model for these
neural spike trains as well [36]. Similar fractal behavior has already been
demonstrated for cat striate cortex neurons [35] and for an insect visual
interneuron [39].

Human Heartbeat Times

The sequence of human heartbeats exhibits considerable variability over
time and among individuals, both in the short-term and the long-term pat-
terns of the beats. These effects can be studied by focusing on the times
of maximum contraction, thus forming a point process of heartbeats. A
particular FSPP, with an integrate-and-reset (rather than a Poisson) sub-
strate, has been constructed and shown to successfully describe these events
[38, 40]. In many respects the heartbeat process resembles the process
formed by peripheral auditory and visual system action potentials. Over
short timescales, nonfractal point processes provide suitable models for the
pattern of times between contractions; for times longer than roughly 10 s,
only fractal models suffice. Further, parameters of the FSPP used to model

the data may have applicability for the diagnosis of various disease states
[40].

14.2 Methods of Estimating the Fractal Exponent of
Fractal Point Processes

As the examples described above illustrate, many natural phenomena are
amenable to modeling by FSPPs. The value of the fractal exponent o can
often provide important information regarding the nature of an underlying
process, and can also serve as a useful classification tool (as indicated in
the subsection pertaining to the human heartbeat above). Accordingly, it is
desirable to estimate o reliably [29], although this task is often confounded
by a variety of issues [6] (see [22] for a detailed discussion).

Here we briefly review some of the techniques used for estimating a. We
show how two of these, the Fano and Allan factors, can be generalized
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as wavelet-based measures. To illustrate these techniques, we apply them
to a train of action potentials recorded from a lateral geniculate nucleus
(LGN) relay neuron in the cat visual system. There are 24,285 events in
this particular spike train, with an average interevent interval of 0.132 s,
comprising a total duration of 3225 s [36].

14.2.1 Coincidence Rate

The first measure we consider is the coincidence rate (CR). The CR
measures the correlations between pairs of events with a specified time
delay between them, regardless of intervening events, and is related to the
autocorrelation function used with continuous processes. The CR is defined
as

G(r) = lim Pr{€[0,A] and &[r,T + A]}

A—0 A2 ’ (144)

where £[s, t] denotes the occurrence of at least one event of the point process
in the interval [s,t). For an ideal fractal point process the coincidence rate
assumes the form [22)

G(r) = A(7) + 22 [1 + (|7'|/7'0)a’1] , (14.5)

where A is the mean rate of the process, 8(7) denotes the Dirac delta func-
tion, 79 is a fractal onset time constant, and 0 < & < 1 is the fractal
exponent.

The coincidence rate can be directly estimated from its definition. How-
ever, in practice the CR is a noisy measure, since its definition essentially
involves a double derivative. Furthermore, for FSPPs typical of physical
and biological systems, the CR exceeds its asymptotic value A\Z at 7 — oo
by only a small fraction at any practical value of 7, so that determining the
fractal exponent with this small excess presents serious difficulties. There-
fore we do not specifically apply this measure to the LGN data, although
the formal definition of coincidence rate plays a useful role in developing
other, more reliable measures.

14.2.2 Power Spectral Density

The power spectral density (PSD) is a familiar and well-established mea-
sure for continuous-time processes. For point processes, the PSD and the
CR introduced above form a Fourier transform pair, much like the PSD
and the autocorrelation function do for continuous-time processes. The
PSD provides a measure of how the power in a process is concentrated in
various frequency bands. For a fractal point process, the PSD assumes the
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form

S(w) = A1+ (w/wo) ], (14.6)

for relevant time and frequency ranges, where A is the mean rate of events
and wy is a cutoff frequency.

The PSD of a point process can be estimated with the periodogram (PG)
Sn(w) of the sequence of counts, rather than from the point process itself
(25]. This method introduces a bias at higher frequencies, since the fine time
resolution information is lost as a result of the minimum-count window size.
Nevertheless, since estimation of the fractal exponent principally involves
lower frequencies where this bias is negligible, and employing the sequence
of counts permits the use of vastly more efficient fast Fourier transform
methods, we use this technique in this chapter. Alternate definitions of
the PSD for point processes (and thus for the PG used to estimate them)
exist; for example, a different PSD may be obtained from the real-valued
discrete-time sequence of the interevent intervals. However, features in this
PSD cannot be interpreted in terms of temporal frequency [40].

Figure 14.2 displays the PG for the visual system LGN data calculated
using the count-based approach. (Throughout the text of this chapter we
employ radian frequency w [radians per unit time] to simplify the analysis,
while figures are plotted in common frequency f = w/2n [cycles per unit
time] in accordance with common usage.) For low frequencies, the PG
decays as 1/w®, as expected for a fractal point process. Fitting a straight
line (shown as dotted) to the doubly logarithmic plot of the PG, over the
range from 0.002 Hz to 1 Hz, provides an estimate a = 0.67. Similar results
obtain for the other LGN and retinal ganglion cells (RGC) data sets that
we have examined (36].

14.2.3 Fano Factor

Another useful measure of correlation over different timescales is provided
by the Fano factor (FF), which is the variance of the number of events
in a specified counting time T divided by the mean number of events in
that counting time. In terms of the sequence of counts illustrated in Fig-
ure 14.1(c), the Fano factor is simply the variance of {Z;} divided by the
mean of {Z}, ie.,

_ E[Z}] - E?[Z]
FT)= FZ] . (14.7)
The FF generally varies as a function of counting time T'. The exception
is the homogeneous Poisson point process (HPP), which is important as a
benchmark in point process theory, just as the Gaussian is in the theory of
continuous stochastic processes. For an HPP, the variance-to-mean ratio
is always unity for any counting time T'. Any deviation from unity in the
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Figure 14.2

Doubly logarithmic plot of the count-based periodogram vs. fre-
quency for the point process representing a nerve spike train
recorded at the output of a visual-system relay neuron in the
lateral geniculate nucleus (LGN) of the cat (solid curve). No ex-
ternal stimulus was present. The data segment analyzed here con-
sists of 24,285 events with an average interevent time of 0.132 s,
comprising a total duration of 3225 s. Over long timescales (low
frequencies), the curve can be fit by a straight line (dotted) of
slope —0.67, representing fractal behavior. This linear best fit to
the data was calculated over the region from 0.002 Hz to 1 Hz.

value of F(T) therefore indicates that the point process in question is not
Poisson in nature. An excess above unity reveals that a sequence is “less
ordered” than an HPP, while values below unity signify sequences which
are “more ordered”. For an FSPP, the FF can be shown to vary as ~ T¢
for long counting times provided 0 < « < 1; therefore a straight-line fit to
an estimate of F(T) vs. T on a doubly logarithmic plot can also be used to
estimate the fractal exponent.

Figure 14.3 shows the estimated FF curve for the same data set as shown
in Figure 14.2. For counting times T' greater than approximately 0.5 s,
this curve behaves essentially as ~ T. The estimated value is o = 0.65
(dotted line), closely agreeing with the value obtained from the PG. Similar
estimated FF curves emerge not only for other LGN data sets, but also from
spike trains recorded from retinal ganglion cells [36].
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Figure 14.3

Doubly logarithmic plot of the Fano factor estimate vs. count-
ing time, for the same spike train as used for Figure 14.2 (solid
curve). Over long timescales, the curve can be fit by a straight
line (dotted) of slope 0.65, representing fractal behavior with a
similar exponent to that obtained from the PSD. This linear best
fit to the data was calculated over the region from 0.3s to 1000s.

14.2.4 Allan Factor

The Allan variance, as opposed to the ordinary variance, is defined in
terms of the variability of successive counts [3, 4]. In analogy with the
Fano factor (FF), we define the Allan factor (AF) for the sequence of counts
shown in Fig. 14.1 as

E [(Zit1 — Z1)?]

A(T) = 7]

(14.8)

As for the FF, the value of the Allan factor for the HPP is unity. For an
FSPP, the AF also varies as ~ T for long counting times with 0 < a <
3; therefore a straight line fit of an estimate of A(T) vs. T on a doubly
logarithmic plot yields yet another estimate of the fractal exponent.
Figure 14.4 shows the estimated Allan factor curve for the same data set
as shown in Figures 14.2 and 14.3. This measure appears to be considerably
“rougher” than the FF, which is typical of the data sets we have analyzed.
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Figure 14.4

Doubly logarithmic plot of the Allan factor estimate vs. counting
time, for the same spike train as used for Figures 14.2 and 14.3
(solid curve). Over long timescales, the curve can be fit by a
straight line (dotted) of slope 0.64, representing fractal behavior
with a similar exponent to that obtained from the PSD and the
FF. This linear best fit to the data was calculated over the region
from 0.3 s to 1000 s.

Nevertheless it is clear that for counting times T greater than approximately
0.5 s, its behavior can also be approximated as ~ T%. To estimate the value
of «, a straight line fit to the doubly logarithmic plot of the estimate of
A(T) vs. counting time T was provided. The value of o = 0.64 obtained
agrees well with the values calculated using the PSD and FF. AF curves
for other LGN and RGC data sets we have examined appear similar to this
one.

14.2.5 Haar-Basis Representation of the Fano and Allan
Factors

The Fano and Allan factors can be expressed as special cases of more gen-
eral measures based on the statistics of the wavelet- and scaling-coefficient
sequences of stochastic point processes. In this section, we outline the
relation between the FF and AF on the one hand, and the wavelet- and
scaling-coefficient-based measures on the other. In particular, we show that
these measures coincide for the special case of the Haar wavelet basis.



M. C. Teich, C. Heneghan, S. B. Lowen, and R. G. Turcott, in Wavelets in Medicine and Biology,
edited by A. Aldroubi and M. Unser (CRC Press, Boca Raton, 1996), ch. 14, pp. 383-412.

394 M. C. Teich, C. Heneghan, S. B. Lowen, R. G. Turcott

Scaling and Wavelet Coefficients for a Point Process

We first define the scaling and wavelet coefficients for the point process
dN(t). In analogy with the continuous-time definitions of these coefficients
provided in Chapter 1, we define the scaling and wavelet coeflicients of the
point process as

+oo
(S,N)(a, k) = cla, k] = a= /2 / o(ufa — k) dN(u), (14.9)
and
Foo
(WyN)(a, k) = dla, k] = a2 / Wuja R dN@),  (14.10)

where ¢(t) and ¥(t) are the scaling and wavelet functions, respectively, and
a is a real-valued scale factor by which the scaling and wavelet functions are
dilated. The quantities c|a, k] and d[a, k] are notational conveniences for
(SyN)(a, k) and (WyN)(a,k), respectively. The overbar denotes complex
conjugation.

The Haar Basis

The Haar basis plays a central role in uniting the Fano and Allan factors
with their corresponding wavelet-based measures. As shown in Chapter 1,
the scaling function for the Haar basis is defined as

1 for0<t<1
pu(t) = {0 otherwise (14.11)

while the wavelet function is defined as

1 for0<t<1/2
Yu(t) =< -1 for1/2<t<1 (14.12)
0 otherwise.

Figures 14.5(a) and (b) display these functions.

Haar-Basis Scaling and Wavelet Coefficients

For the special case of the Haar wavelet basis introduced above, the
integrals in Equations 14.9 and 14.10 are easily evaluated in terms of the
counting process N(t) as

cla, k;Haar] = a=Y/? {N(ka + a) — N(ka)} (14.13)



M. C. Teich, C. Heneghan, S. B. Lowen, and R. G. Turcott, in Wavelets in Medicine and Biology,
edited by A. Aldroubi and M. Unser (CRC Press, Boca Raton, 1996), ch. 14, pp. 383-412.

14.2. ESTIMATING THE FRACTAL EXPONENT 395

HAAR-BASIS SCALING FUNCTION HAAR-BASIS WAVELET FUNCTION

(a) (b)

Er——l €=)1 1
4 ‘ N
© Z, - z, z,
L[ QUL L 1 IZIH L] HL I
@ 3 z z
gﬂlﬂ (LTI 1 Hlﬂﬂl HIHSH
% Z z,

Figure 14.5

Determining the scaling and wavelet coefficients of a point pro-
cess using the Haar basis. (a) The scaling function for the Haar
basis, defined over the domain [0,1]. (b) The wavelet function
for the Haar basis, defined over the domain [0,1]. {c) Using se-
quences of counts to evaluate the scaling coefficients for a point
process dN(t). In keeping with the notation of Figure 14.1(c), Zj
denotes the number of events, starting at time ka, and contained
within a Haar wavelet that has been scaled by a. The scaling
coefficient cla, k; Haar] is equal to a~/?2Z;. (d) Using sequences
of counts to evaluate the wavelet coefficients for the same point
process. The quantity Z,'c" denotes the number of events, starting
at time ka, during the positive portion of a Haar wavelet func-
tion (scaled by a); Z, denotes the number of events during the
negative half of the same Haar wavelet function. The wavelet
coefficient d[a, k; Haar| is equal to a='/2(Z{ — Z;).
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and
dla, k; Haar] = a~ Y2 {[N(ka + a/2) — N(ka)] (14.14)

—|N(ka + a) - N(ka + a/2)]},

where the notation c[a, k; Haar| and d|a, k; Haar] explicitly indicates that
these scaling and wavelet coefficients are obtained using the Haar basis.

Figures 14.5(c) and (d) show graphically how the Haar-basis scaling and
wavelet coefficients are calculated by windowing the original data set. The
quantities Zy, Z:, and Z, represent numbers of events contained beneath
(or above) their associated rectangular windows. The unitless scale factor
a is numerically equal to the duration of the counting window in seconds
(which was the T used in the original definition of the FF and AF). The
Haar-basis scaling and wavelet coefficients are therefore readily written in
terms of the quantities

cla, k; Haar] = a=%/2Z, (14.15)

and
dla, k; Haar] = a~1/2 (ZF-2Z7). (14.16)

The connection proceeds by observing that the FF for a scale factor
a (or a counting time T) is equal to the variance-to-mean ratio (FF) for
counting windows of that duration. Considering the definition of the FF
(Equation 14.7) in the context of Figures 14.5(c) and (d), we have

B[] - B[z

F(a) = E[Z]

(14.17)

Since c[a, k; Haar] = a~1/2Zj;, the FF may be represented purely in terms
of the Haar-basis scaling coefficients:

(14.18)

13 [ E{c%a, k;Haar]} — E* {c[a, k; Haar|}
Fla) =a'/? ( E {c[a, k; Haar]} ) ’

Similarly, the AF can be expressed in terms of Zj, Z:, and Z, as

B[(z¢ - 7))
E[Zf]

Ala/2) = (14.19)
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which can be rewritten in terms of the scaling and wavelet coefficients as

(14.20)

A(a/2) = a*/? <E {dQ[a,k;Haar]}> .

E{c|a, k; Haar]}

The argument a/2 for A(-) reflects the fact that the counting windows in
Figure 14.5(d) are half the length of the counting windows in Figure 14.5(c).

Equations 14.18 and 14.20 therefore demonstrate that, for the special
case of the Haar basis, the scaling and wavelet coefficients of a point process
provide a means of estimating the fractal exponent of an FSPP.

14.2.6 Wavelet-Based Fano and Allan Factors

Aside from the Haar basis, other wavelet bases may be employed for
estimating . The results are the wavelet Fano factor (WFF) and wavelet
Allan factor (WAF'), which are generalizations of the Fano and Allan factors
respectively:

e (Bl H) — B lclo, K]}
Fwle) = ( E {lcla, AT} (1420

Aw(a) = a'/? (%}i) : (14.22)

where, by using the absolute value of the scaling and wavelet coefficients,
we permit the use of complex-valued scaling and wavelet functions. Equa-
tion 14.22, defined here as the wavelet Allan factor (WAF), was first pro-
posed as a measure by Flandrin and Abry (1, 2, 13, 14], who called it the
wavelet Fano factor. More recently, they also considered a measure simi-
lar to Fw{a) [1]. We have defined Aw (a) to coincide with A{a/2) for the
special case of the Haar basis, to avoid a superfluous factor of 2 in the
definition of the WAF.

These measures permit the estimation of the fractal exponent of an FSPP.
To demonstrate this, we first calculate the expected values of |c[a, k]|,
|c[a, k]|?, and |d[a, k]|*, employing the coincidence rate G(r) of a fractal
point process defined in Equation 14.5, and the scaling and wavelet func-
tions ¢(t) and 1(t), respectively. The expected value of |c[a, k]| is

+o00
E {|c[a, K|} = o~ 1/2 / o(i/a — K E[N()] (14.23)

— o0
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400

=q /2 / go(t/a~k))\dtl
—00
+oo

= \al/? / w(z) dz
-0

= )\al/2,

since E[dN(t)] = Adt by definition, with A the mean rate of the point
process. Note that we have chosen the scaling function to be normalized to
unit area.

The expected value of |c[a, k]}° is readily calculated as

. {|c[a, k]lz} (14.24)
+o0 +oo —
=q7} /_Oo [m p(t/a — k)p(u/a — k) E[dN(t) dN (u)]

+00 +0o0
:a—l/- /_ p(t/a — kYp(u/a — k) G(t — u) dt du,

where G(t) is the coincidence rate for the process. By using the substi-

tutions y = u/a — b and z = (¢t — u)/a, for a stationary point process we
obtain

+00
E{}c[a,k]]2} = a[ (S,9)(1, 2)G(za) dz, (14.25)

where oo
(S0 = [ el Dy (14.26)

is the continuous scaling transform of the scaling function itself, at unit
scale. Similarly, the expected value of |d[a, k]|? can be calculated as

+00
E {|d[a, k]|*} = a/_ (Wy)(1, 2)G(za) dz, (14.27)
with oo
Wy)(1,2) = : Y()v(y — ) dy (14.28)

the continuous wavelet transform of the wavelet function (¢).
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For an ideal FSPP, the CR assumes the form given in Equation 14.5;
substituting this into Equation 14.25 yields for the scaling coefficients

E {|c[a, k]]2} = a/+w(5¢¢)(1,z)/\6(az) dz (14.29)

— 00

+22q /+Oo(5¢g0)(1, z)dz

— 00

+o0
+A2aJ[ (Sp0)(1, 2)(a/70)* Y27~ da

= a(\a)(Sp#)(1,0) + Aa

Foo
+/\2a"701_a/ (Swgp)(l,z)|z|a~1dz

— 00

+o0
= A+ Ma+ Na%ry @ / (Sp)(1,2)|2|*  dz,

— o0

where we have used the identity fj:oo (Sp)(1,2)dz = 1 appropriate for a
scaling function of unit area, and we have also normalized the scaling func-
tion to have unit energy, so that (S,¢)(1,0) = 1. (The scaling function
©(t) may be defined to have both unity area and unity energy. For unnor-
malized scaling functions, the results are qualitatively the same, although
notationally more cumbersome.)

In a similar manner, the expected value of the absolute square of the
wavelet coefficients for the fractal point process is calculated to be

+o0

E {|d[a,k}|2} - a/ (W), 2)A6(az) dz (14.30)

—0oQ

+o0
+)\2a/ (Wy)(1,2)dz

—~0Q

Foo
+)\2a/ (Wy)(1,2)(a/70)* Hz|* "t dz

— 00

= a(Ma)(Wyt)(1,0) + A%a -0
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+o0
+)\2a°‘7'g"°‘/ (W1,,1/))(1,z)|z|"“1 dz

— 0

400
=)+ )\Zao‘T&_a / (Wye)(1, z)]z|°‘_1 dz,

-0

where this time we invoke the identities sz(Www)(l,z) dz = 0 for any
admissible wavelet, and (Wyv)(1,0) = 1, since the scaling and wavelet
functions have equal energy.

Using Equations 14.23 and 14.29 for a FSPP, the WFF defined in Equa-
tion 14.21 becomes

Fu (@) 12 <A+)\2G+A2QQT&_Q fj§(5¢<p)(1,z)|z|a“1dz-/\2a>
wia) = a

Aal/?2

=1+ g(gzjﬁ <i>a /+OO(S¢<p)(1,z)|z|°"1 dz, (14.31)

agp — o
where we implicitly define ag by the relation

2ag = afa - )&t (14.32)

for notational convenience [22]. The integral in Equation 14.31 depends
on the scaling function ¢ and on the fractal exponent «, but not on the
scale a; thus it does not affect the overall power-law behavior of Fw(a).
For large values of a, the wavelet Fano factor increases essentially as ~ a®.
Accordingly, the fractal exponent can be readily estimated from the slope
of the straight-line region on a doubly logarithmic plot of an estimate of
Fw(a) vs. scale a.

Similarly, the wavelet Allan factor for a fractal point process follows the
form

oo a\® [t
Aw(a) =1+ —(—j—l—) <—> / (Wy)(1, 2)|2]* " dz, (14.33)

2 ag —0

with the integral in Equation 14.33 also independent of a, so that the fractal
exponent o may also be estimated from the slope of the straight-line region
on a doubly logarithmic plot of an estimate of Aw (a) vs. scale a.

The integrals given in Equations 14.9 and 14.10 for the scaling and
wavelet coeflicients can be numerically approximated for a point process by
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Figure 14.6

Doubly logarithmic plot of the wavelet Fano factor estimate
vs. scale a, for the same spike train as used for Figures 14.2,
14.3, and 14.4 (solid curve). The Daubechies four-tap scaling
and wavelet functions were used to calculate the estimated WFF.
The prototype wavelet function was taken to be of duration 1 s
for scale a = 1. Over long timescales, the curve can be fit by a
straight line (dotted) of slope 0.65, representing fractal behavior
with a similar exponent to that obtained from the PSD, FF, and
AF. This linear best fit to the data was calculated over the region
from 1 to 250.

using a summation in conjunction with well-sampled versions of the scal-
ing and wavelet functions. Figure 14.6 shows the estimates of the wavelet
Fano factor calculated in this manner for the same data set as shown in
Figures 14.2, 14.3, and 14.4 (Daubechies four-tap scaling and wavelet func-
tions [9] were used in this implementation). The prototype wavelet was set
to have a duration of 1 second at scale a = 1. For scales a greater than
approximately 1, the estimate of the WFF behaves essentially as ~ a*. To
estimate the value of o, a straight-line fit to the doubly logarithmic plot of
this estimated Fw (a) vs. a was provided. The resulting value is & = 0.65
(dotted line), closely agreeing with the value obtained from the PSD, FF,
and AF.

Figure 14.7 shows the estimate of the wavelet Allan factor calculated for
the same data set as shown in Figures 14.2-14.6. For scales a greater than
approximately 5, this estimate behaves essentially as ~ a®, though like the
estimated Allan factor shown in Figure 14.4, it is rough in appearance.
As before, to estimate the value of «, a straight-line fit to the doubly
logarithmic plot of the estimated Fyw (a) vs. a was provided, resulting in a
value of a = 0.62 (dotted line). Thus all five methods for estimating the
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Figure 14.7

Doubly logarithmic plot of the wavelet Allan factor estimate
vs, time, for the same spike train as used for Figures 14.2, 14.3,
14.4, and 14.6. The same wavelet basis was used as in Figure
14.6. Over long timescales, the curve can be fit by a straight line
(dotted) of slope 0.62, representing fractal behavior with a simi-
lar exponent to that of the PSD, FF, AF, and WFF. This linear
best fit to the data was calculated over the region from 1 to 250.

fractal exponent, the PSD, FF, AF, WFF, and WAF, yield values in close

agreement.

14.3 Comparison of the Estimation Properties of Ex-
isting Techniques and Wavelet-Based Techniques

The question naturally arises: does this agreement extend to arbitrary
data sets, and if not, which technique provides the most reliable estimate
of the fractal exponent a?

To address this issue we undertook a systematic examination of the bias
and variance of each of these estimators. We simulated 50 runs of an SFRP
at each of three different input values of a: « = 0.2, 0.5, and 0.8. Each
simulation was chosen to be 10° seconds long with an expected interevent
time of 1.0 s. The PSD, FF, AF, WFF, and WAF were estimated for each
of the 150 simulations, and the fractal exponents were in turn estimated
from these statistics by using straight-line fits over a fixed region of each
of the 750 individual doubly logarithmic curves. The means and standard
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Table 14.1

Performance summary of the five fractal-exponent estimators de-
scribed in Section 14.2 (PSD, FF, AF, WFF, and WAF) when
applied to 50 independent realizations of an SFRP for each of
three values of the fractal exponent a (0.2, 0.5, and 0.8).

Theoretical Fractal Exponent

0.2 0.5 0.8
PSD 0.332 £ 0.014 0.480 £ 0.017 0.603 £0.012
FF 0.313 £ 0.065 0.425 £ 0.081 0.591 £ 0.075
AF 0.337 £ 0.034 0.482 4 0.055 0.645 £ 0.041
WFF 0.322 £ 0.068 0.424 £0.084 0.607 + 0.069
WAF 0.332 £0.025 0.482 +0.034 0.614 +0.034

Note: For each measure, the mean value & the standard deviation is presented.
The estimates were obtained over the following frequency and time ranges:
PSD: 0.001-0.1 Hz; FF and AF: 5-1000 s; WFF and WAF: 25-2500.

For the WFF and the WAF, the range refers to the value of the scale factor a
used to dilate the mother scaling and wavelet functions.

deviations of these fractal exponent estimates are listed in Table 14.1 and
presented graphically in Figure 14.8(a). The ranges over which the esti-
mates were obtained are indicated in the table caption.

Figure 14.8(a) reveals at a glance that all of the measures perform quite
poorly for @ = 0.2 and a = 0.8. The observed bias towards the value 0.5 also
emerges when estimating the fractal exponent of a superposition of SFRPs
(Figure 8 of [22]). This bias is not fully understood; part undoubtedly
stems from the necessity for finite data-length simulations, and part arises
from the need for imposing cutoffs in the simulation of the SFRP (A and B
in Equation 14.3). In fact, the simulation process itself may be inherently
biased. The simulations shown here follow the techniques used in [22],
where the IIPDF was chosen to have a power-law decay with an exponent
of a — 3; this yielded physiologically plausible simulations of neural spike
trains. Changing this exponent to —(a + 1) somewhat reduced the bias
in the estimate of «, but the resulting simulations no longer resembled
neuronal behavior. However, this reduction in the bias does support the
claim that the bias may in large part stem from simulation effects.

Therefore we focus instead on the relative differences between fractal
exponent estimates obtained through wavelet-based measures and those
obtained from the PSD, FF, and AF, and in particular on the means and
standard deviations provided in Table 14.1 and Figure 14.8(a). The means
do not show a significant difference; employing the PSD, AF, and WAF
yields estimated mean values of o within 0.04 of each other, with the values
corresponding to the FFF and W FF only slightly farther apart. However,
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Figure 14.8

Performance summary of the five estimators considered in this
chapter (PSD, FF, AF, WFF, and WAF). (a) Graphical repre-
sentation of the data presented in Table 14.1. The mean values
of 50 estimates for the fractal exponent of the SFRP, for each of
the three different values of «, are marked by dots. The +1-SD
regions are indicated by the vertical lines projecting from each
dot. All of the estimates show strong bias for & = 0.2 and a = 0.8;
only the measures employing the FF and WFF are significantly
biased for « = 0.5. From the perspective of the variance of the es-
timator, the PSD-based method is best (least variance), with the
AF and WAF achieving nearly as low a variance, and the FF and
WFF exhibiting the worst performance. (b) Relation between
the WFF- and the FF-based estimates. The estimated value of
a using the WFF is plotted against the estimated value from the
FF; the correlation coefficient is 0.99. This consistency is grati-
fying, since the two measures are essentially the same, differing
only in the change of wavelet basis from the Daubechies four-tap
(for the WFF) to the Haar basis (for the FF). Both estimators
show strong bias for a = 0.2 and « = 0.8, and have a high variance
(see Table 14.1 for numerical values). (c) Relation between the
WAF- and the AF-based estimates. The estimated value of « us-
ing the WAF is plotted against the estimated value from the AF;
these are highly correlated, for the same reason as in (b), with a
correlation coefficient of 0.95. Both estimators show strong bias
for « = 0.2 and « = 0.8, but have a moderately low variance (see
Table 14.1 for numerical values).
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Figure 14.8(a) clearly shows that the svandard deviations using the FF and
WEFF methods are significantly greater than those for the other measures,
and this will be further explored in Section 14.4.

We now turn to the correlation between the estimates provided by the
FF/WFF and AF/WAF pairs. A positive correlation is to be anticipated,
since we have shown theoretically how the WFF and WAF are general-
izations of the FF and AF, respectively. Figure 14.8(b) shows a scatter
plot of the 150 estimates of o obtained from the FF and the WFF. The
centers of the three large circles correspond to zero error in estimating the
fractal exponent for the three values of & used to simulate the process, and
the lines connecting the circles indicates where the two estimates coincide.
Since the estimate pairs are strongly clustered along these lines, they are
strongly correlated, confirming that the WFF is indeed closely related to
the FF; the correlation coefficient is 0.99. Figure 14.8(c) shows a similar
scatter plot obtained from the AF and the WAF. Again the estimate pairs
are strongly clustered along the 45° line, indicating that they are strongly
correlated, and that the WAF is closely related to the AF. For this pair the
correlation coefficient assumes a value of 0.95. Though the estimates of the
WFF and WAF displayed in Figure 14.8 are specifically calculated using a
Daubechies four-tap wavelet basis, we have determined that the results do
not vary significantly for different wavelet bases [15]; there tends to be a
slight increase in the variance of the estimators as the number of vanishing
moments of the wavelet increases—see Section 14.4.

14.4 Discussion

An interesting feature that emerges from the SFRP simulations summa-
rized in Figure 14.8 is the consistently lower variances in fractal-exponent
estimation exhibited when using AF- and WAF-based methods in com-
parison with those of the FF and WFF. Flandrin and Abry [1, 2, 12-14]
suggested that this might relate to the behavior of the Fourier transforms
of the scaling and wavelet functions. To investigate this supposition, we re-
cast Equations 14.25 and 14.27 from time-domain integrals into frequency-
domain ones. Thus, Equation 14.25 becomes

+oo
E {|c[a, k]|*} = a/ (Sp0)(1,2)G(za) dz (14.34)

— 00

+oo
= [ Seolz/a)c() iz

— 00
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i

/_:O U_ :O eW)ely — z/a)dy| G(z)dz

1 +o0o +o0 )
T on / p(w)]” expliwz/a)G(z) dw dz
N

1 +00

= [ PP Sw/a)d

hade.®

“+oc
= —1—a/ |p(wa))® S(w) dw,

27 ).

where ¢(w) is the Fourier transform of ¢(t), and

+o0
S(w) = / G(z) exp(—iwz) dz (14.35)

—

is the PSD of the point process, as defined in Section 14.2.2. Similarly,
Equation 14.27 may be expressed as

+oo 2
E{|d[a,k]2|}:§% _ w(w)' S(w/a) dw (14.36)
a +oo 2
= | }w(wa)‘ S(w) dw.

The forms of the integrals in Equations 14.34 and 14.36 provide some
insight into the relative performances of the five fractal exponent estima-
tors studied. For an FSPP, the PSD follows the form of Equation 14.6
and diverges at low frequencies. Any practical FSPP will have cutoff fre-
quencies, however, beyond which the fractal scaling no longer holds, and
the PSD will therefore assume some finite value at low frequencies. Fractal
processes naturally exhibit fluctuations on all frequency scales, with the
lowest, frequencies displaying the largest fluctuations, in proportion to the
PSD. Therefore the low-frequency asymptote of a PSD estimate can fluc-
tuate widely among different simulatious of the same FSPP. By definition,
|2(0)] = 1 and is continuous at w = 0, so that the integral in Equation 14.34
does not converge for a fractal point process with 0 < o < 1 and therefore
explicitly depends on the low frequency asymptote. Thus E{|c[a, k]|2} de-
pends directly on this fluctuating quantity, and the estimate of the FF and
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WFF should exhibit the largest variance. Indeed, estimates of individual
FF and WFF plots for the SFRP simulations used in this chapter exhibit
wide fluctuations from run to run. Although each individual estimated FF
or WFF curve appears smooth, overlays of these plots show a wide range
of slopes for the same starting value of the fractal exponent «, therefore
yielding wide variation in the estimates of .

The Fourier transforms of wavelet functions, liowever, attain a value of
zero for zero frequency, and are also continuous at this point. Therefore the
behavior of the integrand in Equation 14.36 near the origin for an FSPP
depends on both the divergence in the PSD and the tendency of |¢(w)| to
go to zero. The behavior of |@Z;(w)| near the origin may be described by
the number of vanishing moments R of the wavelet, defined as the largest
integer IR for which

+oc
/ tfy(t) dt = 0.

—0oC

For a wavelet () with R vanishing moments, the magnitude of its Fourier
transform |¢(w)| varies as ~ w*¢ for w — 0, where 0 < € < 1. Therefore,
the integral in Equation 14.36 converges without a low-frequency asymptote
for any o« < 14 2R. The Haar basis has R = 0 exactly; for our simulations
a < 1, so E{|d[a,k]|*} does not depend on the fluctuating low-frequency
asymptote, and estimates of the AF should exhibit lower variance than
those of the FF and WFF. In fact, for the Haar basis [¢(w)] varies as ~ w'
so that the Allan factor converges for o < 3. For the Daubechies four-tap
wavelet that we have used, R = 2, so that the cutoffs do not greatly affect
the integral for o < 5. We expect estimates of the WAF to exhibit similar
variance to those of the AF, since in our simulations we employ fractal
exponents in the range 0 < o < 1. The WAF should prove more useful
than the AF for FSPPs with o > 3. In contrast to the FF and the WFF,
individual AF and WAF estimates exhibit somewhat smaller fluctuations
from plot to plot. These Allan-based estimates appear somewhat more
ragged than those of the FF and WAF, but slopes for these plots in fact
show less variation, and yield estimates of a with somewhat less variance.

Finally, we expect the PG to have the lowest variance of all, since it
depends on all frequencies and thus deemphasizes the effect of the low-
frequency fluctuations. Simulations validate this reasoning. Individual PG
plots indeed exhibit the widest variation of all, yet the estimates of the
fractal exponent « exhibit the least variance of the five measures studied.
For the values of @ we have chosen, the wavelet-based measures exhibit
similar performance to those of their Haar-basis counterparts. In short, the
Allan-based methods outperform those based on Fano factors, and the PG
yields the best performance of all.
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14.5 Conclusion

We have defined two wavelet-based measures for estimating the fractal
exponent of a point process: the wavelet Fano factor and wavelet Allan
factor. These arise as natural generalizations of two simple count-based
measures: the Fano factor and Allan factor, respectively. We have shown
that, at least for the standard fractal renewal process, the wavelet-based
techniques reveal their Fano- and Allan-factor origins by exhibiting similar
biases and variances. The AF and the WAF outperform the FF and the
WEFF for the SFRP, apparently because of the increased number of van-
ishing moments in the frequency domain of wavelet functions compared to
scaling functions. Carrying this argument further, one might expect that
the WAF would outperform the AF for wavelet bases with at least one
vanishing moment. SFRP simulations reveal that this does not happen,
however, indicating that the addition of further vanishing moments is off-
set by the effective widening of the support of the wavelet basis, leading to
fewer independent values of wavelet and scaling coefficients for a given finite
data set [15]. Still, the fractal-exponent estimation properties of the power
spectral density, a Fourier-transform based method, appear to surpass the
other methods investigated, at least for this simulation of the SFRP; other
types of FSPPs, or even other variations of the SFRP, might well yield dif-
ferent results. Thus wavelet-based measures can be fruitfully added to our
armament of techniques for estimating the fractal exponent of an FSPP.
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