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Multiplication effects in point processes are important in a number of areas of electrical engineering and
physics. We examine the properties and applications of a point process that arises when each event of a pri-
mary Poisson process generates a random number of subsidiary events with a given time course. The multi-
plication factor is assumed to obey the Poisson probability law, and the dynamics of the time delay are asso-
ciated with a linear filter of arbitrary impulse response function; special attention is devoted to the rectangu-
lar and exponential case. Primary events are included in the final point process, which is expected to have
applications in pulse, particle, and photon detection. We refer to this as the Thomas point process since the
counting distribution reduces to the Thomas distribution in the limit of long counting times. Explicit re-
sults are obtained for the singlefold and multifold counting statistics (distribution of the number of events
registered in a fixed counting time), the time statistics (forward recurrence time and interevent probability
densities), and the counting correlation function (noise properties). These statistics can provide substantial
insight into the underlying physical mechanisms generating the process. An example of the applicability
of the model is provided by betaluminescence photons produced in a glass photomultiplier tube, when Cher-
enkov events are also present.

I. Introduction

To describe the statistics of photons, particles, or in
general a random sequence of pulses, the theory of point
processes is used. The simplest and most common
process is the homogeneous Poisson point process
(HPP). It is characterized by a single quantity, its rate,
which is constant. One of its distinguishing features
is that it evolves in time without aftereffects. This
means that the occurrence times, and number of events
before an arbitrary time, have no bearing on the sub-
sequent occurrence times and number of events. It is
said to have zero memory.' Photons of a stabilized laser
above threshold obey the HPP to very good approxi-
mation.

There are many generalizations of the HPP. One
case that has been studied extensively is the doubly
stochastic Poisson point process (DSPP), which differs
from the HPP in that the rate is no longer constant.2

Rather it takes on a stochastic nature of its own. This
process was first examined by Cox (and by Bartlett in
the discussion to Cox's paper). 3 The designation DSPP
was introduced to emphasize that two kinds of ran-
domness occur: randomness associated with the
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Poisson point process itself and an independent ran-
domness associated with its rate. Photons of classical
sources of light are described by the DSPP.

A special case of the DSPP obtains when the sto-
chastic rate is a filtered HPP (ie., shot noise); it is,
therefore, convenient to call this the shot-noise-driven
doubly stochastic Poisson point process (SNDP).48
The SNDP arises when the rate of a (secondary) inho-
mogeneous Poisson pulse sequence is determined by
another (primary) Poisson pulse sequence. An example
is the sequence of primary Poisson electrons producing
a sequence of photons in betaluminescence. The
SNDP has been recently studied in great detail. The
singlefold and multifold counting and time statistics, 8

as well as the time statistics in the presence of dead time
and sick time,7 have been obtained. One important
result that emerges from the study is that in the limit
of counting time long in comparison with the fluctuation
time of the shot noise, a unique SNDP counting distri-
bution emerges, the Neyman type-A distribution.9 -1'
Even in the nonstationary case, this limit turns out to
be appropriate.12 The behavior of the SNDP in the
presence of dead time (self-excitation) has also been
examined in several cases7"13"14; phenomenological
arguments show that in certain limits, the Neyman
type-A counting distribution provides a satisfactory
approximation in this case as well.14 Finally, multi-
plied-Poisson point processes have been examined in
the context of quantum optics, where interference ef-
fects can occur,15 and the counting statistics for cascades
of SNDPs have been formulated.16
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About thirty-five years ago, Thomas carried out a
study' 7 in the context of ecology in which she introduced
a two-parameter counting distribution distinct from the
Neyman type-A only in that primary events were in-
cluded in the final counts. Although she originally re-
ferred to this as the double-Poisson distribution, it has
since come to be called the Thomas distribution. In
this paper, we consider a stochastic point process that
includes time dynamics and reduces to the Thomas
counting distribution in the limit of long counting times.
We assume that the primary events are instantaneouisly
carried forward to the final process and that the sec-
ondary events are randomly delayed with respect to the
primary events. The model is, therefore, identical to
the SNDP considered earlier with the additional con-
dition that primary events are fed forward. This is not
a trivial addition, however, since the primary and sec-
ondary events are not independent.

In Sec. II, we review the properties of the instanta-
neous Thomas process (when time dynamics are ab-
sent). The effects of time dynamics are incorporated
in Sec. III; the counting statistics, counting correlation
function, and time statistics are obtained, and their
behaviors are investigated in special cases. Applica-
tions of the Thomas process are discussed in Sec. IV,
and the conclusion is provided in Sec. V.

11. Instantaneous Thomas Process

In this section, we briefly review the Thomas distri-
bution and study its various statistical properties.
Consider the primary point process whose events are
illustrated in Fig. 1(a). The number of events (counts)
within a time interval [0,T] is a discrete random variable
M having a moment generating function (mgf) QM(s)
= (exp(-sM)). The angular brackets represent an
ensemble average. Let each primary event produce
independently A subsidiary events [as illustrated in Fig.
1(b)], where A is a discrete random variable that has an
mgf QA(S) = (exp(-sA)). Since the primary process
is fed forward and added to the secondary events, the
total number of events N is given by

M
N= Ak+M, (1)

k=1

where the Ak are independent values of A. If A and M
are statistically independent, it can be shown that the
mgf of N,QN(s), is given byl""1

QN(S) = QM[S - ln QA(s)]. (2)

This equation can be used to relate the moments of N
to those of M and A. The means are related by

(N) = (M)(1 + (A)), (3)

the second factorial moment obeys the equation

(N(N - 1)) = (1 + (A)) 2(M(M - 1)) + (M)(A(A - 1)), (4)

and the variances are expressed as

var(N) = (1 + (A)) 2 var(M) + (M) var(A). (5)

Equation (5) is related to the Burgess variance the-
orem.1 82 0

(a) M = 5

10

Fig. 1. Random multiplication of events: (a) primary events; (b)
subsidiary events; (c) primary events plus randomly delayed sub-

sidiary events.

When the primary events constitute a Poisson point
process, the random variable M has a Poisson distri-
bution with the mgf

QM(s) = exp{ (M)[exp(-s) -1],

which, when combined with Eq. (2), gives rise to

QN(s) = exp{(M)[exp(-s)QA() - 1].

The count variance associated with Eq. (7) is then

var(N) = (1 + ci)(N),

(6)

(7)

(8)

where

cl = (A) + var(A) (9)
1 +(A)

Equation (8) demonstrates that for a Poisson primary
process, whatever the distribution of the multiplication
factor A, the variance of N is always proportional to the
mean (N). The ratio var(N)/(N) is known as the
dispersion ratio or the Fano factor.8 '2 ' We denote the
parameter cl as the excess Fano factor.

When the multiplication factor A also has a Poisson
distribution, Eq. (7) yields

QN(s) = exp[(M)(expi-s + (A)[exp(-s)-ll}-1)], (10)

which is the mgf for the Thomas distribution."" 7

Using Eq. (10), we have derived the following recurrence
relation for the mth ordinary moment of N denoted by
(N m ):

(Nm+l) = (M) m k)(Nm-k)dk+l, (NO) = 1,
k= k

dk+l = (1 + (A))dk + (A) k k jdh_,,r=1 r
do = 1.

(lla)

(llb)

The first three ordinary moments are explicitly written
as
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(N) = (M)(1 + (A)),

(N2) = (M)[(1 + (M))(1 + (A))2 + (A)],

(N3) = (M)[(1 + 3(M) + (M)2 )(1 + (A))2

+ 3(A)(1 + (M))(1 + (A)) + (A)].

The variance is obtained from Eq. (12):

var(N) = (M)(1 + 3(A) + (A) 2 ),

(a) I I

(12)

(b)

(13)

in accord with the results in Refs. 11 and 17.
The mth factorial moments Fm are obtained from the

factorial moment generating function:

QfN(s) = ((1 -s)N), (14)

which is related to the ordinary mgf by

Q(s) = QN(S)Is=-In(1-s)- (15)

Combining Eqs. (10) and (15) yields

Qfv(s) = expl(M)[(1 - s) exp(-(A)s) - 1]1. (16)

By use of the formula 2 2

asmF. = (-1)- dQMS) |=0 (17)

together with Eq. (16), the mth factorial moment is
expressed as the recurrence relation:

Fm+j = (N) E IIFm-kbk+,
k=O Fk

Fo = 1,

(18)

where

b = k-(A) I(A) + k-
1 + (A)

The first three factorial moments are easily shown to
be

F1 = (N),

F2 = (N)(N) + (A) 2 + (A)) (19)
1i+ (A)J

F3 = (N)J(N)2 + 3(A)(N) 2 + (A) + (A)2 3 (A)l
I 1 +(A) 1+ (A)1'

The Fano factor FT for the case of a Poisson primary
process with Poisson multiplication is simply

FT var(N) 1 + 3(A) + (A) 2 (20)
(N) 1 + (A)

The counting distribution p (n) can be obtained from
the formula23

an
p(n) =--GN(z) , (21)

n!Ozn za0

where GN(Z) is the probability-generating function
defined as

GN(Z) F(ZN). (22)

This is related to the ordinary mgf by

GN(Z) = QN(S)Is=-In. (23)

Combining Eqs. (10) and (23) yields

GN(Z) = exp((M)lz exp[(A)(z - 1)] - 11). (24)

(c)

t'l t2 ! 1 

Ii

- I 1 r, 
I , I

I I I I1I S1 I i i i
i I I

I I
I I I

Fig. 2. Production of Thomas events: (a) primary Poisson events;
(b) filtered Poisson events (shot noise); (c) primary events plus sub-

sidiary doubly stochastic Poisson events whose rate is shot noise.

By use of Eqs. (21) and (24), the counting distribution
is expressed as

n
; (n + )p(n + 1) = (N ) ckp (n -k), n = 0,. ..

k=O

(25a)

p(0) = exp(-(M)), (25b)

where

ck)= 1+k (A)kexp(-(A))
1 + (A) k!

which can also be written as the finite sum1 1"17

(M)) n+1 (k(A))n+l-k exp(-(A)k) (M)kp(n +)exp(-() E n1k! k
k=1 (n + 1-k)! k

(25c)

In the next section, we incorporate the effects of time
dynamics, demonstrating that the counting distribution
reduces to the Thomas in the limit of long counting
times.

Ill. Thomas Process with Random Time Delay
In the previous section, each primary event was as-

sumed to instantaneously excite a random number of
subsidiary events. In many physical systems, a time
delay will be inherent in the multiplication process, and
that time delay will itself be random, as illustrated in
Fig. 1(c). The primary events are included in the final
process for the Thomas process. The same result can
be obtained by application of the SNDP,8 as shown in
Fig. 2. The subsidiary events now form a DSPP whose
stochastic rate is the shot noise.

The generation of the Thomas point process is rep-
resented in block diagram form in Fig. 3. A process of
Poisson impulses Zp (t) of constant rate ,u is filtered by
a time-invariant linear filter with a non-negative im-
pulse response function h(t). This results in the
shot-noise process X(t).24 This process in turn is the
stochastic rate giving rise to the DSPP U(t). The union
of the doubly stochastic Poisson point process [rate
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X(t)] and the homogeneous Poisson point process (rate
A) produces the Thomas process Z(t). It is important
to note that the resulting point process may not be a
DSPP because U(t) and Zp(t) are not independent.

We are interested in determining the following sta-
tistical properties of the Thomas process: (1) the
counting statistics (probability distribution and mo-
ments) of the number of counts N registered in the time
interval [0,T]; (2) the autocorrelation function of the
counts in the time interval T, separated by a time delay
r; and (3) the time statistics, i.e., the probability density
functions for the forward recurrence time and the in-
terevent time. We begin with the moment generating
functional, specializing our results as we proceed with
the calculations.

A. Moment Generating Functional

We define the moment generating functional of the
random process 2 22 Z(t) as

Lz(s) = (Xp[ 3' Z( ])s(tdtj (26)

It can be shown (see Appendix) that Eq. (26) can be
rewritten as

Lz(S) = (exp(f Z()(s()

- f h(r - t){exp[-s(T)] - 1di)dt))

= Lz(s(t) - 3 h(r - t)exp[-s()] - l1dT) (27)

where the moment generating functional for the process
Zp(t) is

Lzp(s) = exp(,u 5 lexp[-s(t)] - dt) * (28)

Combining Eqs. (27) and (28) yields the final result

Lz(s) = exp {g 3f [exp(-s(t) + 3 h(T - t)

X exp-s(r)] - l1dr) - 1ldt} * (29)

B. Multifold Moment Generating Function

The joint statistical properties of the number of
counts Nj in the L time intervals (tj,tj + Ti), j -
1,2, . . , L, are determined from

QN(S) = Lz(s)1B(t)=sv*,

where

r-…---------…-…- -- 1

L_-…----____________
Fig. 3. Model for generation of the Thomas point process.

N = (N1,N2, , NL),

S = (bs2 . SL),

v(t) = [(t),V 2(t), . * , VL(t),

vj(t) = u(t - t) - u(t-tj - Tj).

Here u(t) is the unit step function, and the asterisk *
represents the operation of vector transposition. The
substitution of Eq. (29) into Eq. (30) yields the L-di-
mensional moment generating function

QN(S) = exp L 3' 4exp(- >J sjvj(t) + h(r -

X exp[- E sjVj(r)J - ldr )-1]dt} * (31)

By using this equation, we can explicitly determine the
joint statistics of Nj.

C. Singlefold Moment Generating Function and
Moments

The singlefold moment generating function can be
found by simply substituting L = 1 in Eq. (31). This
gives

QN(s) = exp J' (expl-s + [exp(-s) - 11hT(t) - 1)dt

+ U 3 (exp{[exp(-s) - 1hT(t) - )dtj, (32)

where the linear filter impulse response function hT(t)
is obtained by convolving h(t) with a rectangular im-
pulse response function on the time interval [0,T]. This
corresponds to ideal integration (which is assumed to
be noncausal for convenience), so that

hT(t) = fJ h(t + t')dt'.

It can be shown that substituting h(t) = (A )6(t) into
Eq. (32) yields Eq. (10) with (M) = ,uT. This explicitly
demonstrates that all moments of the Thomas instan-
taneous multiplication process can be recovered in the
limit T/rp >> 1, where rp is the characteristic decay
time for the impulse response function h(t). Using Eq.
(32), we obtain the following relation for the mth ordi-
nary moments of N denoted (Nm (T)):

(Nm+l(T)) = (N(T)) 7 (k)(N-k(T))D, (N°(T)) = 1,

(30)

where

Dk= ' + J'H,+J(t)dt + 3' Ek+1(t)dt]

Hk+1(t) = [1 + hT(t)]Hk(t) + hT(t) E (k)Hkr(t),
r=1 r

Ek+1(t) = hT(t) E ()Ekr(t), E0 = 1.
r-o r

The mean and variance are given by

(N(T)) = tT(1 + a),

(33a)

(33b)

Ho = 1,

(33c)

(33d)

(34a)
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var[N(T) = T 1 + -a + -l (34b)

where

in1 = - hT(t)dt, (35a)

t = J hT(dt + i J h'(t)dt, (35b)

c, = J h(tdt. (36)

Here A and Ai' are degrees-of-freedom parameters
which depend on the counting time T and the charac-
teristic decay time rp of the impulse response function
h(t). The Fano factor is, therefore,FT 1 (1 + , + a") . (37)

It has previously been shown that the Fano factor for
the SNDP is given by8

FSNDP = 1 + (a/ti), (38)
where 4 is given in Eq. (35a). In the limit when h(t)
= (A) 3(t), and (A) = a, 4 = ' = 1, and Eq. (20) is
reproduced.

The behavior of A and At' has been studied in detail
for the cases of exponential and rectangular impulse
response (filter) functions. When the filter is expo-
nential,6 ' 8

h(t) = - exp(-2tpr)u(t),
TP

and we obtain

A = 2/3/[exp(-2fl) + 2 - 1],

it' = 3/(exp(-2#) + 3 - 1],

where /3 T/-rP. When h(t) is rectangular, i.e.,

h(t) = lr/p < t < p,
0 otherwise,

the degrees-of-freedom parameters turn out to be
A { 1/(0- i2/3) < 1,

{/(, - 1/3) 1,

,,,, 3/( + O) < 1,
AP B- 1/3) j > 1.

(39)

From Fig. 4, it is apparent that the specific shape of
the filter function plays its largest role in the vicinity of
3 = 1. This is to be expected, since for : << 1 the pro-
cess approaches Poisson, while for: >> 1 it approaches
the Thomas instantaneous process. These limits are
valid for arbitrary h(t). Like the SNDP, the Thomas
process is particlelike in nature. For short counting
times, the particlelike clusters are cut apart leading to
the independence characteristic of the Poisson, whereas
for long counting times they are fully captured.6 This
is in sharp distinction to the counting process obtained
for thermal light, which is wavelike in nature.6

D. Factorial Moments and Counting Distribution

The factorial moments and the counting distribution
can be derived from the factorial moment generating
function defined by Eq. (14). This is related to the
ordinary mgf in accordance with Eq. (15). The sub-
stitution of Eq. (32) into Eq. (15) yields the factorial
moment generating function for the Thomas process

QfN(s) = expA 3' I(1 - s) exp[-sh(t)] - dt

+ g Jf fexpt-shT(t) - ldt). (46)

By use of Eq. (17), a straightforward calculation pro-
vides the following recurrence equation for the mth
factorial moments:

Fm+i = (N) E IIFm-kBk+,,
k=O k)

(47)

where

(40)

(41)

(42)

Fo = 1,

T(1+ a) f-T

+ fo [hT(t)]kdtJ.

(48)

+ kI[hT(t)Ik-ldt

(49)

l 2

(43)

(44)

The degrees-of-freedom parameters A and At' are
presented graphically in Fig. 4 for the exponential
(.texpAexp) and rectangular (trectArect) impulse re-
sponse functions.

For << 1, Jttexp = Atrect = 1/3, and Aexp = Arect = 3,
as is evident from Eqs. (40), (41), (43), and (44). In this
limit, FT 1, as is seen from Eq. (37). For >> 1, all
curves approach unity, indicating that the Fano factor
achieves its maximum value

II l 0

C,

10

FT = (+ 3a + a2)/(l + a), (45)

associated with the Thomas instantaneous multiplica-
tion distribution.l" 7 Note that this occurs in the limit
of large counting time and is independent of the func-
tional form of h (t). Furthermore, for > 1, Arect and
Arect are identical.

10 1 10 2

= Tp

Fig. 4. Dependence of the degrees-of-freedom parameters in and
n' on the ratio ,B = T/TP. inexp and ine', are for the exponential case,

whereas inrect and inrect are for the rectangular case. Observe that
inexp = J'2rect = T/T and nexp= .4rect = 3 for T/T-P << 1, whereas inexp

-
4 t rect = exp = Aect = 1 for T/rP >> 1.
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Fig. 5. Counting distribution p(n) vs count number n, with 2T/TP as a parameter, for the Thomas process. The impulse response function
for the filter is exponential with time constant rp/2. In all cases the mean number of events in the counting time T is (N(T)) = 10. (a) mul-

tiplication parameter a = 0.5; (b) multiplication parameter a = 2.0.

It can be shown that Eq. (47) reduces to Eq. (18) pro-
vided (M) = gzT, h(t) = (A)3(t), and (A) = a.

The probability distribution for the number of counts
in the interval [0,T] can be computed by use of Eq. (21).
Alternatively, it can be obtained from Eq. (46) by means
of the relation

p(n) = (-)n(jn/asn)Q~(s)I 8=i.

This leads to a recurrence relation for
distribution of the form

the counting

n

(n + 1)p(n + 1) = (N) E C(k)p(n - k), (50a)
k=O

p(0) =exp[ (N) -I X exp[-hT(t) - 1dt -

(50b)

where

C(k) = (k + 1) Jk(t)dt + Jk+l(t)dtk! ( + a)T + fT f 
Jk(t) = [hT(t)]k exp[-hT(t)]. (51)

Equations (50a) and (SOb) are identical to Eqs. (25a)
and (25b), respectively, when T/rp >> 1 and /IT =

(M)-
In Fig. 5(a), we display the counting distribution for

the Thomas process, p(n) vs n, with 2TIrp as a pa-
rameter, when a = 0.5 and (N(T)) = 10. In Fig. 5(b),
the case for a = 2 is shown. In both cases, the variance

increases with T/rp, as is understood from Fig. 4 and
Eq. (37). Furthermore, for fixed T/-rp, the count un-
certainty increases with a, which can also be understood
on the basis of Eq. (37).

In Fig. 6 we compare the Thomas and SNDP counting
distributions in the limit T/rp >> 1. (In this limit the
SNDP is described by the Neyman type-A counting
distribution.) In Fig. 6(a) we present the results for
identical values of ,uT(=5) and a(=1) in both cases.
Clearly the mean and variance for the Thomas (10 and
25, respectively) are greater than that for the Neyman
type-A (5 and 10, respectively) because of the feed-
forward path. In Fig. 6(b), we effect the comparison on
the basis of an identical overall count mean [(N(T)) =
10] for a = 2. (Thus the driving rate 1A differs in the two
cases.) The most pronounced differences should ap-
pear for moderate values of a since the Thomas count-
ing distribution becomes the Poisson when a = 0, and
the SNDP approaches the Poisson when a - 0.11 Also,
in the limit of large multiplication parameter (a -> ),
the SNDP and the Thomas counting distributions both
approach the fixed multiplicative Poisson distribu-
tion.11 Even for a = 2, however, it is apparent from Fig.
6(b) that the distributions for the two cases are quite
similar, although the variance for the Thomas is slightly
greater. Furthermore, for : << 1, the Fano factor for the
SNDP, FSNDP, has been shown to approach 1 when /3
is also <<1/a.6 For the Thomas, FT approaches 1 when
1 is also << (1 + a)/a.
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Fig. 6. Thomas and SNDP counting distributions, p(n) vs count number n, in the limit T/T >> 1. In this limit, the SNDP reduces to the
Neyman type-A distribution. (a) AT = 5 and a = 1 for both cases, so that (N(T))SNDP = 5 and (N(T))Thomu = 10; (b) a = 2 and (N(T))SNDP

= (N(T))Thom. = 10 for both cases.

E. Counting Correlation Function
. In this subsection, we obtain the correlation function

between counts observed in two time intervals of du-
ration T, separated by a time delay -r = t 2 - t, for the
Thomas process. The autocorrelation function is de-
fined as2

R(tlt 2) = ([N(t1+ T)-N(tl)][N(t2 + T)-N(t 2)]). (52)
It is obtained from the 2-D mgf expressed in Eq. (31) by
setting L = 2, T1 = T2 = T, and by forming the deriva-
tive

R(tlt2) =--QN(S) (53)
asl 19S2 '°=

A straightforward calculation yields the autocorrelation
function for the Thomas process:

R(T) = (N(T)) 2 + (N(T))O(T), (54)h(1TT)T X) + S h X hT(X -T)dX
+ 3T(1-~.) [h(x -) + h(r-x)]dx} T Q O. (55)

10(0) = - 11+ 3 
I +a in'in) 

where

r = t2 - t U(X) = {1 X ,

and X,.X' are provided in Eqs. (35a) and (35b), re-
spectively.

For the usual example of an exponential impulse re-
sponse function, it can be shown that

1 +13a+ a2 ( |Tl + a(2 + a)|i
1 + T/ ( + a) \

0(r) X [exp(-2/3) cosh(2IrI/Tp) - exp(-2jrj/Tr)],

a- b exp(-2jrI/rp) IT 2 T,

with

cosh(2) - 1
b =

20

(56a)

(56b)

(56c)

/ = T/r. (56d)

The counting correlation function is, therefore, expo-
nential. The result may be compared with that derived
for the SNDP.8 It is clear that they are quite similar,
converging to the same result for a >> 1, as they
should.

F. Time Statistics

We now determine the statistics for the forward re-
currence time and the interevent time for the Thomas
process. The forward recurrence time is defined as the
time to the first event from an arbitrary time instant.
This may be mathematically expressed as2'22

Pi(r) = lim -Prob[O events in (tt + T),
Ai-O Ar

1 event in (t + r,t + T + Ar)]. (57)
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Since the process is taken to be stationary, we set t = 0
in Eq. (57). To calculate the above joint probability,
we make use of the probability generating function.
Using the substitutions

L = 2,

vi(t) = u(t) - u(t -),

v2(t) = u(t - )-u(t- - AT),

in Eq. (31) yields the 2-D joint mgf

QN(S) = expM A [exp(- E sjV;(t) + 3 hr - )

X exp[- sjvj (O) - ldo) - 1dt (58)

The probability generating function is related to the
result in Eq. (58) by means of

GN(Z) = QN(S)IS=-nz, (59)

Prob[1 event in AT1 ),

Because of the stationarity, we set t = 0 in Eq. (62) as
before. The 3-D joint probability can be found by the
following substitutions in Eq. (31):

L = 3,

Vi(t) = U(t) - U(t - AT),

V2 (t) = u(t - AT) - u(t - AT1 -T),

v3(t) = u(t - AT1 - T) - u(t - AT1- - A 2),

so that

QN(S) = exp {A ,fexp 2 sjj(t) + 3 h -

X lexp[_ sjvj(o)ij - do.) - dt- (63)

The 3-D joint probability generating function is related
to the 3-D joint mgf by Eq. (59), and the joint proba-
bility is obtained as

0 events in (T 1,T + Ar 1), 1 event in (r + AT1 ,T + AT1 + AT2 )J

=-a-aGN(Z)|
z (3z3 .z=o (64)

where

Z = (ZlZ2),

lnz = (nzi,lnz 2 ).

From the definition of the probability generating
function, we have

Prob[0 events in (0,T), 1 event in (T,T + AT)]

=-GN(Z)
0Z2 z=o

(60)

Combining Eqs. (58), (59), and (60), it can be shown that
the forward recurrence time probability density has the
following form:

P1(r) = {1 + exp[-h,(t)]h(r + t)dt]

Similarly,

Prob[l event in (0,AT1)] = -GN(Z)
az1 z=o

(65)

Combining Eqs. (62)-(65), the interevent time proba-
bility density turns out to be25

P2(r) = exp(-r 1 J exp[-hT(t)] - ldt)

X [h(T) expf-h(0)]

+ h(-r) + 3 h(t)h(t + T) exp[-h,(t)]dt

+ A 1 + fO h(t + T) exp[-h,(t)]dt

x {exp[-h,(O)] + fS h(t) exp[-ht(t)]dtlI

X exp[-,(r - SO 1exp[-h,(t)] - ldtlI
where

h(t) = h(t + t')dt'.

The interevent time density is the probability density
function for the time intervals between consecutive
events. This is the same as the conditional joint
probability that a single event occurs in (t,t + Ar1 ), zero
events occur in (t + AI,t + r + AT1), and a single event
occurs in (t + T + AiT1 ,t + r + ATr + AT2), conditioned
on the occurrence of a single event in (t,t + Ar1 ).2 ,22

Using the definition of conditional probability,24 we
express this as

(66)

(61) where

h7 (t) = h(t + t')dt'.

For the exponential filter example, we plot PI(T) and
P2(r) vs r for different values of a and Tp/2 when ()
= 1 in Figs. 7 and 8. Figure 7 represents curves for
P1(T), where is the forward recurrence time, whereas
Fig. 8 represents curves for P2(r), where is the in-
terevent time. When a is very small, both densities,
P1(T) and P2(T), are approximately exponential. As a
increases, the densities become skewed toward the =
0 axis, which is a manifestation of bunching. When the
mean time interval and a are held fixed, decreasing rp/2
similarly skews the densities toward the r = 0 axis, as

lim 1 Probfl event in (tt + T), 0 events in (t + ATrt + + AT), 1 event in (t + + ATt + r + AT + AT2)A-g IrA2 eetin( I r) 0eet n 1 ~ 1 , r 2

lim Prob[l event in (t,t + AT1)]
AT,-o A 1
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Fig. 7. Forward recurrence time probability density function Pi(r) for the Thomas process. The impulse response function for the filter
is exponential with time constant rp/2. In all cases the mean forward recurrence time is (T) = 1. (a) Filter time constant rT/2 = 1, multiplication

parameter a = 0.1,1,10; (b) a = 1, Tp/2 = 0.1,1,10. P(0) is always equal to 1/(r).
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Fig. 8. Interevent (pulse-interval) probability density function P2(r) for the Thomas process. The impulse response function for the filter
is exponential with time constant rp/2. In all cases the mean interevent time is (r) = 1. (a) Filter time constant rp/2 = 1, multiplication

parameter a = 0.1,1,10. (b) a = 1, p/2 = 0.1,1,10.
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is evident from the figures. The results are very similar
to those for the SNDP presented in Figs. 10 and 11 of
Ref. 8.25

IV. Applications of the Thomas Process

The mathematical description discussed to this point
applies to many physical and optical phenomena. The
Thomas model will be useful in problems similar to
those characterized by the SNDP 8

,1""1 2
,1

4 when primary
events are included in the final point process. These
include x-ray radiography, tomography, electronogra-
phy, and image intensification. Of course, in those
cases where the primary and/or secondary events are
not describable by a Poisson process, the Thomas pro-
cess will not provide proper representation. We briefly
consider a number of applications of special interest in.
optics. In particular, we use the Thomas model for
describing the detection of scintillation and Cherenkov
photons created by nuclear particles and photomulti-
plier noise induced by ionizing charged particles.

A. Scintillation/Cherenkov Photon Counting

The detection of ionizing radiation is often accom-
plished through a radiation-matter interaction in which
a single high-energy particle produces a shower of par-
ticles of lower energy. A case in point is the scintillation
detector, which is a combination of a scintillation crystal
(e.g., NaI:Tl, plastic) with a photomultiplier tube.26

Conditions for the validity of the SNDP in describing
scintillation detection are that the incident primary
ionizing particles (e.g., electrons, gammas, protons) be
representable as a homogeneous Poisson point process
and that each primary event have associated with it an
impulse response function h(t) that directly governs the
rate of production of Poisson optical photons.6 8 1',14

When the primary process consists of high-energy
charged particles (e.g., electrons), Cherenkov radiation
can be produced in addition to luminescence radiation.
However, if a large number of photoelectrons are gen-
erated by the Cherenkov photons arising from a single
particle, they will appear as a single (large) photoelec-
tron pulse, since the Cherenkov radiation emission time
is much shorter than the transit time in the photomul-
tiplier. In the presence of Cherenkov radiation,
therefore, the (unmarked) overall point process will
include the primary as well as the subsidiary events.

A model for this process is illustrated in Fig. 9. It is
seen to be identical in form to the block diagram pre-
sented in Fig. 3, so that the resulting photon emissions
form a Thomas process. The function h (t) will often
be approximately a decaying exponential, so that the
counting and time statistics are given by Eqs. (51) and
Eqs. (61) and (66), respectively. The description is
completely characterized by Az and h(t) and, therefore,
in this case, by three parameters: g, the rate of the
primary process; ax, the multiplication parameter; and
ip, the lifetime of the process of secondary event gen-
eration. If we perform photon counting, we must adjoin
T, the counting time. The Thomas process provides
a realistic way of incorporating the effects of finite
quadrat size, as does the SNDP. 8

".

PHOTON
POINT
PROCESS

Fig. 9. Model for the photon point process generated by betalumi-
nescence photons plus single Cherenkov photon bursts. Observe the

relation to Fig. 3, which is the mathematical model studied here.

It is clear that in the limit of counting times much
longer than the exponential decay time, the counting
distribution will reduce to the Thomas probability
distribution for arbitrary h(t). The special mathe-
matical properties of this distribution, such as per-
manence under convolution and convergence in distri-
bution to the Gaussian, have been discussed else-
where.1 It is interesting to note that the fits provided
by the Neyman type-A distribution to the (large T)
experimental data reported in Refs. 6, 8, and 14 are al-
ways as good as or better than those provided by the
Thomas distribution.

B. Photomultiplier Noise Induced by Ionizing Radiation
In certain applications in which we wish to observe

photon arrivals by using a photomultiplier tube, e.g., in
astronomy conducted at high altitudes or in space, the
description provided above may be characteristic of the
noise rather than of the signal. Viehmann and Eu-
banks2728 have discussed sources of noise in photo-
multiplier tubes in the ionizing radiation environment
of space. Such noise may arise from several mecha-
nisms such as luminescence and Cherenkov radiation
in the photomultiplier window; secondary electron
emission from the window, photocathode, and dynodes;
bremsstrahlung in turn causing such secondary electron
emission; cosmic-ray bursts; and, of course, thermionic
emission dark current. These effects clearly degrade
both the dynamic range and the photometric accuracy
of low-light-level measurements and, therefore, must
be properly modeled. It is evident from the experi-
mental results reported in the previous subsection that
the SNDP and Thomas processes provide a sound point
of departure in modeling a number of these sources of
noise.

V. Conclusion

Thorough consideration has been given to the
counting and time statistics for the Thomas process. It
provides a natural description for phenomena involving
the random multiplication (or reduction) of Poisson
point events with a random time delay, when primary
events are included in the overall point process. The
model has application in a number of important prob-
lems in electrical engineering, physics, and optics, in-
cluding photomultiplier-tube luminescence and Cher-
enkov noise induced by ionizing radiation, the photon
counting detection of nuclear particles, x-ray radiog-
raphy, tomography, and electronography. There are
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other single-stage random multiplication processes
involving random delay, for which this model provides
a ready solution.

The model could be extended and strengthened in a
number of ways. In this concluding section, we point
to various restrictions that have been implicitly and
explicitly imposed on the mathematical formulation and
discuss ways in which these restrictions can be re-
laxed.

The primary Poisson point process was taken to be
homogeneous (HPP) and, therefore, stationary (see Fig.
3). Physical situations in which primary events are
nonstationary also occur, and it is of interest to deter-
mine the statistical properties of the resultant process.
Such an analysis has been carried out for the nonsta-
tionary SNDP, where primary events are excluded.12
Similarly, the nature of the process in the presence of
interference effects15 remains to be worked out. We
should point out that, unlike the DSPP (and the
SNDP),20 the Thomas process is not invariant under
random deletion.

Concerning the linear filter in Fig. 3, we have tacitly
assumed throughout that h(t) is a deterministic impulse
response function. Gilbert and Pollak29 have shown
that if the filter h(t) contains a random parameter, an
equivalent completely deterministic impulse response
function h'(t) can always be found that generates X(t)
with identical statistics. In particular, if h(t) =
ho(t/rp), where p is random, h'(t) = ho(t/( ITpI)).
This is an important result because it tells us that the
analysis we have carried out applies also when the linear
filter is not deterministic.

Again examining Fig. 3, we see that the shot noise
X(t) provides the rate for the second Poisson process.
Our model can be modified to permit the process to be
self-excited, thereby allowing for aftereffects triggered
by past events.2 This modification will be immediately
useful for calculating the effects of phenomena such as
dead time (absolute refractoriness) and sick time (rel-
ative refractoriness). We have carried out some of these
calculations for the SNDP. 7 '14

Given a Thomas process (see Fig. 3), we can easily
account for the effects of a statistically independent
Poisson point process representing, for example,
broadband background light in a photomultiplier tube.
The counting statistics for the superposition process can
be simply determined by numerical convolution. It
should also be mentioned that the statistical behavior
of the clustered processes considered here is sufficiently
unique that one may conceive of innovative signal
processors and receivers specifically designed to en-
hance such signals (or discriminate against such noise).
Calculations of the performance characteristics of such
devices (detection, discrimination, estimation) will have
to be carried out to ascertain the value of any such
proposed scheme. In the meantime, we have experi-
mentally shown that dead time does selectively dis-
criminate against such clusters for the SNDP.7 '14

Finally, we should say a few words about higher-order
clustering processes, in which each stage of a Thomas
process cascades with another stage and so on. We have

determined that such a cascade of Thomas processes is
equivalent to an m-stage branching process with Pois-
son multiplication and arbitrary time dynamics. We
shall shortly report on this work, showing that such a
model provides a useful generalization of the Yule-Furry
birth process.30 The results are expected to find ap-
plication in characterizing the properties of devices such
as electron multipliers and avalanche photodiodes.1

This work was supported by the Joint Services
Electronics Program (U.S. Army, U.S. Navy, and U.S.
Air Force) under contract DAAG29-82-K-0080.

Appendix: Derivation of the Moment Generating
Functional Lz(s)

Let Z(t) be a point process decomposable into two
point processes U(t) and Zp(t). Let U(t) be a DSPP,
whose rate is the process Zp (t) filtered by the impulse
response function h(t). The moment generating
functional for the process Z(t) is defined by2 22

Lz(s) = exp[- 3' Z(t)s(t)dt]) (Al)

Using the method of conditioning, the above equation
can be rewritten as

Lz(s) = exp[ Z P(t)s(t)dt (expf U(t)s(t)dt

(A2)

where 9 ZP denotes all the past history of Zp (t). The
inner expectation can be shown to be expressible as16

(exp[- 3' U(t)s(t)dt ZP = exp f3 Zp(t) 3' h(r - t)

X texp[-s(r)] - 1)drdt) -

Inserting Eq. (A3) into Eq. (A2) gives

LZ(S) = (exp[- Zp(t+(t) - f h( - t)

X exp[-s(r)] - dr)dt)

= Lp(s(t) - h(,r - exp[-s(r)] - 1~dT)

(A3)

(A4)

where the moment generating functional for the first
stage is16

LZp(s) = exp(ys S 3exp[-s(t)j - ldt) - (A5)
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Books continued from page 1892
In Part 4 we find Pattern Recognition, e.g., statistics and memory

networks. Part 5 presents Spatially Analog Processes such as the use
of (conceptually) elastic templates; Part 6 Higher Level Represen-
tations in Image Processing, which includes the hierarchical sequence
of computer operations and the role of attention in object perception
and cognition.

Where do we go from here? Quoting from the Postscript, "the
human visual system is the most powerful information-processing
system known. It very rapidly processes a continuous stream of in-
formation, it copes with an enormous variety of formats, and many
kinds and degrees of image degradation, and it can be used for pur-
poses as varied as sight-reading music, peeling a banana, and enjoying
a ballet." No sane person can claim to know it all. Nevertheless, we
keep trying.

JURGEN R. MEYER-ARENDT

Magnetic Electron Lenses. Edited by P. W. HAWKES
Springer-Verlag, Heidelberg, 1982. 462 pages. $44.50.

As underlined in the Preface, the aim of this book is to fill the lack
of a textbook covering the properties of magnetic lenses. At first sight
one may ask if it represents a comprehensive survey of a deep and
elegant compilation through a huge amount of experimental work and
reflective dissertation by experts about various aspects within the
limits of a particular field (optical properties, lens design, construction
and practical applications, precise references to actual experiments
and results, and possible prospects). Indeed it is all of that. It seems
that as it answers most questions for the layman it also brings together
a mine of useful data and gives insight into some specific methods
(e.g., system design), the accounts of which were scattered in scientific
papers or not available; it certainly opens new vistas for those con-
cerned with the subject.

The first chapter on Magnetic Lens Theory by P. W. Hawkes will
be a regale for physicists familiar with optical design; it begins with
what they will recognize as fundamental geometrical optics (Fermat's
principle and stationarity of the path). Paraxial properties and
cardinal elements are clearly defined as well as conjugation rela-
tionships, where from the paths of rays are derived distinct treatments
for objective lenses and other components, namely, projectors for
which it is necessary to consider asymptotic conditions. Geometrical
and chromatic aberration coefficients are also established and dis-
cussed separately.

Since the general methods of reasoning here and in conventional
optics are much alike, one could have expected some consideration
of the mutual influence of the various types of aberration (at different
orders) for satisfying tolerance criteria and finally how aberrations
combine with field angle and numerical aperture as diffraction in-
tervenes; concepts of spread functions and overall transfer could have
been defined (e.g., from the resultant diffusion pattern).

The second chapter, Magnetic Field Calculation and the Deter-
mination of Electron Trajectories, by E. Kasper turns its demon-
strations and developments to the use of the digital computer in the
design of lenses, with emphasis on field calculation, giving a point of
view about electron trajectories and aberrations coefficients slightly
different from that in the previous chapter. It is interesting to
compare the two of them. In addition, despite a clear coverage of the
theory which is easily readable and good examples of applications in
their final forms, it is not obvious that the balance between mathe-
matical parts and applied engineering is entirely satisfactory; putting
the methods discussed into practice would involve going back to the
many papers referred to in the text. Nevertheless, it presents a survey
of the relevant literature illustrated with typical curves that support
well the text for which a background knowledge is necessary.

continued on page 1944
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