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Fig. 2. Measurement technique for amplitude and phase compo-
nents in hologram reconstruction.

of the beams with an acoustooptic device. The outputs of
the detectors monitoring the beam powers are added to
form a signal

IA = (c/2)(Pw2 + Pwj) = cPa exp (-2od) [cosh (c)

+ sinh ( id9 coswt], (7)

where c is a constant. IA represents a signal that corre-
sponds to the amplitude component of the grating only.
Subtracting the outputs yields

I = (c/2)(Pw2 - Pwj)

cPi, exp (- I d) [s ( 2nd ) sinwtl (8)
coso 0/Lrn cos0 

which corresponds to the phase component. After some
algebra we find that

2cnd i F 2(IV) Q - 12 (9)

«d = sinh [( ) - 2(IA I )112 (10)

For small modulations these reduce to the simple expres-
sions

27Tnjd 2 12 (P)RUS(ll

XcosO - A '(i

a~d t 21(IA - A)RMS (12)
cos0 IA

This approach has the advantage of freedom from errors
due to registration inaccuracies, aside from the require-
ment for correct Bragg registration, which is necessary in
any case. Furthermore, all three measured quantities,
(IP)RMS, (IA - A)RMS, and 'A, may be determined in par-
allel and continuously monitored, a fact that could prove
useful in the measurement of the absorption spectra and
anomalous dispersion curves of optically sensitive media
by, for example, scanning in wavelength with a tunable dye
laser. Finally, the optical gain resulting from the coherent
addition of transmitted and diffracted waves results in
larger signals than those obtained from the diffracted beam
only, as can readily be seen by comparison of Eqs. (11) and
(12) with Eq. (2) of Ref. 1. This may permit the use of
lower laser power for measurement when grating destruc-
tion is a significant factor, although the precise degree of
advantage incurred is somewhat uncertain and certainty
depends on the particular experimental situation.

It must be noted that the present technique and that of

Ref. 1 can be applied to planar media. For a grating de-
scribed by the amplitude transmittance

Ta = TJ1 + n cos (k, - k2)x]

x expli[o,, + a) cos(k, - k2)x]}, (13)

where k, and k2 are the x components of the wave vectors
of the incident beams, m is the amplitude transmittance
modulation, and AO5 is the phase modulation. An analysis
similar to that above yields, in the case of small modula-
tions,

=O 2'"(i1)R. (14)

' "(IA -A)RM5 (15)

These become identical to Eqs. (11) and (12) when the am-
plitude transmittance is a result of bulk absorption in a
thin layer and when the phase variations are a result of a
refractive index modulation.
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During the past several years there has been a great deal
of interest in the study of photocounting distributions in
the presence of photodetector dead time.1-4 The dead
time is defined as a fixed period of time after the registra-
tion of a photoelectron during which the photodetector
cannot emit another electron. In a previous paper,1 we ob-
tained an expression for the dead-time-corrected counting
distribution when each pulse from the photodetector is fol-
lowed by a fixed dead time .

In this Letter we find a relationship for the counting sta-
tistics when each pulse of the process is followed by a
deterministic but arbitrary value of the dead time. Thus
in a counting interval t, the first pulse is followed by a dead
time of duration rj, the second by 2, and so on, up to the
nth recorded pulse, with the over-all restriction T + 2 +
- - + mn t. Variable-dead-time results of this nature can
be used to obtain the counting distribution in the presence
of a random, rather than deterministic, dead time by aver-
aging over the stochastic variation of the dead time. This
procedure will be carried out in a subsequent publication
dealing with the statistical properties of neural pulse trains
encountered in vision research.5 Such neural counting dis-
tributions have been shown to be identical in form to the
photocounting distributions considered here.6 We assume
throughout that the counter is nonparalyzable and is un-
blocked", 2 at the beginning of each counting interval.
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We define the quantities p,(t',t) such that pn(t',t)dt is
the probability that the nth registered pulse occurs in the
interval (t,t + dt) when counting begins at t = t'. P(t',t),
on the other hand, represents the probability that exactly n
pulses occur in the interval (t',t) We denote with an as-
terisk those probabilities corresponding to an unblocked
counter; those without the asterisk are assumed blocked at
the beginning of the counting interval.'. 2 Since the events
corresponding to pn*(0,t) and p,+,*(0,t) are mutually ex-
clusive, Pn* (,t) and Pn* (O,t) are related by the integral

with p,(t',t) blocked by rn,1, resulting in

A*(0,t) = {n[t - ( + 72 + . . . + T'r,)}n'/(n - )!}

x exp {-x[t - (T + T2 + * * . + nl)]}) (8)

for t > l + 2 + - + -± n-1
To obtain P,*(0,t), Eq. (1) must be evaluated using the

distribution given in Eq. (8). Equation (1) can be rewrit-
ten as

pn*(Ot) = St [P *( t0,) -pn+l*(0, t ldt';
0

this insures that the nth pulse occurs at some time in the
interval (0,t) and that the (n + l)st does not. For a
blocked counter, the probabilities in Eq. (1) would be re-
placed by their blocked counterparts. Since the blocked or
unblocked condition affects the presence or absence of, at
most, one pulse in any counting interval (0,t), the condition
of the counter at the beginning of the interval becomes of
minor importance as the number of counts registered in the
counting interval increases.

For a Poisson process it can be shown that2

Pj*(0,t) = X exp (-xt), t - 0,

pl*(', t = X exp[-X(t - ')], ' Ž t ,

(2a)

(21b)

and

p1 (t', I = exp[-x(t - t - T)], - + T, (2c)

where A is the rate parameter of the uncorrected Poisson
distribution. In Eq. (2c) it is assumed that the counter is
blocked by the ith pulse at t'; this accounts for the decrease
in the effective counting interval from (t - t') to (t - t' -
Ti). The quantity p2*(0,t) can be obtained from the
probabilities given in Eq. (2), and for a nonparalyzable
counter is written as2

P2 *(0,I = j pi*(0,p (t', Odt', t 7 Tj, (3)

where the upper limit on the integral reflects the fact that
the first pulse must occur at least rl seconds before the end
of the interval. Clearly, o, will appear in pl(t',t) since it is
blocked by the first pulse. Evaluating Eq. (3), we obtain

p2*(0t) = 2(t - 'l)exp[-X(t - T)], t T,. (4)

In a similar manner, P3*(O,) can be written as

= ft-T 2:
P3*(0t) = f t 2

TI

p2*(ot)p Itt) dt',

where T2 is the dead time blocking p,(t',t) and the lower
limit reflects the fact that the second pulse cannot occur
prior to t' = T. Eq. (5) thus yields

p3*(0ot) {x3t - (O- + T2)]'/2!1

x exp{-4[t - (T + r)]}, t - 'r + T2. (6)

In general, therefore, p*(O,t) is obtained from pq_*(0,t)
by the relation

n* (.(t) = +T
,T+'r24B * *in-2)

P,,1* (,t')p(',1t)t', (7)

= t t
Pn* (0 t) = f pn* (f P)dt - f p..j*(Ot')dt,

(1)
(9)

and since the integrals are of the same form, we seek to
evaluate

t
I = {xn[tr - ( + + . . . + %,_1 )]n-/(n - 1) !}

0

X exp-x[t' - (T + T2 + * * + T)]jdt1.

Using successive integration by parts, we obtain

I? n-t
Pn* (,t) = Zp, (nX) - Z Pa(n - ),

k=0 1=0

(10)

n 1 (11)

with

p,(nX) = {it [t - (-r + 2 + * * * + n)k

x exp{-x[t '- (-r + -r+ + + 'r)]} (12)

for t >r1 +r2±- + ±+ r. For r 2 = = - e, this
correctly reduces to the result found previously.' For the
unblocked counter, the probability at n = 0 is the same as
that obtained from the uncorrected Poisson distribution.

The counting distribution presented in Eqs. (11) and
(12) can be extended to yield the dead-time-corrected
counting distribution for a source of arbitrary statistics;
this has been done previously for the unique dead-time
case.' Each of the P (n,A) represents the probability of
registering k counts in an interval t - ( + r2 + - + n)
for a process that obeys a Poisson probability law with rate
A. For a source of arbitrary statistics, in most cases it suf-
fices to take an ensemble average of Pn*(O,t) over the sta-
tistics of the source. Since the sums involved are finite,
this is equivalent to averaging the pk (n, ) over the source
statistics, which is nothing more than an application of the
Poisson transform relation (Mandel's formula)." 6 In
short, we have obtained an expression for the variable
dead-time-corrected counting distribution registered by a
nonparalyzable counter for most sources whose statistics
are known.
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