
Photocounting Array Receivers for Optical
Communication Through the Lognormal Atmospheric
Channel. 1: Optimum and Suboptimum Receiver
Structures

M. C. Teich and S. Rosenberg

The structure of the optimum direct detection array receiver is obtained for a system consisting of an
amplitude-stabilized optical source, a lognormal channel, and a bank of photocounting detectors. Addi-
tive independent background radiation and detector dark current are taken into account. Both orthogo-
nal and nonorthogonal M-ary signaling formats are considered. Attention is given to detection intervals
small in comparison with the correlation time of the atmospherically induced fluctuations. A saddle-
point integration provides an excellent approximation to the optimum processor, resulting in a considera-
bly simplified structure. Suboptimum aperture integration and maximum a posteriori (MAP) receivers
are also considered. The performance
in related papers (Parts 2 and 3).

1. Introduction

In a previous paper the statistical description of
the output signal from an array of photoelectron
counters was developed.1 The incident radiation
was considered to pass through the lognormal atmo-
spheric channel and to contain additive background
radiation as well as coherent signal. Probability dis-
tributions for the photoelectron counts, both in the
presence of noise plus faded signal, and in the pres-
ence of noise alone, were obtained. Exact expres-
sions for the first-, second-, and third-order photo-
counting cumulants for lognormally modulated
mixtures of coherent and chaotic radiation were also
calculated.2 In this paper, these results are used to
examine the problem of optimum detection. Only
clear-air turbulence 3' 4 is considered; atmospheric
scattering and absorption are taken into account
only insofar as they may uniformly reduce the irra-
diance at the receiver. The performance of wide
field-of-view receivers employing optical scattering
links has been considered elsewhere5 and will not be
dealt with here.

The detected process is assumed to be the output
signal from an array of photodetectors, which direct
detect the incident radiation. For detectors with
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of these receiver structures and their relative merits are presented

positive gain (e.g., photomultipliers) the thermal
noise introduced at the detector can generally be ne-
glected in comparison with the quantum, or shot
noise, of the detected signal and background radia-
tion.6

The radiation arriving at the receiver is considered
to have been modified by an effective multiplicative
random process that characterizes the effects of the
turbulent atmosphere.7 Furthermore, for signal
bandwidths of interest, the fading may be assumed
constant over the detection interval T. Thus T <
Ta, with -i-s the characteristic fluctuation time for the
atmospherically induced fading. This is justified by
the relatively long typical coherence time for the at-
mosphere (-1 msec). The fading statistics for the
irradiance are taken to be lognormal in light of most
experimental evidence to date.8-1 1 Added to the
faded signal radiation is (signal-independent) back-
ground noise modeled by a white zero-mean complex
Gaussian process that is stationary in time and
space. 7 For most practical receivers, the effect of
the background radiation on the counting process is
equivalent to the addition of independent noise pho-
tocounts at each detector in the array.' These
counts are Poisson distributed with constant mean,
proportional to the background noise power density.
The background noise takes into account various
thermal radiation sources such as scattered solar ra-
diation, direct solar radiation, moonlight, blackbody
radiation, etc. A block diagram of this communica-
tion system is indicated in Fig. 1.

The direct detection photocounting distributions
for lognormally faded laser radiation have been eval-
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Fig. 1. Block diagram for the direct detection array photocount-
ing communications system. The channel under consideration is
the clear-air turbulent atmosphere. A bar over a given quantity

symbolizes that it is a vector.

uated by Diament and Teich12 "13 and by others' 4-' 6

for a single detector and by Teich and Rosenberg' 2

for an array of detectors. The effects of turbulence
on optical radar and on the binary communication
channel for heterodyne detection were examined by
Fried and Schmeltzer,17 and by Heidbreder and
Mitchell.'8 Kennedy and Hoversten7 presented the
structures and error bounds for M-ary orthogonal
signaling and heterodyne detection for fading on D
independent paths. Halme' 9 extended Kennedy and
Hoversten's results to arbitrary correlation and in-
vestigated various representations of the detected
field in the aperture. One of Halme's conclusions is
that only the sampling representation of the field in
the aperture is amenable to analysis; this is the rep-
resentation to be used here as well.

For direct detection optical communications in the
presence of lognormal fading, few detailed results are
available. Peters and Arguello20 have obtained the
error probabilities for a polarization modulation sys-
tem, using an ideal amplitude-stabilized source with
a single detector per channel, in the presence of log-
normal fading. These authors do not include back-
ground radiation and dark current, however. Soli-
meno et al. 2 ' presented binary error probabilities for
direct detection in the presence of lognormal fading
at a single detector. The case they consider, how-
ever, is one in which the fluctuations of the back-
ground radiation are discernible. That is, the
counting time T was taken to be significantly small-
er than the background radiation coherence time -c,,
and thus the counting distribution in the absence of
signal is Bose-Einstein, instead of Poisson, as consid-
ered here. In view of the fractional bandwidth of
available optical interference filters, the coherence
time of background radiation is generally 10-12
sec, and the assumption that the background statis-
tics are resolved is unrealistic. Furthermore, the
method given to obtain the error probabilities says
nothing of the processing to be performed on the ob-
served counts. Recently, Hoversten et al.2 2 present-
ed some results relating to the structure of optimum
direct detection receivers for ideal laser sources, but
the results they present assume independent fading
at each detector in the array. Except for an error
bound to a single-detector counting receiver, which
is optimum for binary orthogonal equal-energy sig-

nals,23 no quantitative performance results were pre-
sented. Explicit evaluation of error probabilities
and information rates for a single-detector binary
pulse-code modulation (BPCM) link, assuming a
generalized laser source and lognormal fading, were
recently presented by Yen et al, 24 however.

In this paper (Part 1) we obtain the optimum re-
ceiver structures, based on a minimum probability of
error criterion, for lognormally faded amplitude-sta-
bilized radiation with arbitrary fading correlation.
This radiation is array detected in the presence of
additive independent Poisson noise photocounts.
Both orthogonal and nonorthogonal M-ary signaling
formats are considered. In addition, we examine
several suboptimal receiver structures.

In Part 2,25 we obtain quantitative results for the
performance of the structures presented in Part 1, as
measured by the total probability of error per bit, for
several binary signaling formats. In Part 3,25 we de-
rive a theoretical upper bound to the error probabili-
ty for M-ary equal-energy, equiprobable orthogonal
signals over D diversity paths, assuming flat inde-
pendent fading.

II. Channel Model

Clear-air turbulence produces random fluctuations
in the amplitude and phase of a transmitted optical
wave, caused by the random variation of the optical
index of refraction, in time and space, along a propa-
gation path.26 The resulting effects significantly de-
grade the transmitted wave, as measured by space-
time fading, loss of coherence, and spreading of the
beam. In this work, we do not specifically consider
the effects of haze, smog, clouds, or other atmo-
spheric conditions producing scattering and absorp-
tion effects. One result of these effects is a net de-
crease in the strength of the optical field at the de-
tector. Thus by clear-air turbulence we mean only
those effects produced by index of refraction varia-
tions. A thorough review of the current theory of
atmospheric turbulence has been given by Lawrence
and Strohbehn.4

In addition to the effects of the turbulent atmo-
sphere, we include in our channel model the effects
of background radiation as produced by various
thermal sources such as the sun, sky, ambient earth-
light, etc.27 When the receiver field of view does not
include the sun, most of the natural optical radiation
for wavelengths below 3 m is due to reflected or
scattered solar radiation. For wavelengths above 3
gm the dominant source of background radiation is
the thermal radiation of the earth whose spectral
shape is approximately that of a blackbody at 280 K.

The background radiation is modeled as a white
zero-mean complex Gaussian process whose compo-
nents in the receiver aperture are independent and
stationary in space and time. This latter assump-
tion is valid for apertures larger than a few wave-
lengths and most signal bandwidths of interest. The
background radiation is characterized by its spectral
radiance N. which has the units W/m2 sra gm of op-
tical bandwidth. In our channel model, the effect of
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this background radiation is introduced as an addi-
tive, signal-independent noise process that produces
photoelectrons at the mean rate NB.28 Furthermore,
we need not consider the cross-mixing of signal and
noise components, since for direct detection in a
shot-noise limited regime, these terms are negli-
gible.2 8,2 9

Based on the previous sections, we formulate the
channel model as follows. A temporally modulated
linearly polarized wave with complex envelope given
by X(t,r) = S(t)e(t,r) is transmitted. The real field
corresponding to this complex envelope is Re[X(t,r)
exp( -j27rvt)]. Here e(t,r) represents the complex
analytic field representation for the source, and S(t)
represents the temporal modulation, which in later
sections is assumed to be of digital format. After
traversing the clear-air turbulent atmosphere, and
neglecting the propagation time delay, the field is of
the form Y(t,r) = exp[iP(t,r)]X(t,r) + eB(t,r), where
4(t,r) is a complex Gaussian process completely
specified by its mean and covariance,4 and where
eB(t,r) is the complex envelope of the relevant polar-
ization component of the background noise radiation
discussed in the previous section. (The complex
noise field generally consists of two orthogonal inde-
pendent polarization components of equal mean
power.) After appropriate spatial and temporal
preprocessing to limit the noise (which is assumed
not to change the field statistics), the field is sam-
pled at an array of point detectors, each of which
produces photoelectron counts as the observable.
The channel model is thus the same as that formu-
lated by Kennedy and Hoversten7 for heterodyne de-
tection, except that in our direct detection scheme
we allow for partially correlated fading at the array.
It should be mentioned at least in passing, however,
that some deviations from this model can occur,
especially at severe turbulence levels.15"16

Ill. Photoelectron Counting Distributions
Based on a first-order quantum-mechanical per-

turbation interaction, it can be shown that the prob-
ability of observing a photoelectron emitted from a
photocathode is described by the well-known condi-
tionally inhomogeneous Poisson process.30 Thus,
the probability of emitting n photoelectrons in a
time interval (t, t + T) is given by

We further assume that the field maintains com-
plete first-order spatial coherence over each detector
surface, and thus the spatial integral merely pro-
duces a constant, representative of the detector area.
With Ad the detector area and a = nAd/hv, the joint
photoelectron counting distribution for an array of
detectors may be written as" 3'

p(n, t T) = HWiniexp(-Wi))
i 1 ni ) wil

(3)

with
t+T

Wi = f, ailVi(P ,l~dt'. (4)

The angular brackets indicate an ensemble average
over the statistics of Wil. Equation (3) is often re-
ferred to as Mandel's formula.3 ' For simplicity, we
further assume that the photodetector impulse re-
sponse is ideal. That is, we assume that individual
photoelectrons can be resolved.

Considering a radiation source that produces a
Poisson counting process conditioned only on the
fading, the integrated intensity for the ith detector,
Wi, is given by

W = ZiNsi + NB (5)

Here Nsi is the mean count due to the signal energy
at the ith detector, Z is the normalized fading inten-
sity, and NB includes the contribution of background
radiation as well as detector dark current, which can
also be represented by an independent Poisson pro-
cess.32 The results derived here apply to an ampli-
tude-stabilized laser operated well above threshold
or to a source of arbitrary statistics provided that
T/Cr >> 1. Most thermal and laser sources used in
optical communication systems are likely to fit in
this category.

The conditional counting distribution for an array
of D detectors is therefore given by

D (ZiNsi + N)ni exp[-(ZiNs + NB)]
pAnIZ) = [I . (6)

Averaging over the joint density for the normalized
fading random variables {Zi}, the counting distribu-
tion becomes'

p(n; Ns; A) = f p(n; NsIZ)p(Z)dZ,

p(n, t, TIW) = [Wn exp(-W)] / n!.

Here the integrated intensity or rate parameter 
defined by

W= htT fIV(t, r)JPdt'dA,

where the detector quantum efficiency i7 is assun
to be constant over the bandwidth of the detec
radiation. The quantity hv is the photon ener
and V(t',r) represents the analytic signal. Howei
if the radiation is of a stochastic nature, an additi
al average over the statistic of V(t',r) is required
order to obtain the photoelectron counting distril
tion.

(1)

(7a)

where

p(Z) = [(27)DI2 IA1/2ZAZs... ZD]-1 exptl-XtA 1XI. (7b)

(2) The vector X has components given by
Il Xi = nZ + ( 2/2), i = 1,2,...,D. (8a)

Here the log-irradiance covariance matrix A contains
elements given by

Aij = Cln(ri, r), ij = 1,2,...,D, (8b)

where

Ai C1 nI(ri, ri) i2
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is the log-irradiance variance. The vector r speci-
fies the position of the ith detector.

We now apply the method of steepest descent,1,12

but here with the relevant quantities defined as fol-
lows:

Xi = nZi0 + (2/2), (9a)

Q/1 )(ni; ZioNsi) = ZN + NB - ZioNsi, (9b)

Qij'2'(n,; Z1oNsi) = - ZioNsi] , (9c)

and.

Q2 (2)

B =

The subscript
The counting
form

..Q1D 2

].A-.
QDD(2)

0 represents the stationary po
distribution then takes the exp.

t(n) _ p1(n) >
A ) Po(n) <

Ho

1 -r
7WI

(13)

where pl(n) is the density of n under H1, and po(n)
is the density of n under Ho. Here 7r, is the a priori
probability that a signal is present, while 7ro = 1 -
7r is the a priori probability that it is not.

Equivalently, since the logarithm is a monotonic
function, the logarithmic likelihood ratio L(n) is
given by

H.

L (n) InA(n) > ln( g
HO

(14)

Since we are concerned primarily with digital com-
(9d) munication, we assume for simplicity that 7r = Y2.

That is, the hypotheses present and not present are
taken to be equally likely.

int. The likelihood ratio then reduces to the simple
licit form

p(n; Ns; A) =

(ZiNsi + NB)'i exp[-(ZioNsi + NB)])
irl nil exp {-_2XotA-Xo}

I (10)

where the stationary point Z is obtained from the
equation

Q"')(n;ZNs) - A-X = 0. (11)

The counting distribution given by Eq. (10) was pre-
viously evaluated, and graphically presented for the
case D = 2 as a function of the various parameters of
interest.'

The noise counting distribution is given by
p(n; NB) = D NB exp(-NB)

i=1 ni!

H,

A(n)> ,
HO

(15)

and the likelihood function becomes

Hi

L(n) > 0.
HO

(12)

where it is assumed that the mean noise count at
each detector in the array is NB. In the following
section we use these results to obtain the optimum
receiver structures based on a minimum probability
of error constraint.

IV. Optimum Receiver Structures

First we consider the binary signaling problem; we
must decide by some appropriate scheme whether
the detected photoelectron counts are a result of a
signal-plus-noise being present or a result of noise
alone. This is referred to as the binary hypothesis
testing problem. Let H1 be the hypothesis that a
signal is present and Ho the hypothesis that it is not.
It can then be shown that based on a Bayes criteri-
on, the quantity that minimizes the average risk,
and in this case the total probability of error, is ob-
tained from the likelihood ratio test.33 This test
specifies that either H1 or Ho be chosen depending
on the result of the inequality for the likelihood ratio
A(n):

(16)

The log-likelihood ratio or likelihood function is usu-
ally the quantity that reveals the receiver structure.
That is, it tells us how to process the observed data
n in order to decide whether to choose H1 or Ho.

Similarly it can be shown that for M equally likely
hypotheses, the test that corresponds to minimizing
the total probability of error is the maximum likeli-
hood test, where one chooses the kth hypothesis if Lk

L for j = 1, . . ,M. That is, we choose the likeli-
hood function that is largest as corresponding to the
correct hypothesis. If likelihood draws occur, any
random choice can be made without affecting the
total probability of error.33

A. Optimum Processor
We begin this section by considering the simple

binary detection problem where there either is, or is
not, a signal present.

From Eqs. (6), (7a), (12), and (13), we obtain
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A(n) =
f ... ( l(ZNs + NB)0 exp[-(ZiNs + NB)])P(Z1, Z2 , ... , ZD)dZ ... dZ,

D
[I NB0 i exp(-NB)
i=1

where p(Z) is given by Eq. (7b). The likelihood
function is then

L(n) = n[ f [ ( N + 1)

X exp(-ZiNsi)Ip(Z)dZl. (18)

The density of the lognormal variates ZL is in gen-
eral that of correlated variables, and the receiver
structure is rather complex due to the highly nonlin-
ear nature of the functions involved. The saddle-
point method, as used in Ref. 1, will allow us to ob-
tain a tractable receiver structure that provides an
excellent approximation to the performance of the
optimum structure specified by Eq. (18).

The structure of Eq. (18) can be further simplified
if we allow Nsi = Ns independent of i, implying that
the same mean signal energy is present at each de-
tector. It has already been assumed that NBi = NB.
Furthermore, if the fades at all the detectors are sta-
tistically independent and of equal strength ( =
a), the optimum receiver structure is given by

L = In ti[(ZJB + I) exp(-ZNs)(Z)dZ]

(19)

where p(Z) is the one-dimensional lognormal distri-
bution.' 2 " 3 This structure corresponds to a nonlin-
ear weighting of the counts from each detector, be-
fore combining.

For M equally likely signals, the optimum receiver
forms the structure of Eq. (18) with Nsi replaced by
NSk, where again i refers to the ith detector and re-
fers to the kth waveform, for each of the possible M
waveforms. For equal-energy orthogonal signals, Lk
is given by Eq. (18) with ni replaced by ni1 and Ns8
by Ns.

If we allow D = 1, the test corresponding to Lk >
Lj for equal-energy orthogonal signals is

Jo ( -+ 1) exp(-ZNs)p(Z)dZ

> f ZNs + 1 exp(-ZNs)p(Z)dZ, (20)

where nk is the observed count assuming that the
energy detected is associated with the kth signal of
the M possible orthogonal signals. This is equiva-
lent to testing whether nk > n, since the functionals
are monotonically increasing with nk. Thus for
M-ary equal-energy orthogonal waveforms and one
detector, in the presence of turbulence, the optimum
receiver is that of unweighted photoelectron count-
ing, just as in the absence of turbulence. As will be
shown in the next section, the approximate optimum
receiver, based on the likelihood function saddle-
point solution for this case, does not reduce to the

, (17)

counting receiver except for D = 1. It should be
pointed out that the use of the instantaneous fade
level Z in calculating the estimator can result in a
fixed threshold that appears to be independent of Z.

B. Approximate Optimum Processor
In order to determine the processing implied by

the likelihood functions given in the previous section,
we resort to a saddle-point solution, as was done in
obtaining the counting distribution. Applying this
method' and assuming uniform average irradiance at
the detector array, we obtain the following likelihood
ratio:

A(n) = [ (ZioNs + ) exp(-ZioNs)]

x
exp - !XoA-'Xol

IA11/21 -B *11/2
. (21)

The receiver structure is then given by

L = [Dni In( N + 1) - ZioNs] -!XoA XO

- 21nAI - lnl-B*I, (22)

for the binary case.

Fig. 2. Approximate optimum array receiver for partially corre-
lated fading and M-ary signaling. 2, is the solution to the MAP
estimator equation for the kth signal waveform, and Xo1 repre-
sents Xoh. Uniform average illumination of the array is assumed

so that Ns, represents Nsk rather than Ns8 .
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The receiver thus performs weighted counting,
where the weights now depend on the solution of the
stationary equation, Eq. 11, and thus on the ob-
served counts. Bias terms that depend on the co-
variance matrix of the fading, and on the matrix B*,
must be subtracted. It is in these bias terms that
the processor weights the counts optimally, deem-
phasizing those with strong fades about the mean
signal count. If in addition a signal is present (in
the binary case), the modal points ZO} form maxi-
mum a posteriori (MAP) estimates, ZI, of the fading
at each detector in the array, as will be shown. We
will later examine a suboptimum receiver that at-
tempts to measure the fading on each signaling in-
terval, and using that noisy estimate, processes the
counts as if the fading were known.

For M-ary signals, the approximate optimum pro-
cessor forms Eq. (22) for each of the possible M
waveforms. This receiver is shown in Fig. 2, where
Zo is indicated by Z for simplicity of notation.

A receiver structure similar to that obtained here,
but for independent flat fading, has been given by
Hoversten et al.22 The receiver structure solutions
given there are based on the Bar-David formulation
of the Poisson process, in terms of the time occurren-
ces of the individual photoelectron pulses, rather
than on the total number of pulses observed during
the detection interval (0,T).3 4 The Bar-David for-
mulation is more useful in radar and waveform esti-
mation, where time occurrences of events are impor-
tant. The solution based on the Mandel formula
lends itself more readily to the evaluation of receiver
performance, however, and has been used for that
reason. It should be noted that in contrast to previ-
ous results, the strucuture specified here is more
general in that it accounts for the possibility of cor-
related fading.

C. Independent Fading Samples

The structure of Eq. (22) can be further simplified
if the fading at each detector is independent of the
fading at every other. In that case the covariance
matrix A and the matrix B* are diagonal, and the
receiver structure reduces to

L = [niln( N + )

ZioNs - [ln(Zio) + ( 2/2)]2

- Z~~0N8 ~ 2ui2

- 21ln{i2[(Z jN + N )2 + ZioNs] + 1}], (23)

where the Zzo} are now obtained from an uncoupled
set of stationary equations given by

niZioNs
Z0ON + NB

[ln(Z10) + (2 / 2)]
- ¢2 = 0 for i = 1,2,...,D. (24)

Equations (23) and (24) are similar to those given by
J. N. Bucknam and first published by Hoversten et
al.

2 2 (The expressions given there do not appear to

be correct, however.) For M-ary signaling, we form
M such functionals, where now Ns - Nsk, and
choose the largest. The structure for this receiver is
given in Fig. 3.

The approximate optimum processors discussed to.
this point provide an excellent approximation to the
exact optimum processors; their performance will be
evaluated and presented in Part' 2 for binarl pulse-
code modulation (BPCM), binary polarization mod-
ulation (BPOLM), and binary pulse-interval modu-
lation (BPIM).25 In Part 3, we consider M-ary
equal-energy equiprobable orthogonal signaling with
'flat independent fading.2 5 We now turn to some
suboptimum receiver structures that are often con-
siderably easier to implement.

V. Suboptimum Receiver Structures

It is of interest to investigate some suboptimum
receiver structures in order to evaluate the tradeoff
between complexity in processing and degradation of
performance. In particular, we investigate struc-
tures for the aperture integration and MAP receiv-
ers.

A. Aperture Integration Receiver
The aperture integration receiver consists of a sin-

gle large detector encompassing the area covered by
the array of D detectors considered in previous sec-
tions. The detector area is assumed to encompass D
independent coherence areas of the faded signal, plus
independent additive background noise radiation.
The integrated intensity W is therefore given by

COUNT FOR
T SECONDS

L I . I _I COMPUTE l
REPEAT FOR MIL TERMS
OTHER WAVEFORMS

Fig. 3. Approximate optimum array receiver for independent
fading and M-ary signaling. In this case the 2ik are obtained
from an uncoupled set of stationary equations. The quantity Ns,
represents Nsk, as in Fig. 2, indicating that uniform average illu-

mination is assumed at the detector aperture.
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Fig. 4. Approximate optimum aperture integration receiver for
BPCM with lognormal fading.

W = ZDN + DNs,

where D Ad/Ac, the number of independent co-
herence areas in the detector aperture. The random
variable Z is now given by

Z A Z(r)dr. (26a)

Based on studies of the statistics of this quanti-
ty,3 5'3 6 it is clear that Z is well approximated by a
lognormal random variable for large D. Further-
more, it can be shown that X = lnZ is Gaussian with
mean - IA

2 /2 and variance

9A2 = ln[ eD 1+ , (26b)

from which the variance of Z is [exp(er2 )-1]/D.
This expression shows the effect of aperture averag-
ing of the scintillations.3 7 It should be noted that
the expression for the variance is exact; the approxi-
mation rests on the assumption that Z is lognormal.

Experimental evidence, however, indicates that
the maximum aperture averaging observed is that
which reduces the variance of Z to a minimum value
of about 10% of the unaveraged value.38 Thus there
appears to be a limit on the performance of an aper-
ture integration receiver, and further improvement
can only be obtained by resorting to detector arrays.

Based on the foregoing assumptions and analysis,
the receiver structure is given by Eq. (23) with the
summation on i dropped, U1

2 replaced with erA
2 , and

NS and NB replaced by DNs and DNB, respectively.
The receiver then decides that a signal is present if L
> 0 and that no signal is present if L < 0. As can
be seen from the equation, the receiver weighs the
.counts in a nonlinear fashion before combining, as
previously, but the over-all receiver structure is con-

siderably simpler than for the array, as illustrated in
Fig. 4 (compare with Fig. 3).

For M-ary signaling, the optimum aperture inte-
gration receiver forms the quantities Lk and chooses
the signal corresponding to the largest. For equal-
energy orthogonal signals, however, the modal points
Zok are dependent on nk. The weights are thus data
dependent and are different for different values of
nk. Thus, the processing does not appear to reduce
to unweighted photoelectron counting. Neverthe-
less, since Zo can be shown to be a monotonically in-
creasing function of n, with all other parameters con-
stant, then for equal-energy orthogonal signals the
operation performed by the approximate optimum
receiver is equivalent to comparing nk with n, that
is, to unweighted counting (see Fig. 5) as shown ear-
lier.

B. MAP Receiver

Another possible scheme for reducing the complex-
ity of the receiver is one in which a noisy estimate is
made of the fading, under the assumption that a sig-
nal is present, and then used in the maximum likeli-
hood receiver as if the fading were exactly known.
The noisy estimate is obtained from the maximum
a posteriori estimate of the fading Z. This is found
from the MAP equation 3 3

(a/Z)p(ZIn) = (/aZ)Jp(nIZ)p(Z)/p(n) = 0, (27)

where p(Z n) is the a posteriori density of the fading,
given that the photoelectron counts n have been de-
tected. The quantity p(njZ) is the conditional den-
sity of n given Z. However, since p(n) is indepen-
dent of Z, we must evaluate (/aZ)Jp(nIZ)p(Z) or
equivalently (/OZ) lnp(nIZ) + np(Z) = 0. Since

D (ZiNs + NB)ni exp[-(ZiNs + NB)]
pAnJZ) = [InH (28)

i=1ni

and p(Z) is given in Eq. (7b), the MAP equation be-
comes

Q"1)(n, Z) - AX = 0, (29)

which is just the stationary equation, Eq. (11). The
solution is now Z, and the likelihood ratio and likeli-
hood function are thus given by

A(n) =[l( N +A () =riNB 1)'iexp(-ZiNs)(30)

SAMPLE EVERY
T/M SECONDS

COUNTER N

AND
INTEGRATOR

C H OOSE
LARGEST

Fig. 5. Approximate optimum single-detector receiver for M-ary
equal-energy orthogonal signals (PPM is shown). The receiver

performs simple unweighted counting.
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and

L(n) = EniIn( N + 1) - iNs, (31)
i=1

which take the form of weighted counts. As pre-
viously, for L ' 0 we decide a signal is present. The
receiver structure is thus considerably less complex
than the approximate optimum array receiver, but
at the cost of some performance. The precise perfor-
mance of such a receiver is evaluated in Part 2.25

The results indicate that over several ranges of a,
NS/NB, and NB, the MAP receiver performs almost
as well as does the optimum receiver based on the
saddle-point solution. It should be noted, however,
that this receiver always estimates Z whether a sig-
nal is present or not. Thus when a signal is absent,
2 is not a valid estimate and the performance is
suboptimum, as is indicated by the error probability
curves. However, if a signaling scheme is used such
that there always is some signal present, analogous
to a transmitted reference or pilot tone, the esti-
mates will be valid, and the problem remains as to
which one to choose or perhaps whether to long term
average the estimates.

In all of the above receiver structures there is the
implicit assumption that all other parameters, such
as Ns, NB, er and A, are known exactly. Realistical-
ly these quantities must be obtained either before
processing takes place or as part of the processor it-
self. However, the detected counts inherently con-
tain all the information about the state of the chan-
nel, and thus by building the appropriate parameter
estimators, analogous to the MAP estimator for the
fading Z, these quantities can be measured. 2 2 Re-
ceivers that perform such channel measurement have
been suggested in the past, but their performance for
direct detection remains to be evaluated.

VI. Summary

We have obtained the optimum array receiver
structures for lognormally faded amplitude-stabi-
lized laser radiation, direct-detected in the presence
of independent additive background radiation for ar-
bitrarily correlated fading at the detector array. Re-
ceiver structures for both orthogonal and nonortho-
gonal M-ary signal formats were presented. The na-
ture of the fading statistics resulted in complex re-
ceiver structures that were approximated by use of
the saddle-point technique. Fortunately, the ap-
proximation mode used in obtaining these structures
was found to be excellent, in the sense that the per-
formance (bit error probability) is very close to that
obtained using the exact receiver structures. In ad-
dition to the approximate optimum structures, sev-
eral suboptimum structures were also investigated.
The performance of these receiver structures and
their relative merits are presented in accompanying
papers (Parts 2 and 3).25

This work was supported in part by the National
Science Foundation and is based on portions of a
dissertation39' 40 submitted by S. Rosenberg to the

Department of Electrical Engineering and Computer
Science at Columbia University in partial fulfillment
of the requirements for the degree of Doctor of Engi-
neering Science.
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of laboratory measurement techniques for field use.

2. Extending the capability of existing sensors -- range of
measurement, accuracy, reliability, survivability, etc.

3. Applied research into relatively new techniques of sensing
and measuring for field and laboratory applications --
bio-accumulator, photographic, chemical, acoustic, semiconductor,
electromagnetic, etc.

4. Instrument and data quality standardization, such as establishing
data and instrument standards to provide for maximum interchangeability
and use of data among the various user groups.

5. The impact of meteorological and oceanic dynamics on
pollution analysis and possible global scale pollution
monitoring -- site selection, modeling, laboratory/simulations
of processes, special instrumentation, common data bank, etc.

6. Sensors and techniques for acoustic, electromagnetic and
radiological pollution monitoring.
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