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INTRODUCTION

The number of resolved protein structures and sequences depos-

ited in protein data banks increases every year by thousands.1

Nevertheless, the majority of protein structures for which sequen-

ces are known, remain unresolved. In recent years, atomistic

approaches to simulating and predicting protein structures have

evolved rapidly, taking advantage of advances in both algorithmic

and computational hardware capabilities. However, it is still not

feasible to apply atomistic methods to large scale protein structure

prediction or to studies of protein–protein interactions or binding

of small molecules and peptides to proteins. The difficulty in sim-

ulating in detail the folding or binding of even modest sized

proteins and peptides has led to the development of minimalistic

coarse-grained models.2 The need to model, at least qualitatively,

interactions between proteins, or ligand driven allosteric transitions

in biological nanomachines, has lead to the development of a

number of novel coarse-grained models. Although the level of

detail in these models varies, the energy functions in many of these

are often derived from databases of known structures.3–5 Because

of the increasing popularity of coarse-grained models in the con-

text of structural biology,2,6,7 it is useful to assess the extent to

which they include chemical diversity of amino acids. The purpose

of this article is to dissect the relative contributions of individual

amino acids to commonly used pair potentials derived to identify

fold recognition.

Pairwise contact potentials are the most simple and widely used

representations of inter-residue interactions. Since their introduc-

tion,3,8 contact potentials have been successfully used in many

applications ranging from protein structure prediction to protein

design and docking.
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ABSTRACT

Knowledge-based contact potentials are routinely

used in fold recognition, binding of peptides to pro-

teins, structure prediction, and coarse-grained mod-

els to probe protein folding kinetics. The dominant

physical forces embodied in the contact potentials are

revealed by eigenvalue analysis of the matrices,

whose elements describe the strengths of interaction

between amino acid side chains. We propose a gen-

eral method to rank quantitatively the importance of

various inter-residue interactions represented in the

currently popular pair contact potentials. Eigenvalue

analysis and correlation diagrams are used to rank

the inter-residue pair interactions with respect to the

magnitude of their relative contributions to the con-

tact potentials. The amino acid ranking is shown to

be consistent with a mean field approximation that

is used to reconstruct the original contact potentials

from the most relevant amino acids for several con-

tact potentials. By providing a general, relative rank-

ing score for amino acids, this method permits a

detailed, quantitative comparison of various contact

interaction schemes. For most contact potentials,

between 7 and 9 amino acids of varying chemical

character are needed to accurately reconstruct the

full matrix. By correlating the identified important

amino acid residues in contact potentials and analy-

sis of about 7800 structural domains in the CATH

database we predict that it is important to model

accurately interactions between small hydrophobic

residues. In addition, only potentials that take inter-

actions involving the protein backbone into account

can predict dense packing in protein structures.
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The contact potentials describe the interactions

between the 20 side chains by a 20 3 20 matrix, the ele-

ments of which give the interaction strength between a

pair of amino acids at contact. Two amino acid residues

are in contact if the distance between them is less than a

cutoff distance, Rc. Typically, the contact potentials are

derived from known protein structures, and hence Rc is

chosen to reflect the value in the X-ray or NMR struc-

tures.

A strong interest in analyzing contact potentials comes

from the need to understand the effects of amino acid

sequence complexity on the nature of the protein struc-

tural fold and their stability.9–13 Efforts have been made

to classify amino acids14–17 with the goal of identifying

the minimal number of amino acid types that is needed

for protein design and protein folding.18–21 Rapid

methods to assess binding of ligands and peptides to

proteins require knowledge of the overall contributions

that different amino acids make to the various potentials.

For example, it has been shown22 that binding of anti-

genic peptides to major histocompatibility complex

(MHC), which is a prerequisite for recognition by cyto-

toxic T-cells, is better predicted by the BT23 potential

that treats hydrophilic interactions more adequately than

the MJ-96 potential,5 which places emphasis on hydro-

phobic interactions.

Previous studies18,23–25 of the 20 3 20 contact

potential matrices suggest that eigenvalue analysis are

useful for investigating their specific features, and for

characterizing the underlying physical driving forces

involved in protein folding. In Figure 1 we illustrate,

using a gray scale representation, six contact potential

matrices that are further analyzed in this article. They

were developed by Miyazawa and Jernigan (MJ-96,5 and

MJ-9926), Betancourt and Thirumalai (BT23), Skolnick

et al. (SJKG,4 and Sko-1a and Sko-1b from Tables 1a and

1b in Ref. 27), Hinds and Levitt (HL28), Tobi et al.25

(TSLE-5a and TSLE-5b from Tables 5a and 5b in Ref.

25), and Buchete et al. (BST29). The BST matrices were

derived from orientational and distance-dependent inter-

actions. To reduce them to contact form, the full poten-

tials were integrated over distance and angles: BST-fu

(forward-up, y 2 [0, p/2], / 2 [0, p]), BST-bd (back-

wards-down, y 2 [p/2, p], / 2 [p, 2p]), and BST (all

angles, i.e., y 2 [0, p], / 2 [0, 2p]). All contact matrices

were rearranged such that the amino acid order is the

same as in the Miyazawa-Jernigan5 matrix (MJ-96). We

also subtracted, the corresponding mean values from all

the analyzed matrices to prevent an extremely big largest

eigenvalue.24 In the gray scale representation (Fig. 1),

lighter shades correspond to more attractive interactions

while darker shades correspond to stronger repulsions.

Li et al.24 showed that the popular Miyazawa-Jerni-

gan5 potential matrix has only two dominant eigenvalues

(Fig. 2, MJ-96), and that their corresponding eigenvectors

are strongly correlated to each other and to a hydropho-

bicity scale.30 The presence of the two dominant eigen-

values implies that only two types of residues (hydro-

phobic (H) and polar (P)) are needed to describe the

major forces that determine the nature of protein folds.

More recently, Wang and Lee18 deepened the analysis of

the MJ-96 potentials, by showing that the origin of the

strong HP character of the interactions is due to impor-

tant correlations between the elements of the leading

eigenvector (qi) and the dipolar moments (Qi) of the

side chains.31 These observations support the widely

held notion that the most relevant characteristic of a

given residue’s interactions is how a residue interacts

with water.32 The relationship between hydrophobicity

and the principal eigenvector of contact potential matri-

ces was recently used to study the structure, stability and

evolution of proteins.33–37 Pokarowski et al.38 have ana-

lyzed a large set of contact potentials and have shown

that they can be largely classified in two classes, both

having strong correlations with hydrophobic transfer

energies. However, only one class is significantly corre-

lated to amino acid isoelectric points.

During the last decade, details related to chain connec-

tivity, compactness of the native state, and the effects of

secondary structure have been incorporated in contact

potentials.4,27 One example is the newer Miyazawa-Jer-

nigan (MJ-99) potentials, parameterized using an

improved self-consistent procedure that leds to enhanced

ability to discriminate native structures from non-native

folds.26 Such improvements, which account for a variety

of characteristics beyond the HP classification, result in a

more complex potential with a weaker eigenvalue separa-

tion than in the MJ-96 case (Figs. 1–3).

In this article we introduce a general amino acid rank-

ing method based on an eigenvalue analysis for pairwise

contact potential matrices. Eigenvalue analysis is a gen-

eral tool that may be employed to study any contact

potentials, and permits the ranking of the relative contri-

butions of each interacting amino acid. Our ranking

method allows us to reconstruct the contact potentials

using the most important residues. Such a ‘‘mean field’’

reconstruction is indicative of the importance of amino

acids of different chemical character in the contact

potentials. The objective ranking of the amino acid inter-

actions makes possible the direct, quantitative compari-

son of various contact potentials and it may be applied

to protein structure and design, to protein–protein inter-

actions, and to the interpretation of amino acid mutation

studies.

METHODS (THEORY)

The pairwise contact potential matrices are symmetric

and self-adjoint. Thus all the eigenvalues are real, and the

corresponding eigenvectors can be constructed as a com-

plete orthonormal set.39 The eigenvalue equation for

matrix M is

N.-V. Buchete et al.
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Figure 1
Gray scale representation of some of the contact potential matrices. They are (a) Miyazawa and Jernigan5 (MJ-96), (b) Betancourt and Thirumalai23 (BT), (c) Skolnick

et al.4 (SJKG), (d) Hinds and Levitt28 (HL), (e) Tobi et al.25 (TSLE, from Table 5a in Ref. 25), and Buchete et al.29 (BST).
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Mjvii ¼ kijvii ð1Þ

where ki are the real eigenvalues and hvi j vji ¼ dij is the
orthonormality relation of the i 2 {1, 2, . . . , 20} eigen-

vectors.

Figure 2(a,b) show the leading ki values calculated for

contact potentials such as the ones depicted in Figure 1.

If the complete set of real eigenvalues and eigenvectors

are known, the original matrix can be reconstructed

exactly using

~M ¼
XN¼20

n¼1

jvniknhvnj ð2Þ

where hvnj is the transpose of the eigenvector jvni, and
vnj is the j-th element. In cases where there are only a few

(Nmin < 20) dominant eigenvalues (e.g., as for MJ-96),

the following approximate reconstruction formula can be

employed with good accuracy

~Mij ¼
XNmin

n¼1

knv
n
i v

n
j ð3Þ

This eigenvalue-based reconstruction procedure is illus-

trated in Figure 3 for the newer MJ-99 matrix and the

corresponding reconstructed matrices ( ~M) using only the

first [Fig. 3(b)], the first two [Fig. 3(c)] and the first

three [Fig. 3(d)] largest eigenvalues.

To facilitate the comparison of the contact potentials

on equal footing, all the matrices M were first scaled to

the [0, 1] range, and the mean value was subtracted.24

All contact matrices were also rearranged such that the

amino acid order is the same as for the Miyazawa-Jerni-

gan5 matrix. On the basis of the analysis, we conclude

that for most contact potential matrices the separation of

the leading eigenvalues is not as strong as for MJ-96. Fig-

ure 2 shows the relative magnitude of the eigenvalues for

the contact potential matrices depicted in Figure 1.

A quantitative measure of the accuracy of reconstruc-

tion is the linear correlation coefficient r which is defined

for any two matrices M and ~M as

r ¼ hM3 ~Mi � hMih ~Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hM3Mi � hMi2�½h ~M3 ~Mi � h ~Mi2�

q ; ð4Þ

where the average hM3 ~Mi is calculated for the products

between the corresponding individual elements Mij and
~Mij and not over the matrix product. Figure 4 shows the

correlation coefficients of the elements of the original M

matrices and their reconstructed values ( ~M). Using this

analysis we can answer the question: How many eigenval-

ues are necessary and sufficient to obtain a reconstructed

matrix that has a correlation coefficient with the original

matrix of rc or better? Here, rc is a critical threshold

value of the correlation coefficient. For example, if rc ¼
0.9 (i.e. a very strong correlation) we see from Figure 4

that only two largest eigenvalues are sufficient in the case

of the MJ-96 matrix, while three eigenvalues are neces-

sary for the BT interaction matrix. For most contact

potentials (Fig. 4) only a few eigenvalues are required to

reconstruct the original matrix.

RESULTS AND DISCUSSION

The relative contribution of each amino acid

The eigenvalue analysis of the MJ-96 matrix revealed18,24

strong correlations between the elements of the eigenvector

Figure 2
The largest eigenvalues of several statistical contact potential matrices. The

eigenvalues are ranked according to their absolute magnitude. These contact

potentials were developed by Miyazawa and Jernigan (MJ-96,5 and MJ-9926),

Betancourt and Thirumalai (BT23), Skolnick et al. (SJKG,4 and Sko-1a

and Sko-1b from Tables 1a and 1b in Ref. 27), Hinds and Levitt (HL28),

Tobi et al.25 (TSLE-5a and TSLE-5b from Tables 5a and 5b in Ref. 25),

and Buchete et al. (BST,29 see Fig. 1 and the text for details).

N.-V. Buchete et al.
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Figure 3
The MJ-99 matrix (a) and the corresponding matrices reconstructed by using (b) one largest eigenvalue, (c) 2 largest eigenvalues, and (d) 3 largest eigenvalues and their

corresponding eigenvectors. (e) The eigen value spectrum (circles, normalized to the largest eigenvalue) and its absolute values (plus sign). (f) The correlation coefficient

between the original MJ-99 matrix and its approximate reconstructions using only a few largest eigenvalues up to the full (i.e., 32 values) spectrum.
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corresponding to the largest eigenvalue of the MJ-96 matrix,

and physical properties of the individual amino acids such

as the hydrophobicities [see Eq. (4) and Fig. 2 in Ref. 24]

and the electric dipole moment [see Eq. (3) and Fig. 1 in

Ref. 18]. These observations suggest that the amplitudes of

the elements of the eigenvectors corresponding to dominant

eigenvalues are directly proportional to the magnitude of

the physical interactions between the corresponding amino

acids. Based on this observation, we define an importance

vector I with components

Ii ¼
XNmin

j¼1

jkjvjij ð5Þ

The elements of I are proportional to the relative mag-

nitudes of the interactions that each residue makes to Ii.

To facilitate the comparison of I vectors obtained for

different contact potentials, it is better to map the ele-

ments of each vector I to the [0, 1] range by using the

scaling relation Ii ! ðIi �minðIÞÞ=ðmaxðIÞ �minðIÞÞ.

Figure 5
(a, b) The importance ranking of specific amino acids (i.e., the Irank vectors, 1

being the most important) for several contact potential matrices. (c) Representation

of the Irank values calculated for several, commonly used contact potentials.

Important amino acids are dark red and black, as shown in the color scale.

Figure 4
Correlation coefficients (r) calculated between several potential matrices (see

text) and their approximate reconstructions using only a few largest eigenvalues.

N.-V. Buchete et al.
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We show in Figure 5 the ranking values obtained for the

vectors I for the various contact potentials. Amino acids

such as Thr, Asn, and Gln have low I values for most

contact potentials, while interactions involving hydrophobic

or charged amino acids have higher values (Fig. 5). Since in

some cases different amino acids have similar Ii values, it is

useful to analyze the ranking of the various amino acids

(i.e., 1st, 2nd, etc.) corresponding to each I vector.

Although the amino acid ranking is relatively similar

for the contact matrices analyzed in Figure 5(a) (MJ-96,

MJ-99, BT, SJKG, Sko-1a and Sko-1b), it is different for

the other potentials [Fig. 5(b,c)]. As a confirmation of

the validity of the amino acid ranking method proposed

here, we note that Thr is ranked as the ‘‘least important’’

amino acid for the BT potential, which justifies its choice

as the optimal reference state.23

Mean field reconstruction of
contact interactions

Another argument in favor of the amino acid ranking

proposed above (Eq. 5) comes from analyzing the corre-

lation coefficients between the full, original potential

matrices, and the matrices reconstructed using the mean

field approximation. If only ‘‘important’’ amino acid

interactions are maintained from the original matrix and

all other elements are replaced by the corresponding

mean values for each potential, one would expect that

matrices reconstructed using ‘‘less important’’ amino

acids should be consistently less correlated with the origi-

nal matrix. In Figure 6(a) are shown several mean field

reconstructed matrices for the MJ-96 potential, to illus-

trate this method.

The results of the correlation calculations between the
original MJ-96 matrix and its corresponding mean field
reconstructed matrices, using different combinations of
more or less important amino acids, are presented in Fig-
ure 6(b). The data points on the bottom correspond to r
values computed when only one single amino acid (cor-
responding to the nearby letter) is used. The second set
of points from the bottom, corresponds to cases when
two amino acids are used, and so on. For example, the
data point labeled ‘‘LFI’’ corresponds to a mean field ma-
trix ~M that was reconstructed by using only Leu, Phe,

and Ile. The continuous straight lines represent linear fits

for each series of data points. All fits have negative

slopes, indicating that the amino acid ranking defined

above is consistent with the mean field representation.

We have calculated this type of correlation diagrams for

all the potentials mentioned above (Figs. S1 and S2 in

Supplementary Material), and the results are shown in

Figure 7. For all contact potentials studied, the matrices

reconstructed using less important amino acids are con-

sistently less correlated with the full, original matrices,

than matrices corresponding to important amino acids.

These results, summarized in Figure 7 and Table S-I

(Supplementary Material), answer the question: How

many and which specific amino acids are necessary and

sufficient for building a mean field reconstructed poten-

tial that has a correlation with the original potential of rc
or better? (here rc ¼ 0.9).

The reduced sets of amino acids extracted for the con-

tact interaction potentials listed in Table S-I are shown in

Table S-II, together with their side chain size, charged, or

hydrophobic properties, respectively.40 The same reduced

sets of amino acids are shown in Table S-III, with em-

phasis on the character of their packing in the interior of

proteins. We note that both MJ-96 and MJ-99 potentials

are strongly dominated by interactions between predomi-

nantly small hydrophobic residues, together with strong

contributions from Lys and Cys. The acidic and polar res-

idues appear to have an average role in the MJ-96 and

MJ-99 interaction schemes, as well as the amino acids

with large side chains. The interactions with large side

chains such as Trp, His and Tyr are more relevant for the

HL, SJKG, BT, and TSLE contact potentials than for the

MJ and BST interactions. The most important MJ-96

and MJ-99 (Table S-III) residues are typically found in

the interior of protein structures, with the exception of

Lys that is predominantly exposed to the solvent, and Cys

that has a strong affinity for forming Cys–Cys contacts.

Comparatively, the other contact potentials have a less

hydrophobic character, with amino acid classes repre-

sented almost uniformly in their interaction schemes. An

interesting general observation is that the polar,

uncharged Thr, Asn, and Gln amino acids are assigned

the weakest interactions by all contact potentials investi-

gated here.

Randomly generated contact potentials

As one more test of the proposed method for ranking

the 20 amino acids based on their contribution to con-

tact interactions, we estimate the probability of obtaining

a similar ranking by generating random contact potential

matrices. By extracting parameters for the best fitting

Gaussian distributions of the elements of the potentials

analyzed in this paper (Fig. 8), we can generate new ran-

dom contact potentials.

We analyzed data obtained for random matrices that

correspond to Gaussian distributions similar to the origi-

nal contact potential matrices (Figs. S3–S6). Ten thou-

sand such matrices were generated for each contact

potential analyzed in this work, and their amino acid

rankings were compared to the original reference matri-

ces. The results show clearly that the probability of

obtaining amino acid rankings similar to the original,

reference interaction matrix is extremely small (e.g., as

shown in Fig. S4) for all the types of contact potentials.

The probability to obtain an amino acid ranking from a

randomly generated matrix that has a correlation coeffi-

cient of 0.6 or better with the ranking obtained for the

original matrix, is in the [0.004, 0.006] range. However,
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Figure 6
Illustration of the mean-field reconstruction procedure of the Miyazawa-Jernigan (MJ-96) potential.5 The original values (a) are reconstructed using only one (b), two (c)

or eight (d) most important amino acids, while all others are replaced by the mean value. (e) The importance ranking is tested by computing the correlation coefficient

between the original MJ-96 potential matrix and the matrices reconstructed using the ‘‘mean-field’’ procedure. When less important amino acids are used, the correlation

is consistently smaller. Note that at least eight amino acids are needed for rc ¼ 0.9.
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this probability drops dramatically to the [0.0004,

0.0006] range if a correlation coefficient of 0.7 or better

is sought for the amino acid ranking. Our amino acid

ranking method seems therefore to be robust against ran-

domly generated data.

We conclude that the most commonly used contact

matrices reflect the nature of the forces that stabilize pro-

tein folds. Thus, the quasi-chemical approximation, in-

herent in these potentials, is a reasonable approximation

for describing interactions in proteins.

Contacts potentials and classes
of protein structures

Most of the available contact potentials suggest that

about 7–9 amino acid residues are required to capture

the chemical diversity of proteins (Fig. 7). It is likely the

case that the most effective contact potential will depend

on the application, as was shown in the context of ligand

binding to MHC complexes.22 We can get further insight

into the appropriateness of the contact potentials by con-

sidering packing in proteins, which is important in the

context of structure prediction. Since our analysis per-

mits the ranking of all SC–SC interactions for any type

of contact potential, we can use it to predict the appro-

priateness of using a certain interaction scheme to mod-

eling proteins with different secondary structures.

To relate the contact potentials to protein secondary

structures, we calculate the preponderance of interactions

that are present in a variety of protein structures. For

this purpose, we use the CATH (version 3.0.0, May 2006)

database41 of representative protein classes (i.e., class (1)

mainly-a, (2) mainly-b, (3) a þ b, and (4) a class that

contains miscellaneous protein domains with low second-

ary structure content) to assess the fraction of side chain

contacts that are typically present in proteins. We use

nine classes for grouping the 20 residues types40 as:

‘‘sH’’ for the small-hydrophobic (A,V,I,L,M), ‘‘LH’’ for

large-hydrophobic (Y,W,F), ‘‘sP’’ for small-polar (S,T),

‘‘LP’’ for large-polar (N,Q,H), ‘‘pos’’ for the positive

(R,K), ‘‘neg’’ for negative (D,E) and single letter codes

for ‘‘G’’, ‘‘P’’, and ‘‘C.’’ The values in Table I are mean val-

ues obtained for each structural class by dividing the sets

of representative domains in the CATH database into 9

subsets. The corresponding standard error for each value

is given in brackets.

The results in Table I show that most contacts occur

between sH residues, with about 4.5% higher frequencies

for Class 1 (mainly-a) protein domains than for Class 2

(mainly-b) (i.e., 23.9 vs. 19.4%, Table IA). When consid-

ering the fraction of side chain-backbone (SC-BB) con-

tacts (i.e., by using an extra interaction site ‘‘BB’’ located

on the backbone, as in our previous work42) these

results show a very high SC-BB fraction of contacts

(Table IB and IC) in all cases. However, mainly-a struc-

tures have a 20% higher fraction of SC–SC contacts

(Table IC) as compared to mainly-b structures, at the

expense of BB–BB interactions. Together with data in

Table IB, it appears that in mainly-b structures, many

sH-sH and sH-LH contacts (which are more common in

mainly-a structures), are being replaced by BB–BB back-

bone contacts.

On the basis of the above observations and on the

interaction ranking resulting from our method (e.g., see

Tables S-II and S-III), we predict that the MJ, BT, and

SJKG contact potentials will perform better than other

potentials in modeling secondary structure of typical

proteins because they have a good balance between con-

tacts of sH, LH, and charged residues. However, the MJ

types of contact potentials may be more adequate to

model proteins that are classified as CATH Class I,

mainly-a (and, accordingly, BT and SJKG may perform

Figure 7
(a, b) Correlation curves constructed for mean field reconstructed values for

several contact potentials. At least NAA ¼ 7 amino acids are necessary for any

contact potential matrices to be reconstructed with a correlation r > 0.9 to the

original matrix. For all matrices, only 7–9 important amino acids (gray zone)

are sufficient for reconstructing the full contact potential with r > 0.9.

Contact Potentials for Proteins

DOI 10.1002/prot PROTEINS 127DOI 10.1002/prot PROTEINS 127



better for modeling Class 2 and Class 3 structures)

because MJ contacts appear to give higher weights to

interactions between small-hydrophobic amino acids. As

suggested for scoring functions used in protein dock-

ing,43 the direct correlation between contact potentials

suggests that a variety of interaction schemes may be

needed to predict the structure of proteins. The present

analysis clearly shows the need to develop potentials that

also include the shapes and size of amino acid residues.

CONCLUSIONS

We have presented a general method for the analysis

of pairwise contact potential matrices, which permits the

ranking of each inter-residue interaction component

according to its contribution to the global features of

contact potentials. The method is used to analyze several

widely used contact potential interaction matrices for

proteins. We show that the new ranking method (see

Eq. 5) is consistent with the mean field reconstruction

technique, and with the selection of reference states used

in previous studies (e.g., Thr for the BT potential23).

This new method offers a theoretical basis for protein

design using a minimum number of amino acids. In par-

ticular, our results support the findings that stable and

unique designs can be achieved using only a subset of

suitably chosen amino acids.44–47 The present analysis

identifies the precise minimum subset of residues that

globally correlate with each contact potential.

Quantitatively, our analysis shows that only 7–9 residues

are sufficient for a very good approximation of the most

widely used 20 3 20 inter-residue contact interaction

schemes (i.e., such that the reconstructed interaction ma-

trix has a correlation coefficient of at least 0.9 with the full

20 3 20 matrix). The amino acid importance ranking,

resulting from the fast growing variety of contact interac-

tion potentials, was applied to study the relationship

between the different types of contact potentials and their

efficacy to model specific classes of protein secondary struc-

tures as defined by the CATH database. The correlation

between contact potentials and the analysis of the CATH

database shows that the preponderance of interactions be-

tween small hydrophobic residues must be considered for

accurately predicting protein structures. Moreover, interac-

tions involving backbone atoms must also be modeled for

Figure 8
Extracting Gaussian distribution parameters for contact potentials. Since the matrices are symmetric, only 210 interaction values are used for building the histograms. For

an unbiased comparison, all interactions are first scaled to the [0, 1] interval and the mean values are subtracted. Note that some contact matrices appear to be less

normally distributed than others.
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describing the folded structures of proteins, especially those

involving b-sheets. Our ranking method can be used as a

guide in the development and evaluation of new potentials

for the study of protein folding, for protein structure pre-

diction and design, or for the development of novel residue

substitution matrices for protein sequence analysis.48–50
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Tables

Tab. S- I. Reduced sets containing the “most important” amino acids for several potentials. Using only

these sets, the original 20x20 contact matrices can be reconstructed with a correlation coefficient of 0.9

or better. The corresponding minimum numbers of eigenvalues (Nmin) and amino acids (NAA, bold)

that are needed for the same reconstruction quality (r ≥ 0.9) are shown. The potentials analyzed here

were developed by Miyazawa and Jernigan (MJ-961 and MJ-992), Betancourt and Thirumalai3 (BT),

Skolnick et al. (SJKG4, Sko-1a and Sko-1b5), Tobi et al. (TSLE-5a and TSLE-5b6), and Buchete et

al.7 (BST).

Potential Nmin NAA AA Ranking

MJ-96 2 8 LFIKVMCAWPEDYHGQTSRN

MJ-99 2 7 KLMFVICWADEYPHGNRQST

BT 3 7 WDIMLEKVFCRNASPYGQHT

SJKG 2 8 WALKMVFIYGCDEPSHNTQR

Sko-1a 2 7 GWALVCIFMYPKDESHNTQR

Sko-1b 2 7 WGCLAVIFMPYDSHEKTQNR

HL 4 9 KICDLVHWRFEMPYAGQTNS

TSLE-5a 7 9 WKYEMPILFHDRCSGANVQT

TSLE-5b 7 8 CHWPYRIMEFNLGKDQTVSA

BST-fu 5 6 DACRKSEVLYGIFNMHPQWT

BST-bd 5 9 DAGCEFVISKPYLWRTMNHQ

BST-all 4 8 ADKERSGVYILFNPCWMHQT

2



Tab. S- II. The reduced sets containing the ‘most important’ amino acids for reconstructing the MJ-96,

BT and SJKG interactions. Using only these sets, the original 20x20 matrices can be reconstructed

with a correlation coefficient of 0.9 or better. The font coding is: normal for non-polar (hydrophobic),

CAPS for polar (uncharged) residues, bold for basic, italic for acidic residues. The classification of

amino acids8 as small (s), large (L), positive (+) and negative (-) is also shown.

Rank: 1 2 3 4 5 6 7 8 9

MJ-96 Leu(s) Phe(L) Ile(s) Lys(+) Val(s) Met(s) CYS Ala(s) -

MJ-99 Lys(+) Leu(s) Met(s) Phe(L) Val(s) Ile(s) CYS - -

BT Trp(L) Asp(-) Ile(s) Met(s) Leu(s) Glu(-) Lys(+) - -

SJKG Trp(L) Ala(s) Leu(s) Lys(+) Met(s) Val(s) Phe(L) Ile(s) -

Sko-1a GLY Trp(L) Ala(s) Leu(s) Val(s) CYS Ile(s) Phe(L) -

Sko-1b Trp(L) GLY CYS Leu(s) Ala(s) Val(s) Ile(s) Phe(L) -

HL Lys(+) Ile(s) CYS Asp(-) Leu(s) Val(s) His(L) Trp(L) Arg(+)

TSLE-5a Trp(L) Lys(+) TYR(L) Glu(-) Met(s) Phe(L) Ile(s) Leu(s) Phe(L)

TSLE-5b CYS His(L) Trp(L) Pro TYR(L) Arg(+) Ile(s) Met(s) -

BST-fu Asp(-) Ala(s) CYS Arg(+) Lys(+) SER(s) - - -

BST-bd Asp(-) Ala(s) GLY CYS Glu(-) Phe(L) Val(s) Ile(s) SER(s)

BST-all Ala(s) Asp(-) Lys(+) Glu(-) Arg(+) SER(s) GLY Val(s) -

3



Tab. S- III. The reduced sets containing the ‘most important’ amino acids for reconstructing the MJ-

96, BT and SJKG interactions. Using only these sets, the original 20x20 matrices can be reconstructed

with a correlation coefficient of 0.9 or better. The font coding is: italic for external, bold for

internal, buried, and normal for ambiguous residues.

Rank: 1 2 3 4 5 6 7 8 9

MJ-96 Leu Phe Ile Lys Val Met Cys Ala -

MJ-99 Lys Leu Met Phe Val Ile Cys - -

BT Trp Asp Ile Met Leu Glu Lys - -

SJKG Trp Ala Leu Lys Met Val Phe Ile -

Sko-1a Gly Trp Ala Leu Val Cys Ile Phe -

Sko-1b Trp Gly Cys Leu Ala Val Ile Phe -

HL Lys Ile Cys Asp Leu Val His Trp Arg

TSLE-5a Trp Lys Tyr Glu Met Phe Ile Leu Phe

TSLE-5b Cys His Trp Pro Tyr Arg Ile Met -

BST-fu Asp Ala Cys Arg Lys Ser - - -

BST-bd Asp Ala Gly Cys Glu Phe Val Ile Ser

BST-all Ala Asp Lys Glu Arg Ser Gly Val -
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Figure Captions

Figure S1. The “importance ranking” is tested by computing the correlation coefficient

(r) between the original contact potential matrix and the matrices reconstructed using the

“mean-field” procedure. When less important amino acids are used, the correlation is con-

sistently smaller. Note that at least 8 amino acids are needed for rc ≥ 0.9. The potentials

analyzed here were developed by (a) Miyazawa and Jernigan1 (MJ-96), (b) Miyazawa and

Jernigan2) (MJ-99), (c) Betancourt and Thirumalai3 (BT), and by (d)-(f) Skolnick et al.

(SJKG4, and Sko-1a and Sko-1b from Tables 1a and 1b in Ref. 5).

Figure S2. The same analysis as in Fig. S 1, for contact potentials developed by (a)

Hinds and Levitt9 (HL), (b)-(c) Tobi et al.6 (TSLE-5a and TSLE-5b from Tables 5a and

5b in Ref. 6), and by (d)-(f)Buchete et al.7 (BST). The BST matrices were constructed

by integrating over distance and orientation-dependent potentials: BST-fu (forward-up,

θ ∈ [0, π

2
], φ ∈ [0, π]), BST-bd (backwards-down, θ ∈ [π

2
, π], φ ∈ [π, 2π]), and BST-all (all,

θ ∈ [0, π], φ ∈ [0, 2π]).

Figure S3. (a) Comparing the parameters of Gaussian distributions extracted for contact

potential matrices. Red curve corresponds to average values. (b) The extracted parame-

ters for each contact potential are used to generate up to 10,000 new contact matrices with

normally distributed terms. For illustration we show one case corresponding to average val-

ues. (c) The self-interaction terms are used to sort the newly generated random (Gaussian)

matrices. The red curve are the reference values (in this case MJ-96). The green curve cor-

responds to a newly generated matrix. The values of the green curve are sorted (blue curve)

such that their order corresponds to the order of the reference values (red). Thus, we can

assign likely amino acid names to each type of “randomly” generated contact interactions.

(d-f) Illustration for the MJ-96 case of the original (reference) matrix (d) and the generated

random matrices (out of 10,000) that have the most similar Ivec (e) and Irank (f) values

with MJ-96. Note that the random matrices are very different from the reference one. The

probability to generate a random (Gaussian) matrix with similar amino acid rankings as in

MJ-96 is extremely small.

Figure S4. (a) Correlation coefficients calculated between the “amino acid importance

vectors” of the reference (in this care MJ-96) contact potential matrix and 10,000 corre-

sponding randomly generated matrices. Both values for the “relative importance vectors”

(Ivec) and for the “importance ranking vectors” (Irank) are shown. (b) Histograms of the

5



above correlation coefficients. These can be used to estimate the probability that a random

matrix will have similar Irank as the original, reference matrix. For example, for MJ-96,

P (r > 0.6) (i.e., the probability that the correlation coefficient between the Irank of the

reference matrix and the Irank of a randomly generated matrix is larger than 0.6 is only

P (r > 0.6) = 0.0055, while P (cc > 0.7) = 0.0004. (c) A direct comparison of the Irank

vectors for the reference matrix (red) and the “random” matrix (out of 10,000) with the

highest correlation coefficient (green). Even in this “best” case the ranking is not very

similar, therefore, the ranking method seems to be robust.

Figure S5. Same as Fig. S 1 but calculated using the “best” generated random matrix for

which the amino acid ranking vector is the most similar (i.e., largest correlation coefficient.)

to the original contact potential matrix. Note that a comparison of these results to the ones

in Fig. S 1 shows that on average 10-to-11 amino acids are needed to obtain a “mean-field

reconstructed” matrix that is similar (i.e., r > 0.9) to the original matrix. This observation

holds also for the potentials analyzed in the next figure (Fig. S 6). A general conclusion

would be that the “best” generated random matrix (out of 10,000 for each type of potential)

still has a different amino acid ranking than the original matrix, and it generally requires

more “important” amino acids for the same quality the reconstructed matrix.

Figure S6. Same as in Fig. S 5, but this time for contact potentials corresponding to

the ones presented in Fig. S 2.
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