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A simulation method is presented that achieves a flat energy distribution by updating the statistical
temperature instead of the density of states in Wang-Landau sampling. A novel molecular dynamics
algorithm (STMD) applicable to complex systems and a Monte Carlo algorithm are developed from this
point of view. Accelerated convergence for large energy bins, essential for large systems, is demonstrated
in tests on the Ising model, the Lennard-Jones fluid, and bead models of proteins. STMD shows a superior
ability to find local minima in proteins and new global minima are found for the 55 bead AB model in two
and three dimensions. Calculations of the occupation probabilities of individual protein inherent structures
provide new insights into folding and misfolding.
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The Wang-Landau (WL) Monte Carlo (MC) algorithm
[1] has sparked considerable interest [1–3] due to its ability
to generate a flat energy distribution. A distinguishing
feature is that the density of states ��E� is dynamically
constructed during the simulation. On visiting states with
energy E, the running estimate ~��E� is multiplied by the
factor f > 1, which forces the system to visit less explored
energy regions through the bias in the acceptance proba-
bility of minf1; ~��E�r��= ~��E�r0��g for a move with r! r0,
and enables a fast convergence compared to other flat
energy histogram methods [4].

Two obstacles to further exploitation of the WL ap-
proach are that the discrete representation of ��E� on an
energy grid causes the number of bins to increase exten-
sively with system size, and the absence of a molecular
dynamics (MD) version limits its applicability to complex
systems where effective MC moves are not available, e.g.,
biomolecules. In this Letter we propose two algorithms
that surmount these limitations by exploiting the corre-
spondence between the density of states and the statisti-
cal temperature T�E�. The idea is to achieve a flat energy
distribution by the systematic refinement of the statistical-
temperature estimate ~T�E� rather than the density of states
estimate ~��E�. A robust dynamic modification scheme is
proposed to transform an initially constant ~T�E� to the true
statistical temperature T�E� via a nonuniform scaling op-
eration that is intrinsically nonlocal and concurrently re-
fines ~��E� at the visited state and in its neighborhood.
Updating the intensive variable ~T�E� allows a continuum
description for the entropy estimate regardless of the en-
ergy bin size, and yields substantial acceleration of the
convergence with larger, and hence fewer bins, while
maintaining statistical accuracy.

Sampling with the statistical weight, e�~S�E� � 1= ~��E�,
~S�E� being the entropy estimate, can be obtained [5] from
MD trajectories generated by the effective potential T0

~S�E�
at the fixed temperature T0. The dynamic modification of
~T�E� and force scaling in the MD algorithm yields a energy
distribution that converges to a flat histogram and effi-

ciently realizes a random walk in energy space via system-
atic repeated heating and cooling [6]. The performance of
the statistical-temperature MC (STMC) and MD (STMD)
algorithms is validated in simulations of the Ising model,
the Lennard-Jones fluid, and coarse-grained protein
models.

Our approach is based on the thermodynamic relation
between the microcanonical entropy, S�E� � ln��E�
(kB � 1), and the inverse temperature, ��E� � 1=T�E�,

 S�E� �
Z E

��E0�dE0: (1)

Because the entropy is uniquely determined up to a con-
stant as a functional of T�E� in Eq. (1), it is natural to seek a
sampling scheme driven by the dynamic modification of
the statistical temperature rather than the density of states
or entropy. We introduce the running estimate for the
temperature as

 

~��E� � 1= ~T�E� � @~S=@E; (2)

where ~S�E� � ln ~��E�. The transformation of ~T�E� to T�E�
is derived by applying the WL algorithm to the finite
difference form of Eq. (2). On an equally spaced energy
grid Ej � G�E=���, with bin size � and G�x� returning
the nearest integer to x, the WL operation of ~�j ! f ~�j

reduces to ~Sj ! ~Sj � lnf for a visit to energy Ej. We
combine this operation with the finite difference approxi-
mation, @~S=@EjE�Ej �

~�j � 1= ~Tj ’ �~Sj�1 � ~Sj�1�=2�,
and obtain the dynamic update of the inverse temperature
as ~�0j�1 �

~�j�1 	 �f, where �f � lnf=2� and the prime
denotes the updated value. Then

 

~T 0j�1 � �j�1
~Tj�1; (3)

where �j�1 � 1=�1	 �f ~Tj�1�. Some properties of Eq. (3)
are that the scaling operations of decreasing ~Tj�1 and
increasing ~Tj�1 transform ~T�E� so that it converges to
the monotonically increasing function T�E�; the factor
�j�1 approaches unity at low temperature, allowing a
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fine-tuning of ~T�E�; the ‘‘edge effect’’ [7] can be avoided
by restricting updates to Tl < ~Tj < Th, and maintaining
~Tj � Tl (Th) beyond the lower (upper) temperature bounds
Tl (Th).

An STMC simulation requires the computation of ~S�E�
from ~T�E� for the acceptance probability; trial moves are
made as usual. The direct integration of ~��E� is not desir-
able due to the sharp variation of the integrand at low
temperatures. To overcome this problem, we approxi-
mate the statistical temperature using the piecewise inter-
polation

 

~T�E� � ~Tj � �j�E� Ej� (4)

for Ej 
 E 
 Ej�1, where �j � � ~Tj�1 � ~Tj�=� is the
slope of the linear segment connecting [Ej, ~Tj] and
[Ej�1, ~Tj�1]. Linear extrapolation is particularly appropri-
ate at low temperatures, where the specific heat CV is
nearly constant. The sequence of consecutive interpola-
tions also enables a faithful representation of a T�E� cor-
responding to a phase transition [8]. The interpolation in
Eq. (4) yields the continuum entropy estimate,

 

~S�E� �
Z E

El

~��E0�dE0 �
Xi�
j�l�1

Lj�Ej� � Li�1�E�; (5)

where i� � i� 1 (i) for �Ei�1 
 E 
 Ei (Ei 
 E 
 �Ei),
�Ei � �Ei � Ei�1�=2, El is the lowest energy, and Lj �
��1
j�1 ln�1� �j�1�E� Ej�1�= ~Tj�1�. Equation (5) is used

to determine the acceptance of trial moves, taking into
account that the updated ~Tj differs from its previous esti-
mate at only two grid points i� 1. For the corresponding
update of ~�, let ~�i � exp�~S�Ei�� �

Qi
j�l�1 Yj, Yj �

� ~Tj= ~Tj�1�
��1
j�1 . On a visit to Ei, Eq. (3) yields

 

~� 0
i�k �

~fk ~�i�k; (6)

where ~fk � �i�k
j�i�1Y

0
j=Yj is a nonuniform modification

factor for k 2 ��1; 2�; Y0j is evaluated at the updated ~T0j.
The combination of the fundamental Eq. (3) and the

intrinsic smoothing of Eq. (5) allows a continuum descrip-
tion of ~S�E� regardless of the choice of �. Thus our method
can maintain statistical accuracy using larger values of �,
which is essential for large systems with a huge range of
��E�. In contrast, as seen below, � must be small for other
flat histogram MC methods [1,4].

Once the histogram fluctuations are less than 20% of the
mean, the sampling is repeated with a reduced convergence
factor fn�1 �

�����
fn
p

, n being the iteration, and is terminated
at fd � f� 1< 10�8. During the initial stages of the
simulation, the temperature estimate for an unexplored
energy region is modified every 104 MC steps as ~T�E� �
Tmin for E< Emin, Tmin � ~T�Emin� � minf ~T�E�g. This
low-energy flattening of ~T�E� corresponds to the extrapo-
lation of ~S�E� � ~S�Emin� � �E� Emin�=Tmin for E< Emin

and accelerates the convergence by assisting the system to
access lower energies through the canonical sampling at
Tmin. When the simulation converges with fd < 10�8,
thermodynamic properties are determined with the conver-
gent ~T�E� via Eq. (5) [1].

We tested the STMC algorithm for the 32
 32 Ising
model with periodic boundary conditions and Tl � 1:2,
Th � 4, an initial constant temperature estimate ~T�E� �
Th, and considered � � 8, 32, 64, and an initial value
fd;0 � 10�5. Note that f0 is very close to unity due to
the restricted sampling range of ~T�E�, in contrast to WL
sampling, which usually starts with f0 � e to cover a large
range of ~��E�. Consequently, both ~T�E� and ~S�E� are
almost indistinguishable after the first iteration from their
convergent values with fd � 10�8. When � is increased to
64, the temperature estimate displays a small ruggedness
due to the discrete nature of the histogram [Fig. 1(a)], but
the flat histograms in the inset confirm that STMC works
even for large energy bins. The corresponding entropy
estimates, Fig. 1(b), show good agreement with the exact
result [9], and the errors �~S�E� � ~S�E� � S�E� are less
than one for the region [E�Tl�, E�Th�], regardless of the
value of � [inset, Fig. 1(b)].

Another test is the continuum N � 110 Lennard-Jones
fluid with a cutoff of 2:5� at reduced density � � 0:88,
Tl � 0:65, and Th � 1:82. The flatness of the histogram
has been checked every 104 steps for the energy window
�670 
 E 
 �540. We found [see Fig. 2(a)] a small
ruggedness in ~T�E� with E for � � 1, fd;0 � 10�3, but
~T�E� shows a smoother variation with fd;0 � 10�4 and
� � 4 and 16. Nevertheless, the simulations give flat histo-
grams [inset of Fig. 2(a)] for all values of �. To demon-
strate the progression of statistical errors we have checked
the average standard deviations of the specific heat CV of
five independent runs at temperatures T � 1:0, 1.1, 1.2,
1.3, and 1.4 [see Fig. 2(b)]. Precise estimates of CV were
determined by canonical sampling for 106 steps. The sta-
tistical errors of both STMC and WL rapidly decrease to a
limiting value because, as fd decreases, further MC steps
do not [3] refine ~T�E� or ~S�E�. However, STMC is superior
to WL for the same � � 1 and is comparable even for
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FIG. 1 (color online). The 32
 32 Ising model: (a) convergent
~T�E� and histograms (inset); (b) entropy estimates ~S�E� and
absolute errors �S�E� (inset) for energy bins � � 8, 32, and
64. The notation for curves is �fd;0��.
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� � 16 with fewer MC steps. The advantage is due to the
continuum description of ~S�E�, because STMC calculates
an entropy difference for trial moves in which E0 and E
both belong to the same energy bin, while WL always
accepts such moves. Accuracy can be further improved
with reweighting [10], which corrects the entropy as
S�E� � ~S�E� � lnP�E�, P�E� being the normalized energy
histogram. The improvement increases with bin size, as
does the rate of convergence [Fig. 2(b)], so at � � 16
STMC has accelerated convergence and almost the same
accuracy as with � � 1. By contrast, we found that the
convergence of the WL algorithm slows significantly with
increasing � in both the fluid and the Ising model, preclud-
ing the option of using a large bin and reweighting.

Despite the advantage of using larger values of � dem-
onstrated by STMC, the formulation of STMD is our
primary result. The effective potential T0

~S�E� is employed,
and the velocity distribution is maintained at the tempera-
ture T0 with a Nose-Hoover thermostat [11]. The force ~fi
on particle i is related to the true force fi by the energy
dependent scaling, ��E� � T0= ~T�E�,

 

~f i � ��E�fi; (7)

where E denotes the potential energy, and the statistical
weight for configurations in an MD trajectory is e�~S�E� �

1= ~��E�, corresponding [5] to a flat energy distribution
with S�E� � ~S�E�. We convert force-scaled MD to
STMD by updating the statistical temperature every time
step, using the same procedure as in STMC.

We studied STMD for the off-lattice coarse-grained
BLN protein model [12], composed of hydrophobic (B),
hydrophilic (L), and neutral (N) beads, and including
bond stretches, bends, torsions, and realistic non-
bonded interactions. The 46-mer sequence,
B9N3�LB�4N3B9N3�LB�5L, and the 69-mer sequence,
B9N3�LB�4N3B9N3�LB�4N3B9N3�LB�5L, which exhibit 4
and 6-stranded �-barrel global potential energy minima
(native states), were tested with the same potential and

parameter set [13]. Because of the ruggedness of the
potential energy landscape, the 46-mer has been used as
a benchmark for global energy minimization [13,14], and
the increased complexity of the 69-mer presents a more
stringent test for our algorithm [15]. Simulations were
started with fd;0 � 1:0005=� with Tl � 0:1 and Th �
T0 � 1:3, and � � 1 and 2 for the 46- and 69-mer, respec-
tively. The known global minima of the 46-mer and 69-mer
are reproduced at E0 � �49:2635 [13] and �99:189 after
107 and 2:8
 107 MD steps, respectively [15]. A compari-
son of the numbers of local energy minima [inherent
structures [16] ] found by STMD with those found by
sophisticated optimization algorithms [14,15] in Table I
illustrates the ability of STMD to find low-energy states,
overcoming a broken ergodicity.

A previous study of the 46-mer [17] has shown the
existence of characteristic collapse and folding transitions
as reflected in the specific heat CV . As expected, the
collapse transition is associated with a peak in CV
[Fig. 3(a)]. However, the secondary peak, which has been
interpreted as the signature of folding at T � 0:34 [17], is
significantly reduced and appears only as a small shoulder
in @CV=@T. This suppression can be understood in terms of
the canonical average occupation probability, pi�T�
[Fig. 3(b)], of the configuration-space basin of the ith
inherent structure, obtained by reweighting the pi from
the STMD trajectory using ~S�E�. Folding involves occu-
pation of the lowest-lying basin with i � 0. We find that
individual pi become nonzero below the collapse tempera-

TABLE I. Number of inherent structures with energy less than
�E above the global minimum for BLN 46-mer and 69-mer
found by STMD, conformational space annealing (CAS) [14],
and automated histogram filtering (AHF) [15].

46-mer 69-mer
�E 1 2 3 5 �E 1 2 3 5

STMD 5 40 189 1045 STMD 3 44 205 1389
CAS 5 36 147 636 AHF 3 47 175 935
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ture, and those for higher energy inherent structures are
still nonzero down to T � 0:1; their contributions reduce
the thermodynamic signature of folding. The point is that
the smoothing of ~T�E� occurs only if the occupation of
these states is accurately sampled. Our result that pi�1;2 >
p0 after collapse reveals why global optimization of the 46-
mer so often fails to find the global minimum [13,14].

Except for a local ordering transition around T � 1:05 in
Fig. 3(a), thermodynamic behaviors of collapse and fold-
ing in the 69-mer are similar to those of the 46-mer. The
profile of pi�T� in Fig. 3(c) reflects the increased roughness
of the potential energy landscape. The excited state occu-
pation probabilities p1 and p4 are much greater than p0

around the collapse temperature and p1 is still higher than
p0 up to T � 0:1. This increased accessibility to non-native
inherent structures during the collapse leads to a substan-
tial slowing down of folding through kinetic trapping in
misfolded excited states.

Because STMD yields a flat energy distribution, it can
find global minima in complex systems where effective
MC moves are not feasible. As a test, we considered two-
and three-dimensional off-lattice AB protein models [18]

consisting of two types of hydrophobic (A) and hydrophilic
(B) monomers, which have been the subject of various MC
optimization algorithms [19–22]. For a very small Tl �
0:02 and fd;0 � 0:0005, we studied four different size
chains S13, S21, S34, and S55 in two and three dimensions.
Configurations associated with ~T�E�=Tl 
 1:5 were mini-
mized to generate inherent structures. Our method repro-
duced all the known ground states for chain lengths 
34
[22] and found new candidates for global minima in S55 for
both dimensions (Table II and Fig. 4), confirming the
promise of STMD-based global minimization.
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TABLE II. Global energy minima of 55-mer ABmodels with a
Fibonacci sequence in two and three dimensions determined by
STMD, the pruned-enriched-Rosenbluth method with impor-
tance sampling (nPERMis) [19], annealing contour MC
(ACMC) [20], the energy landscape paving (ELP) [21], and
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Dimension nPERMis ACMC ELP CSA STMD

2 �18:5154 �18:7407 �18:9110 �18:9202
3 �32:8843 �42:428 �42:3418 �42:5781

FIG. 4. Structures of new global minima of S55 in d � 2 and 3
dimensions. Gray and black balls correspond to hydrophilic and
hydrophobic monomers, respectively.
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