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The origin of protein folding thermodynamics is examined in terms of the energy landscape, employing an
off-lattice protein model with scaled non-native attractions, which is continuously tunable between a Go-like
model and a highly frustrated system. Extensive statistical temperature molecular dynamics simulations, com-
bined with inherent structure analysis, reveal the intimate connection between the global geometric properties
of the energy landscape and the statistical temperature. The basin depth of the energy landscape is shown to
play a key role in the first-order-like characteristics of the statistical temperature, which are easily identified by
the squared modulus of the potential energy gradient in the microcanonical ensemble.
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Protein folding—i.e., how a polypeptide chain reaches a
unique native state for a given sequence of amino acids
�1�—is one of the fundamental problems in biological sci-
ence. While significant advances have been made �2–9�, fun-
damental open questions still remain. For example, one
would like to understand the remarkable observation that
most single-domain proteins exhibit a cooperative, two-state
folding transition with no detectable intermediates �2�.

Energy landscape theory �3–6� provides a theoretical
framework for protein folding, in which the connection be-
tween a proteinlike sequence and a minimally frustrated en-
ergy landscape is rationalized via a folding funnel �4�. A
good folding sequence is characterized by a smooth potential
energy landscape �PEL�, with an overall funnel shape biased
to the native state, while a poorly designed sequence like a
random heteropolymer has a rugged PEL susceptible to long-
lived kinetic trapping �7�. Many simulation studies have been
devoted to elucidate the determinants of a proteinlike system,
such as the ratio of the folding and glass transition tempera-
tures �3�, the stability gap between a native state and low-
lying excited states �8�, and the collapse cooperativity �9�.

Recently, Mazzoni and Casetti �10� proposed the fluctua-
tions of the energy landscape curvature, KR=�2U, U being
the potential energy, as a determinant. A dramatic enhance-
ment of the fluctuations, ��T�=���KR

2�− �KR�2� / �KR�, in the
vicinity of the folding temperature T=Tf was observed in the
proteinlike folding of well-designed sequences, where �·� de-
notes an equilibrium average. The enhancement in ��Tf� is
attributed to effective two-state dynamics between the native
and denatured states with different curvatures �10�.

Two-state protein folding is analogous to a first-order
phase transition in finite-size systems �11–13�. Indeed, a re-
cent study �14� reveals that the “backbending” �S bend� in
the statistical temperature, or microcanonical caloric curve,
characteristic of a first-order-like phase transition, fully char-
acterizes protein folding and clearly distinguishes good fold-
ers from poor ones. The question naturally arises: how does
the global geometry of the PEL translate into the behavior of

the statistical temperature? This paper addresses the issue by
establishing a rigorous connection between the statistical
temperature and various energy landscape measures, leading
to the identification of the principal landscape determinants
of two-state folding thermodynamics.

The key quantity in our study is the statistical temperature
in the microcanonical ensemble, TS�U�= ��S�U� /�U�−1, S�U�
being the microcanonical entropy. It is well known that in a
finite-size system such as a protein, the microcanonical en-
semble is well suited to the analysis of phase transitions
�11–14�. Around a first-order phase transition, S�U� shows a
convex dip, with �2S /�U2�0, corresponding to backbending
in TS�U� or a negative specific heat. Backbending is associ-
ated with an extremum condition in the Helemholtz free en-
ergy at Tf, F�U ,Tf�=U−TfS�U�, which has three roots Ui
�i=1–3�, satisfying TS�Ui�=Tf �U1�U2�U3�. The multiple
roots are associated with two-state transition behavior be-
tween free-energy minima at U1 and U3, involving the cross-
ing of a transition barrier at U2, while the transition becomes
downhill-like without a barrier for the monotonic TS�U�.
Thus, all essential features of the transitions occurring in
good and poor folders are completely characterized by the
behavior of TS�U�.

Our analysis linking TS�U� to the PEL is based on the
thermodynamic identity between the statistical temperature
and the configurational temperature TconF�U� originally intro-
duced by Rugh �15� and later generalized by Jepps et al.
�16�:

TS�U� = TconF�U� =
���U�2�U

��2U�U
=

F�U�
K�U�

, �1�

where the subscript “conF” implies that the configurational
temperature is evaluated as the fraction of two separate mi-
crocanonical averages, F�U�= ���U�2�U and K�U�= ��2U�U
�16�. The significance of Eq. �1� is that it allows a rigorous
mathematical connection between the purely statistical quan-
tity TS�U� and the geometric structure of the energy land-
scape via the force, F=−�U, and the curvature, KR=�2U.

All-atom simulations considering the protein and explicit
solvent are the most accurate, but still computationally de-
manding. Thus a simplified description, retaining the main
features of real proteins, but reducing the number of degrees
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of freedom through a coarse graining, is especially appealing
for the characterization of protein-folding mechanisms over
long time scales. The newly suggested folding determinants
�10,14� have been examined in coarse-grained models, with
varied sequences exhibiting a different foldability.

Here we employ the scaled Honeycutt-Thirumalai �SHT�
off-lattice model �17� to mimic the effect of sequence varia-
tions and to examine how two-state folding results from the
global shape of the PEL and the emerging backbending be-
havior of TS�U�. The original HT model �18� has a �-barrel
native state and consists of 46 beads with three different
types: hydrophobic �B�, hydrophilc �L�, and neutral �N�. We
modified the model to incorporate scaled, Go-like interac-
tions by modulating the attractions between non-native BB
contacts, which allows, for the original HT sequence
B9N3�LB�4N3B9N3�LB�5L, a continuous tuning from a highly
frustrated PEL to a weakly rugged funnel. The potential en-
ergy is a sum of bond stretching �UB�, bending �UA�, torsion
�UT�, and nonbonded interactions �UNB,��:

U�r;�� = UB + UA + UT + UNB,�, �2�

where UB=	ikr�ri−re�2, UA=	ik���i−�e�2, and UT=	i
Ai�1
+cos��i��+Bi�1+cos�3�i���. The stretching and bending
constants are kr=200	 /
2 and k�=10	 / rad2, respectively, 	
and 
 being energy and length units, with re=
 and �e
=105°. Torsion parameters are Ai=Bi=1.2 for a quartet of
successive beads with zero or one N bead, while otherwise
Ai=0 and Bi=0.2.

The nonbonded term in Eq. �2� contains the scaling
factor � �0���1� to modulate the non-native attractions
as UNB,�=	i�j−3�Uij + ��−1�Uij��i ,
���j ,
��, Uij
=4	S1��
 /rij�12−S2�
 /rij�6�, where S1=S2=1 for BB pairs,
S1=2 /3 and S2=−1 for LL and LB pairs, and S1=1 and
S2=0 for all other pairs involving N. Here ��i ,
�=1 if

=B and bead i belongs to the non-native contact set, and
otherwise ��i ,
�=0. As � approaches zero, the second term
in UNB,� introduces a strong native bias in denatured states
by prohibiting close contacts between non-native BB pairs.
All 57 native contact pairs are identified with the cutoff 1.3
,
based on the global minimum structure of the original HT
model �U=−49.2635�.

Due to the high degree of frustration in the original HT
model �18,19�, an enhanced sampling technique is indispens-
able to obtain a correct conformational sampling for both the
transition and low-temperature regions, overcoming ergodic-
ity breaking. We applied the statistical temperature molecular
dynamics �STMD� algorithm �19�, which generates a flat en-
ergy sampling via the dynamic refinement of the statistical
temperature �for details see Ref. �19�� with four different
scalings at �=1.0, 0.9, 0.5, and 0. All STMD simulations
have been performed to sample the temperature range from
0.07 to 1.3, with the average kinetic energy fixed at T0=1.3.
A total of 8�104 configurations for each simulation were
collected to determine the canonical and microcanonical
thermodynamics, and minimized using the conjugate-
gradient algorithm to map inherent structures �ISs� �20�.

As summarized in Table I, the folding �Tf� and collapse
�T�� temperatures, identified by peaks in the T-dependent
heat capacities and order parameter fluctuations in Figs. 1�a�

and 1�b�, respectively, illustrate that the original HT model
�SHT with �=1� is a poor folder and the SHT model with
�=0.9 is an intermediate folder, while �=0.5 and 0 corre-
spond to good folders according to the classification based
on the collapse cooperativity, 
= �T�−Tf� /T� �9�. The valid-
ity of this classification is also seen in the profiles of the
curvature fluctuations ��T� in Fig. 1�c�. A marked peak
shows up close to Tf for good folders, while the plots are
featureless in poor and intermediate folders �10�. Note that
the temperature T�, corresponding to the maximum curvature
fluctuation in Fig. 1�c�, coincides with Tf for good folders,
implying that ��T� is also an effective folding indicator.

The statistical temperature TS�U�, determined by STMD
in Fig. 2, shows a dramatic change as the energy landscape
changes with decreasing �. The smooth, monotonically vary-
ing TS�U� in the original HT model ��=1� first starts to show
a plateau, or weak backbending, and a substantial backbend-
ing appears as � falls below 0.5. Remarkably, the tempera-
tures corresponding to the plateau and backbending regions
in TS�U� with �=0 exactly match Tf and T�, respectively.
The alteration of the folding mechanism from second-order-
like collapse ��=1� into first-order-like folding ��=0� is
clearly seen through the behavior of TS�U�.

We find that the folding in Go-like models occurs through
the transient formation of a three-strand core near T� and the
immediate attachment of the terminal strand to attain the
native state at Tf��T��. A significant slowing down is ob-
served in the folding of the original HT model with Tf �T�

due to trapping in misfolded states. Since U is the external

TABLE I. Characteristic temperatures of folding �Tf�, collapse
�T��, and curvature fluctuation �T�� and the collapse cooperativity 

at different �=1.0, 0.9, 0.5, and 0.

Scaling parameter � Tf T� T� 
= �T�−Tf� /T�

1.0 0.19 0.67 0.68 0.71

0.9 0.49 0.65 0.64 0.25

0.5 0.61 0.67 0.62 0.09

0.0 0.59 0.62 0.60 0.05
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FIG. 1. �Color online� �a� Specific heats Cv�T�, �b� order param-
eter fluctuations ��T�, and �c� curvature fluctuations ��T� at differ-
ent �=1.0, 0.9, 0.5, and 0 from bottom to top in �a� at T=0.6.
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control parameter in the microcanonical ensemble �playing
the role of the temperature in the canonical ensemble�, we
also identify the characteristic energies to describe the fold-
ing transition as a function of U, in the case of �=0. In
Fig. 2, both Uf =10 and Um=20 approximately define the
plateau region in TS�U�, and both Um and U�=50 bound the
collapse region associated with the backbending of TS�U�,
TS�U��=0.65. The good folder with �=0 starts to collapse as
U crosses U�, and completes its folding once U passes
through Uf.

Assuming that STMD samples all configurations with a
given U, the microcanonical average in Eq. �1� is directly
computed by binning in energy and collecting configurations
corresponding to each bin. The configurational temperature
TconF�U� with unit bin size shows good agreement with
TS�U� in both �=1 and 0, illustrating that the thermodynamic
identity, Eq. �1�, is robust even with a smaller system size.

To illustrate how the PEL controls TS�U�, and hence the
folding, via Eq. �1�, both K�U� and F�U� are plotted in Figs.
3�a� and 3�b�, respectively. For all scalings, the curvature
K�U� monotonically increases with decreasing U, showing
that folded �denatured� states are associated with steeper

�shallow� potential wells. The primary feature differentiating
good from poor folders in Fig. 3�a� is that good folders have
nearly constant curvature for U�U�, suggesting that their
denatured states are structurally homogeneous. This finding
is in accordance with our expectations for Go-like interac-
tions. The main frustration of the original HT model arises
from the conformational diversity of the collapsed states
�18�. The native-centric UNB,� in Go-like models signifi-
cantly suppresses the frustration from hydrophobic mis-
matches of � strands during the collapse by reducing non-
native interstrand BB contacts and also makes the unfolded
landscape less structured. With decreasing U in good folders,
the flat K�U� begins to increase steeply between Uf and U�,
the backbending and plateau regions of TS�U�, contributing
to the large curvature fluctuation ��Tf� and to the bimodal
energy distributions �10�. By contrast, in poor folders the
slope of K�U� is nearly constant, causing no structure in
TS�U� and corresponding to the fact that all systems studied
have nearly identical K�U� at the highest and lowest U.

Turning to F�U�, the most remarkable aspect of Fig. 3�b�
is that F�U� retains all essential features of TS�U�. Despite
the discussion in the last paragraph, the dynamic range of
K�U� is small and the variation of TS�U� is mostly encoded
into F�U�. What is the underlying physics relating F�U� to
TS�U�? Some insight is gained by noting that F�U� is a mea-
sure of the geometric distance between the sampled configu-
rations at U and their associated ISs �20�. Indeed, the
microcanonical basin depth of the PEL, quantified as
D�U�=U−UIS�U�, UIS�U�= �UIS�U being the average IS en-
ergy, shows a remarkable resemblance to TS�U� in Fig. 4�a�.
More quantitatively, in a harmonic approximation, the ca-
nonical basin depth obeys Dhar

T �T�=NfT /2, Nf being the
number of degrees of freedom. Replacing the temperature T
by TS�U� gives Dhar

T �U�
�Nf /2�TS�U�= �Nf /2� F�U�
K�U� , which

unveils a direct link translating the global geometry of the
PEL into the proteinlike folding markers of TS�U�. We
checked the validity of the harmonic approximation by com-
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FIG. 2. �Color online� Statistical temperatures TS�U� �solid
lines� and configurational temperatures TconF�U� �squares and
circles� with different �=1.0, 0.9, 0.5, and 0 from top to bottom at
U=40. Note that horizontal lines at T�=0.62 and Tf =0.59 match the
backbending and plateau regions of TS�U� at �=0, respectively.
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FIG. 3. �Color online� Microcanonical average of �a� K�U� and
�b� F�U� with different �=1.0, 0.9, 0.5, and 0 from top to bottom
around U=40.
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FIG. 4. �Color online� �a� Basin depth D�U�, �b� harmonic basin
depths Dhar�U� �solid circles� and Dhar

T �U� �triangles� at �=0, and
�c� average IS energy UIS�U�. �=1.0, 0.9, 0.5, 0 from top to bottom
in �a�.

RELATIONSHIP BETWEEN PROTEIN FOLDING… PHYSICAL REVIEW E 79, 030902�R� �2009�

RAPID COMMUNICATIONS

030902-3



paring D�U� and its harmonic counterparts, Dhar
T �U�

andDhar�U�= 1
2 ��U ·�r�U �21�. As shown in Fig. 4�b�, both

independently derived Dhar
T �U� and Dhar�U� display the es-

sential characteristics of D�U�.
The basin depth of the PEL as a function of U is most

directly seen in the profile of UIS�U� in Fig. 4�c�. A sharp
drop in UIS�U�, to a constant value, occurs for good folders
between U� and Uf. This means that the system quickly
reaches the native state basin as U crosses Uf, while UIS�U�
shows a slow decay due to residual frustrations among col-
lapsed states in poor and intermediate folders. The plateau
regions in UIS�U� for U�U� reflect the homogeneous inher-
ent structures in characteristic of the denatured states of good
folders as observed in K�U� in Fig. 3�a�. Our analysis sug-
gests that the Go-like model has a near-Levinthal-like land-
scape �22�, in which the denatured state landscape is gently

slanted, while the folded state landscape has a steep funnel to
the native state, resulting from the native-centric interactions
stabilizing the native state while homogenizing the denatured
states.

In summary, we have shown that a sharp variation in the
basin depth, D�U�, from the denatured states to the native
state, gives rise to the first-order-like folding in good folders.
The basin depth is reflected in the statistical temperature
TS�U� through the relations TS�U�=F�U� /K�U�

�2 /Nf�D�U�. Two-state protein folding is associated with
marked transitions of the potential energy gradient F�U�, the
average IS energy UIS�U�, and the curvature K�U�.
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