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The recently proposed statistical temperature molecular dynamics �STMD� algorithm �Kim et al., Phys. Rev.
Lett. 97, 050601 �2006�� is used as the core of an optimization algorithm, statistical temperature annealing
�STA�, for finding low-lying energy minima of complex potential energy landscapes. Since STMD realizes a
random walk in energy, the idea is simply to initiate repeated minimizations from configurations in the
low-energy segments of STMD trajectories. STA is tested in structural optimization of various off-lattice AB
and extended AB protein models in two and three dimensions with different chain lengths. New putative
ground states were found for the two- and three-dimensional AB 55-mer, and for the three-dimensional ex-
tended AB 21-mer and 55-mer. The distinct folding features of the models are analyzed in terms of the
statistical temperature and other representations of the structure of the potential energy landscape. It is shown
that the characteristic behavior of the statistical temperature undergoes a qualitative change with the inclusion
of a torsional potential in the extended AB model, as the more rigid backbone makes the potential energy
landscape more funnel-like.

DOI: 10.1103/PhysRevE.76.011913 PACS number�s�: 87.15.�v, 87.10.�e, 05.70.�a, 36.20.�r

I. INTRODUCTION

The prediction of a protein structure from its primary
amino acid sequence is one of the most challenging problems
in biological and computational science. Based on Anfinsen’s
thermodynamic hypothesis �1�, which states that the native
structure of a protein corresponds to the global minimum of
the free energy surface of protein plus solvent, the structure
prediction problem is translated into a global optimization
problem. For the case of an implicit solvent model, one may
use the potential energy as the target energy function, recog-
nizing that the native state must now be identified as a group
of configurations sharing the structural motif of the global
minimum. Thus folding and optimizing are not identical, but
remain closely related.

However, the intrinsic complexity of the potential energy
landscape of a protein, with a multitude of local minima
separated by high-energy barriers, makes it difficult to find
the global minimum, or ground state, within a reasonable
computational time. Even in a highly simplified HP lattice
model �2� consisting of hydrophobic �H� and polar �P�
amino acids, the number of conformations increases enor-
mously as the chain length grows, and finding the global
minimum is nontrivial �3�

To overcome the multiple minimum problem, and to en-
hance computational efficiency in the search for the global
minimum, several sophisticated algorithms have been devel-
oped such as simulated annealing �SA� �4�, basin hopping
�5�, energy landscape paving �ELP� �6�, conformational
space annealing �CSA� �7�, metadynamics �8�, conforma-
tional flooding �9�, and various generalized ensemble tech-
niques �10–13�. Despite substantial differences in detail,
these methods are basically Monte Carlo �MC� algorithms,
except for metadynamics and conformational flooding. Com-

bined with clever, nonphysical trial moves, they have been
successful in finding global minima in both lattice and off-
lattice protein systems. However, as the system size in-
creases, the design of effective MC trial moves becomes
harder, due to steric hinderance in compact conformations.
This difficulty is more serious in an explicit solvent, due to
the protein-water interactions. Therefore, it is a significant
challenge to develop an efficient optimization algorithm that
retains the merit of advanced sampling techniques and does
not suffer from the difficulty of designing trial moves in
condensed phases.

Recently, we proposed the “statistical temperature mo-
lecular dynamics” �STMD� algorithm, which combines in-
gredients of multicanonical molecular dynamics �14� and
Wang-Landau �WL� sampling �15� through the concept of
the statistical temperature. The basic strategy, employing a
sampling weight inversely proportional to the density of
states, is similar to multicanonical sampling �16� or the an-
nealing contour MC �17� �ACMC� method. However, STMD
is distinguished from optimization algorithms adapting gen-
eralized ensemble techniques or WL sampling in that it uses
a dynamic modification scheme for the statistical tempera-
ture and does not require a histogram accumulation, which
greatly accelerates a conformational search through the self-
adjusting sampling weight.

Since STMD has been designed to perform a random
walk in energy without trapping in local minima, and, being
a molecular dynamics algorithm, generates natural collective
motions of the particles, it can be a powerful optimization
tool for biomolecules. Here we present a STMD-based opti-
mization algorithm, “statistical temperature annealing”
�STA�. The performance of STA is tested on implicit solvent
model proteins, the off-lattice AB protein model �18� in two
and three dimensions, and the extended AB model, which
includes a torsional potential �19� and is inherently three
dimensional. STA reproduces previously known global
minima and finds further putative ground states in several
cases.*jaegil@bu.edu
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The folding processes of AB and extended AB model pro-
teins are investigated in terms of their statistical tempera-
tures. It is also shown that inclusion of a torsional potential
makes the energy landscape more funnel-like in the extended
AB model. Our study reveals that the folding of AB proteins
proceeds by a sharp nonspecific collapse, followed by slow
relaxation into the global minimum in glassy energy land-
scapes, arising from the energetic dominance of nonbonded
interactions over local interactions in collapsed states. On the
other hand, the torsional potential in the extended AB model
prevents an initial rapid collapse and allows a progressive
folding into the ground state, by increasing chain stiffness
and reducing the accessible conformational space.

II. STATISTICAL TEMPERATURE MOLECULAR
DYNAMICS ALGORITHM

The formulation of STMD relies �21� on the well-known
thermodynamic relationship between the microcanonical en-
tropy S�E� and the statistical temperature T�E� �29�,

T�E� = ��S�E�/�E�−1, �1�

where S�E�=ln ��E�, in units such that kB=1, and ��E� is
the density of states. From the one-to-one correspondence in
Eq. �1�, STMD achieves a flat energy distribution via the
systematic refinement of the statistical temperature estimate

T̃�E�,

T̃j±1� =
T̃j±1

1 � �fT̃j±1

, �2�

where j represents the index for the energy grid defined as
Ej =G�E /���, with bin size � and G�x� returning the nearest
integer to x, �f =ln f / �2���1, and f �1 is the temperature
modification factor. It should be emphasized that the statisti-

cal temperature T̃�E� in Eq. �2� is dynamically modified ev-
ery time the system visits the energy state Ej, and this pro-
cess accelerates the determination of the entropy estimate

S̃�E�=�E1/ T̃�E��dE� compared to multicanonical sampling
requiring histogram accumulation.

With the dynamic update scheme of Eq. �2� STMD
achieves a flat energy distribution by transforming an ini-

tially constant T̃�E� to the true statistical temperature T�E�
through iterative refinements. The modification factor is re-
duced, f →�f , when the energy histogram reaches a specified
flatness; see Ref. �21� for details.

The primary advantage of STMD is its implementation as
a molecular dynamics simulation, which integrates equations
of motion of the generalized ensemble sampling �14,23�
coupled to a Nosé-Hoover thermostat �22�. By considering
the generalized ensemble sampling characterized by the sam-

pling weight w�E�=exp�−S̃�E��=exp�−	0vef f�E��, 	0

=1/kBT0, as the canonical ensemble sampling associated

with the effective potential vef f =T0S̃�E� at the fixed kinetic
temperature T0, the equations of motion are obtained as

q̇i = pi,

ṗi = − �qi
vef f�E� − 
pi = ��E�fi − 
pi,


̇ = �K�pi� − NfT0�/Q , �3�

where K�pi�=�ipi
2 /2, ��E�=T0 / T̃�E�, and qi, pi, and fi cor-

respond to the coordinate, the momentum, and the force of
ith particle, respectively. Here, 
 and Q represent the conju-
gate momentum and fictional mass of the thermostat, deter-
mining the strength of thermal coupling to a system having
Nf degrees of freedom.

Equation �3� corresponds to an ordinary molecular dy-
namics simulation combined with the energy-dependent
force scaling, and the average kinetic energy is maintained at
the fixed temperature T0. The velocity-Verlet integration al-

gorithm with the fixed force scaling factor ��E�=T0 / T̃�E�
produces a configurational sampling with the weight w�E�
=e−S̃�E�, and determines the probability density function

P�E� � eS�E�−S̃�E� = exp	
E

�	̃�E��dE�� , �4�

where �	̃�E�= �T̃�E�−T�E�� / �T̃�E�T�E��.
The dynamical driving force of STMD, pushing the sys-

tem to escape from a confined energy region and continue a

random walk in energy, is the systematic bias in �	̃�E�.
When the system gets trapped in some energy region Ej, the
accumulated operations of Eq. �2� upon the repeated visits to

Ej produce statistical temperature gradients of �	̃ j−1�0 and

�	̃ j+10, and create a concave local curvature in P��E�
=dP�E� /dE= P�E��	̃�E� i.e., P��Ej−1��0 and P��Ej+1�0,
which generates an outgoing probability flux from Ej and
assists the system to escape. We emphasize that the fluctua-

tions in �	̃�E� are self-adjusting, allowing the system to con-
stantly wander through the whole energy space with a modi-
fication factor f 1. As the modification factor f approaches

unity and T̃�E� is refined to T�E� with the vanishing �f , the
system reaches true thermodynamic equilibrium and attains a
flat energy distribution in energy without any further update

of T̃�E�.
STA optimization protocols are outlined as follows. �i�

Determine a sampling region by selecting low- and high-
temperature limits Tl and Th, respectively, and choose �, T0
�Usually Th�, and the initial modification factor �f . �ii� Run
STMD, applying the dynamic operation of Eq. �2� every time

step, starting from T̃�E�=Th, with the low-energy flattening

T̃�E�=Tmin for E�Emin, Tmin= T̃�Emin�=min�T̃�E�. Low-
energy flattening assists the system to access unexplored
lower-energy regions more quickly through canonical sam-
pling at Tmin. �iii� Repeat step �ii� with a reduced f →�f once
the histogram fluctuations are less than 20% of the mean. �iv�
Calculate low-lying local minima, also called inherent struc-
tures �IS� �24�, and possibly the global minimum, by system-
atically quenching low-energy configurations.

Finally, note the difference in the application of STMD to
optimization vs equilibrium sampling. Originally, STMD
was designed to facilitate equilibrium sampling by generat-
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ing a flat energy distribution, overcoming energy barriers,
which is achieved in the asymptotic limit of �f →0. On the
other hand, optimization is based on the comprehensive sam-
pling of low-energy configurations, which does not require
vanishing �f . In some cases, we continued STMD simula-
tions with a fixed �f to accelerate the search of the whole
configuration space.

III. STATISTICAL TEMPERATURE ANNEALING

A. AB model

We first consider STA optimization in the AB protein
model, an off-lattice version of the HP model consisting of
hydrophobic �A� and hydrophilic �B� monomers, which has
been studied by various existing algorithms. The potential
energy of an N-monomer chain is a sum of bending and
nonbonded energies,

EI = Ebend + Enonb = �
i=1

N−2
1

4
�1 − cos �i�

+ �
ji+1

N

4�rij
−12 − C�i�j

rij
−6� , �5�

where �i is the angle between the ith and �i+1�th bonds with
length unity, and rij is the distance between monomers i and
j; C�i�j

is +1, +1/2, and −1/2, respectively, for AA, and BB,
and AB pairs. We studied four Fibonacci sequences, S13
=ABBABBABABBAB, S21=BABABBAB*S13, S34=S21*S13,
and S55=S34*S21, where the asterisk indicates concatenation.
To handle a fixed bond length the SHAKE/RATTLE algorithm

has been applied with the velocity-Verlet integrator.
Natural dimensionless units are used throughout the pa-

per. Simulation parameters are a time step of 0.0025, �=1,
Tl=0.05, Th=T0=1.0, and the initial f =1.0005. Inherent
structures �24� are determined by quenching low-lying
STMD configurations, using the conjugate-gradient algo-
rithm with bond constraints �25�.

Tables I and II compare STA results for the lowest-energy
states of the AB model with those of other optimization al-
gorithms in two and three dimensions. STA reproduces the
minima found by CSA in both dimensions for the shorter
sequences N=11, 21, and 34, which correspond to the
lowest-energy values in the literature. On the other hand, for
the longer chain S55,2D and S55,3D, STA finds a lower mini-
mum than the putative ground state values of CSA in two
dimensions and ELP in three dimensions, and is thus more
likely to find the global minimum in a more complex poten-
tial energy landscape. Here, the subscripts n and m in Sn,m
indicate the sequence and the dimension, respectively. The
lowest-energy structure of S55,2D in Fig. 1 shows a similar
geometrical pattern, but a different clustering of hydrophobic
monomers, compared to that of CSA. The structural differ-
ence of the STA lowest minimum from that of ELP in S55,3D
is remarkable, with one hydrophobic monomer separated
from a tubelike hydrophobic core at the center. We certainly
do not claim that this is the global minimum.

As confirmed in Tables I and II, the comprehensive sam-
pling of low-lying configurations with STMD and the subse-

TABLE I. Lowest-lying minima of the 2D AB model deter-
mined by high-temperature Monte Carlo �HTMC� simulation �18�,
improved pruned-enriched-Rosenbluth method with importance
sampling �nPERMis� �20�, annealing contour Monte Carlo �ACMC�
simulation �17�, conformational space annealing �CSA� �7�, and sta-
tistical temperature annealing �STA�.

Sequence HTMC nPERMis ACMC CSA STA

S13,2D −3.2235 −3.2939 −3.2941 −3.2941 −8.2941

S21,2D −5.2881 −6.1976 −6.1979 −6.1980 −6.1980

S34,2D −8.9749 −8.9749 −10.7001 −10.8060 −10.8060

S55,2D −14.4089 −18.5154 −18.7407 −18.9110 −18.9202

TABLE II. Lowest-lying minima of the 3D AB model determined by nPERMis �20�, multicanonical
Monte Carlo sampling �MUCA� �16�, energy landscape paving �ELP� �16�, CSA �7�, and STA. The energy
values in the last column �STMD� correspond to the lowest-energy values sampled by STMD simulations
restricted to low-temperature regions with Tl=0.01 and Th=T0=0.2.

Sequence nPERMis MUCA ELP CSA STA STMD

S13,3D −4.9616 −4.967 −4.967 −4.9746 −4.9746 −4.9667

S21,3D −11.5238 −12.296 −12.316 −12.3266 −12.3266 −12.3176

S34,3D −21.5678 −25.321 −25.476 −25.5113 −25.5113 −25.4932

S55,3D −32.8843 −41.502 −42.428 −42.3418 −42.5781 −42.4503

FIG. 1. Lowest-energy structures of S55,2D �left� and S55,3D

�right� for AB model. Gray and black balls correspond to hydro-
philic and hydrophobic monomers, respectively.
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quent local minimization is very promising to locate a global
minimum in complex energy landscapes. This strategy of
combining enhanced sampling with a local minimization is
particularly effective when the basin attraction of the global
minimum is very narrow, and is extensively used in other
optimization algorithms, such as basin hopping �5�, confor-
mational space annealing �7�, and the improved pruned-
enriched-Rosenbluth method with importance sampling
�nPERMis� �20�. Furthermore, it should be stressed that the
extra aiding step of a local minimization is not computation-
ally demanding at all in STA, since only low-lying STMD
configurations, which are very close to each local minimum,
are minimized.

We performed additional STMD simulations for the three-
dimensional �3D� AB model in which the system is strongly
restricted to low temperature, Tl=0.01 and Th=T0=0.2, to
demonstrate the ability of STMD in sampling low energies,
with no minimization. The lowest energies found �see the
column of STMD in Table II� are almost the same for short
chains of S13,3D and S21,3D, and even smaller for longer
chains of S34,3D and S55,3D, compared to the previous best
values of MUCA and ELP in Table II.

The characteristic behavior of STMD in the search for the
global minimum is demonstrated in Fig. 2�a�, the time series
of energies for S55,2D. From a randomly chosen high-energy
configuration, the simulation begins to sample an unexplored

low-energy region with a typical random walk in energy and
suddenly gets trapped in one of the low-lying basins of at-
traction at 1.5�107 MD steps. However, with the accumu-
lated operations of Eq. �2� creating a bias in T̃�E�, the simu-
lation soon escapes and continues a random walk. This
systematic process is repeated until the system reaches the
global minimum for the first time after 3�107 MD steps,
with a second visit at 7�107 MD steps.

The time series of inherent structure energies for S55,2D,
represented by dots in Fig. 2�a�, shows glassy dynamics with
several intermittent trappings in different low-lying IS. The
corresponding rough structure of the energy landscape is il-
lustrated by the scatter plot of the sampled configurations in
�E ,Rg� in Fig. 2�b�, Rg being the radius of gyration repre-
senting the compactness of the chain. The scatter plot con-
tains purely static information, but provides a strong intuitive
connection to dynamics. Clearly, the folding of S55,2D pro-
ceeds by a collapse and a subsequent rearrangement to sev-
eral structurally dissimilar compact states. The densely popu-
lated branches in the low-energy region with E�−5 in Fig.
2�b� represent kinetic traps, which hamper the search for the
ground state and cause a slowing down of folding.

All the scatter plots in Fig. 2 are in accord with the widely
accepted two-step folding process, in which a fast nonspe-
cific collapse �26� is followed by a slow relaxation to the
native state. The Rg values are highly dispersed in the un-
folded high-energy regions due to a large flexibility of the
chain, but are almost frozen after collapse. This folding be-
havior of the AB model is directly reflected in the profile of
the temperature estimate. For S55,2D in Fig. 3�a�, the tempera-

ture estimate T̃i�E� at the ith iteration step shows an initial
sharp drop and a very long tail for a broad low-energy re-
gion.

The sharp drop of T̃�E�0.2 is associated with the sam-
pling of unfolded, high-energy states with a large value of
Rg, as shown in Fig. 3�b�, in which the scatter plot in �E ,Rg�
has been divided into three separate domains depending on

the values of T̃�E�. The long tail region with 0.07� T̃�E�
�0.2 corresponds to a nonspecific collapse of the chain to
several compact states, which is followed by a freezing into

the glassy regime for T̃�E��0.07, characterized by structur-
ally dissimilar IS in Fig. 2�a�. Furthermore, as demonstrated
in the inset of Fig. 3�a�, long-lived, intermittent trappings in

different low-lying IS for T̃�E��0.07 cause a considerable
fluctuation in the statistical temperature estimate near the
global minimum as a function of the iteration. On the other

hand, T̃�E� shows a smooth variation with a good conver-
gence at both intermediate- and high-energy regions.

The initial sharp drop and subsequent slow decay of T̃�E�
appear to be generic features of Fibonacci sequence AB pro-
teins in both dimensions, as seen in Fig. 4�a�, in which the
temperature estimates for S13,3D, S21,2D, and S34,2D are fully
convergent up to fd= f −1=10−8 �fd��f��, and the tempera-
ture estimates of S34,3D and S55,3D are optimized with fd

=0.000 016. The characteristic broadening of T̃�E� in the col-
lapse region is due to the dominance of Enonb over Ebend in
Eq. �5� for compact states. As seen in the decomposed energy
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profiles in Fig. 4�b�, the bend energy is centered around +6
with variation �Ebend�3 for a broad range of conformations,
while the variation of the nonbonded interaction shows a
dramatic change from �Enonb�9 for unfolded, extended

states with T̃�E�0.2 to �20 for collapsed states with

T̃�E��0.2. This energetic dominance of the nonlocal inter-
actions over the local interactions strengthens the nonspecific
collapse tendency of AB proteins and creates a highly rugged

energy landscape. The flat variation of T̃�E� also explains
why the conventional simulated-annealing-type optimization
often fails in these models. In the temperature region where

T̃�E� is almost flat, the time required to reach local equilib-
rium in each annealing step increases steeply, due to a delo-
calized canonical energy distribution �27�, which becomes

very broad with a vanishing �	̃�E� in Eq. �4�, and the fast
cooling of the system necessarily leads to trapping in one of
the low-lying compact states.

B. Extended AB model

The other test model is the extended AB model �19�, add-
ing a torsional potential to the bend and nonbonded interac-
tions,

EII = − �1�
i=1

N−2

uk · uk+1 − �2�
k=1

N−3

uk · uk+2

+ 4�
i=1

N−2

�
j=i+2

N

C�i�j
�rij

−12 − rij
−6� , �6�

where uk is the bond vector between monomers k and k+1,
and C�i�j

is +1 for AA pairs, and +1/2 for BB and AB pairs.
Here, local interaction parameters ��1=−1,�2=0.5� have
been chosen to capture essential local properties of func-
tional proteins. In the simulations we used Tl=0.03, but dif-
ferent Th and bin size � depending on the chain length. To
perform an intensive search of low-energy conformations,
the temperature sampling has been restricted to Th=T0=0.4
for longer chains S34 and S55; otherwise, Th=T0=0.8. We
used the same initial modification factor f =1.0005 for all
simulations. With torsions, the model is inherently three di-
mensional.

With respect to the original AB model, the inclusion of a
torsional potential increases chain stiffness, diminishes the
accessible conformational space, and opposes an initial rapid
collapse to compact states. The resulting potential energy
landscape is more funnel-like, as in functional proteins, and
directly affects the folding thermodynamics and the search
process for a global minimum. The comparison of the origi-
nal and extended AB models may illustrate the importance
�28� of the backbone in protein folding.

The energy time series for S21,II �II denotes the extended
model� in Fig. 5�a� clearly shows two separate sampling re-
gions, corresponding to high-energy, extended states and dis-
tinct folded states. The inherent structure energies �gray �red�
dots� demonstrate that the simulation can easily find a puta-
tive global minimum at 8�106 MD steps with no particular
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computational effort. The systematic escapes from local
minima combined with a random walk in energy enable re-
peated visits to the global minimum through the self-
adjusting statistical temperature. This is in sharp contrast to
the case of S55,2D of the original AB model, in which the
search for the global minimum is frustrated by kinetic trap-
ping in low-lying IS, and the global minimum is accessible
only through extensive sampling of low-energy states �see
Fig. 2�.

The scatter plots in �E ,Rg� in Figs. 5�b� �S21,II�, 5�c�
�S13,II�, 5�d� �S34,II�, and 5�e� �S55,II� also illustrate the fun-
neled shape of energy landscapes of the extended AB model,
in which the collapse of the proteins proceeds gradually with
decrease of energy, leading to the global minimum without a
significant interruption by trapping.

Torsions also change the behavior of T̃�E�. Instead of the

sharp drop and long tail of T̃�E� in the original AB model, the
statistical temperature of S21,II in Fig. 6�a� shows a smooth
variation for the whole energy region and a characteristic
rounding at low energy, E�−48, corresponding to the fold-
ing transition and consistent with the folding energy region
in Fig. 5�a�. Since Cv= ��T�E� /�E�U

−1, from the equivalence
of microcanonical and canonical ensembles �29�, U�T� being
the canonical average energy at T, it can be easily seen that
the specific heat will give a peak at the temperature corre-

sponding to the folding energy region. The smooth variation

of T̃�E� crossing the collapse and the rounding near the fold-
ing region are found in all studied sequences of the extended
AB model, as seen in Fig. 6�b�, in which the statistical tem-
peratures of S13,II and S21,II are fully convergent up to fd
=10−8, and those of S34,II and S55,II have been optimized with
fd=0.000 12.

The advantage of STA in finding low-lying, and hence
global, minima is more prominent in the extended AB model,
as shown in Table III. STA finds new lowest-energy values
for S21,II and S55,II, and confirms the putative ground state for
S13,II determined by the ACMC method. Our result for S34,II
is well below those from ACMC and ELP simulations, and
slightly higher than that of CSA by about 0.11%. STA
lowest-energy structures in Fig. 7 show a single hydrophobic
core, with more spherical compact structures than with the
original AB model in 3D. The structure of S13,II is almost
identical to that determined by ACMC calculations, corre-
sponding to a small energy difference, but other confomers
show a considerable structural difference from known puta-
tive ground states. Note that the lowest-energy value
sampled by STMD restricted to low-temperature regions
�Tl=0.01 and Th=T0=0.2� is even lower for S13,II, S34,II, and
S55,II, and almost the same for S21,II, compared to the best
values from ELP not employing a local minimization �see the
values for STMD in Table III�.

Except for the difference in the dynamic update scheme
for the sampling weight, the basic strategy of STA optimiza-
tion is similar to that of other generalized ensemble variants,
e.g., the ACMC, MUCA, and ELP methods. All these meth-
ods are designed to steer the search away from previously
visited energy regions by imposing a self-adjusting penalty
�or modification� in the sampling weight �or the statistical
temperature�. The minor differences of the energy values of
the STA lowest minima and those of ACMC and ELP in
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Tables I–III indicate comparable performance for the short
12-mer and 21-mer, in which Monte Carlo trial moves are
still effective for sampling compact, collapsed conforma-
tions. However, STA outperforms ACMC and ELP consis-
tently as the system size or the dimension increases, and the
potential becomes more complicated. This implies that the
success of STA optimization should be attributed to the com-
bination of the enhanced sampling with the collective move-
ments of particles generated by MD simulation, which al-
lows more effective conformational changes even in a highly
condensed phase.

Finally, the optimization performance of STMD has been
compared with that of the well-established multicanonical
MD algorithm in Fig. 8 for both long chains of S34,II and
S55,II. Instead of conventional multicanonical MD �14�, here
we used the force-biased multicanonical MD �FBMCMD�
�30�, which accelerates the convergence of the simulation by
determining the sampling weight automatically. The simula-
tion protocol of FBMCMD is almost the same as that of
STMD except for the update scheme for the statistical tem-
perature. The relative performance has been examined by
plotting the sampled lowest-energy value as a function of
MD steps, with an update every time the system finds a
lower energy. We used the same simulation parameters in
both STA and FBMCMD, �=1.0, Tl=0.01, and Th=T0=0.2.

As seen in Fig. 8, STMD finds lower-energy states for
both chains, and, for low energies found with both methods,

finds them sooner. The reason is that the dynamic modifica-
tion of the statistical temperature in STMD allows an instant
self-adjustment of the sampling weight to escape a trapping,
while FBMCMD requires time for a histogram accumula-
tion. Note that we have performed a test for finding minima,
the topic of this paper, not a comprehensive comparison of
STMD and FBMCMD. However, based on Fig. 8 and the
arguments given about the sampling weight, we expect that
STMD is also superior for other applications in rough energy
landscapes.

IV. SUMMARY AND CONCLUSIONS

In summary, the optimization performance of STA has
been examined in various confomers of the off-lattice AB
and extended AB protein models. The quenching of low-
lying STMD configurations, generated by the self-adjusting
sampling weight combined with the dynamic update scheme
for the statistical temperature, shows a superior ability to find
low-lying minima in rough energy landscapes compared to
other optimization algorithms; thus there is a greater possi-
bility of finding the global minimum. Since STA employs a
collective movement of the beads through molecular dynam-
ics simulation, low-energy, compact states are more effec-
tively sampled in a manner that grows in importance with

TABLE III. Lowest-lying energy minima of the extended AB model determined by ACMC �17�, ELP
�16�, CSA �7�, and STA. The energy values in the STMD and FBMCMD �30� columns correspond to the
lowest-energy values sampled by STMD and FBMCMD simulations, respectively, restricted for low-
temperature regions with Tl=0.01 and Th=T0=0.2.

Sequence ACMC ELP CSA STA STMD FBMCMD

S13,II −26.506 −26.498 −26.4714 −26.5066 −26.5052 −26.4354

S21,II −51.7575 −52.917 −52.7865 −52.9339 −52.9100 −52.7040

S34,II −94.0431 −97.261 −97.7321 −97.6171 −97.5570 −97.3281

S55,II −154.505 −172.696 −173.9803 −174.5681 −174.4890 −172.8869

FIG. 7. Lowest-energy structures for �a� S11,II, �b� S21,II, �c�
S34,II, and �d� S55,II in the extended AB model determined by STA.
Gray and black balls correspond to hydrophilic and hydrophobic
monomers, respectively.
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increased chain length and dimension, and the inclusion of
torsions.

We also found that the folding of Fibonacci sequences of
the original AB model proceeds by a two-step process of a
nonspecific collapse, followed by slow relaxation to the
ground state in a glassy regime. This characteristic folding
behavior is strongly correlated with the initial sharp drop and
the low-energy tail of the statistical temperature crossing the
collapse region, which is due to the energetic dominance of
nonbonded interactions over the local interactions. On the
other hand, scatter plots of sampled configurations in �E ,Rg�
show that the inclusion of a torsional potential in the ex-

tended AB model makes the global shape of the potential
energy landscape more funnel-like by restricting the acces-
sible conformational space with an increased chain stiffness,
attenuating the nonspecific collapse, and producing a
smoothly varying statistical temperature.
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