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The adiabatic Gaussian density annealing~AGDA! optimization algorithm, based on direct integration of the
classical Bloch equation is reciprocal temperature, is employed to study the structures of~NaCl!n and
~NaCl!nNa

1 clusters. The results of the energy minimizations are compared with simulated annealing, using
molecular dynamics. We model these clusters with a rigid core potential used in previous studies. Overall, the
AGDA algorithm was successful in isolating the lowest-energy minima. In contrast to the conclusion of a
previous study, we find that molecular-dynamics-based simulated annealing can be quite effective at isolating
low-energy minima. However, the effectiveness of the method is strongly dependent on the integration algo-
rithm employed. The hexagonal and cubic growth forms are found to be most stable for small clusters and the
fcc structure is most stable for large clusters in agreement with previous studies. The difficulty in locating the
global energy minimum is explained in terms of the statistical properties of the energy landscape.@S0163-
1829~96!02120-0#

I. BACKGROUND

The structure and stability of alkali halide clusters has
long been the focus of study in an effort to understand crystal
growth. The lowest-energy growth pattern of small alkali
halide clusters is different than that for the corresponding
crystal. Experimental and theoretical studies have attempted
to identify the critical value ofn ~number of NaCl mono-
mers! for which the cluster can be called a crystal. In the
case of sodium chloride, it has been shown that small clus-
ters have, in general, two stable packings—hexagonal and
cubic—while for larger clusters (n.20), the fcc structure is
dominant.1 Experiments involving mass spectrometry have
been successful in relating the abundance of a given cluster
size with its stability.2–4 However, experimentally it is diffi-
cult to isolate small clusters. With mass spectrometry, only
charged molecules can be studied. Therefore, computer
simulation studies are necessary to study the details of their
structure.

In previous studies, a ‘‘growth algorithm’’ was used to
identify stable structures for each cluster size.1,5,6 In such a
method,~1! the energy of then21 cluster is minimized,~2!
one monomer is added in such a way that the resulting struc-
ture is close packed, and~3! this structure is minimized. This
method determines stable isomers for a given cluster size,
but does not locate the global minimum exclusively. This is
a difficult optimization problem, since~1! a given cluster
size will have a number of stable structures that are close in
energy,~2! the global minimum is often less compact than
some low-lying local minima, and~3! several potentials have
been used to model sodium chloride clusters and for some
clusters the identity of the most stable structures can be
model dependent.5

Simulated annealing using molecular dynamics or Monte
Carlo has become the most standard optimization method.
However, when there are many energy scales, the system
must be slowly annealed over a broad range of temperature.

This makes a simulated annealing calculation tedious as the
system size increases.6 To avoid this problem, several meth-
ods have been developed which combine the idea of simu-
lated annealing with potential smoothing.7–9Potential-energy
smoothing involves coarse graining over length scales on the
potential hypersurface, which range from separations be-
tween local minima to distances between larger basins of
attraction. The effect is to generate a coarse-grained potential
hypersurface with raised minima and lowered barriers. This
can allow the system to be annealed more rapidly. The most
popular smoothing transform is a Gaussian integral trans-
form, but a number of smoothing transforms, tailored to a
given functional form of the potential, have also been quite
successful.10 In addition to integral transforms of the poten-
tial, V(r ), there has been progress in developing optimiza-
tion algorithms based on coarse graining the Boltzmann
probability density, exp„2bV(r )….11 Such methods have the
advantage of eliminating singularities in the surface, due to
divergences in the core potentials. Nevertheless, all dynami-
cal annealing algorithms must employ a cooling schedule,
which is typically far from optimal.

A different form of simulated annealing which eliminates
the problematic cooling schedule has recently been
proposed.9 In this method, an approximate representation of
the classical density distribution is directly integrated in re-
ciprocal temperature according to the classical Bloch equa-
tion @dreq/db52(H2^H&)req#. In this method, there is no
real time dynamics—the approximate density distribution is
integrated from a delocalized form (b50) to the asymptotic
low-temperature form, where the equilibrium distribution is
localized in the lowest-energy minimum (b5`). The spe-
cial case when the density distribution is approximated using
a Gaussian basis is referred to as the adiabatic Gaussian den-
sity annealing~AGDA! algorithm. This method is the\50
limit of quantum-mechanical dynamics in Euclidean~imagi-
nary! time and has much in common with quantum-
mechanical annealing algorithms based on imaginary time
methods.12,13
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In evolving the approximate equilibrium density distribu-
tion, the center position and width of the distribution are
determined by derivatives of the potential averaged over the
density distribution. This amounts to a coarse graining or
potential smoothing. This method can be thought of as suc-
cessive minimization on an averaged potential, which is
smooth at high temperature and rough at low temperatures.
In fact, it has been demonstrated that smoothing transforma-
tions are closely related to thermodynamic potentials of
mean force, which include a smoothing generated by an av-
erage over thermally broadened conformational distribution
functions.14,15 The AGDA algorithm has recently been suc-
cessfully applied to some optimization problems, including
Lennard-Jones clusters16 and model proteins.14

In this paper, we apply the AGDA algorithm9 and
molecular-dynamics-based simulated annealing to identify
low-energy structures of sodium chloride clusters~NaCl! n
and ~NaCl! nNa

1. We first define the methods used in this
study. We then describe a simple two-body interaction po-
tential used to model alkali halide clusters and present the
results of the minimization of these clusters. We conclude
with a discussion of the results in terms of the details of the
energy landscape of these clusters.

II. MINIMIZATION ALGORITHMS, POTENTIALS,
AND PROTOCOLS

In this section, we present both optimization algorithms
used in our study. First, we describe the algorithm for simu-
lated annealing, using molecular dynamics~MD!, and then
the adiabatic Gaussian density annealing algorithm. Both
methods have been previously discussed in detail.16,14

A. MD simulated annealing

We used simulated annealing with standard molecular dy-
namics based on an equation of motion derived from the
Verlet algorithm for a Langevin dynamics. The random force
contribution is neglected and the result is a dynamics which,
on average, relaxes the system temperature exponentially in
time

rn115S 11
gh

2mD 21F2rn2S 12
gh

2mD rn211
h2

m
FnG . ~1!

g is a friction constant that determines the strength of the
coupling to the zero-temperature heat bath and enforces an
exponential cooling rate andh is the time step.

The crucial feature of this algorithm is the use of a cool-
ing schedule that doesnot impose a rigid temperature con-
straint. The system is coupled to a heat bath, which allows
the system temperature to fluctuate about the desired value.
For the optimization of Lennard-Jones clusters, this imple-
mentation of the simulated annealing method, using MD has
been shown to be far more effective than similar algorithms
based on MD with a rigid temperature constraint.17

In a collapse or condensation transition, with an associ-
ated ‘‘latent heat,’’ the excess kinetic energy, which raises
the temperature, is used to further anneal the system. The
effect is to spend more time in the annealing run when the
system is descending the potential hypersurface most rap-
idly. This is also a feature of an annealing cooling schedule

based on constant ‘‘thermodynamic speed,’’ where the cool-
ing rate is inversely proportional to the heat capacity.9,18The
advantage of using Eq.~1! is that it requires no prior knowl-
edge of the heat capacity.

B. Adiabatic Gaussian density annealing

In the AGDA algorithm, simulated annealing is per-
formed directly in temperature rather than in real time as for
molecular dynamics. The evolutionin temperatureof the
equilibrium density distributionr̂(r ,b) is defined by the
classical Bloch equation,

]req/]b52~H2^H&!req, ~2!

whereH is the classical Hamiltonian and̂& indicates an
average over the density distribution. This is the classical
analog of imaginary time quantum dynamics.9,12 The goal is
to approximately solve Eq.~2! for the low temperaturereq
from an initial high-temperature distribution.

The system is first represented by a classical density dis-
tribution, where the density for each particle is approximated
by a Gaussian packet of the form

r̂~r ,b!5~2pM2!
2d/2expF2

d

2M2
~r2r0!

2G . ~3!

The many-body density distribution is then approximated by
a Hartree product of the single-particle densities,

r̂~rN,b!5)
k51

N

r̂k~r k ,b!. ~4!

The evolutionin temperatureof the centers and widths
for each Gaussian packet is then followed, using the varia-
tionally optimal equations of motion,

dr0
db

52
1

d
M2¹ r0

^V&, ~5!

dM2

db
52

1

d2
M2

2¹ r0
2 ^V&. ~6!

Initially, the widths of each packet are set to be large com-
pared with the physical size of the cluster, so that the density
distribution approximates the high-temperature distribution
r̂(r ,b50)5const. Integration of the distribution follows
three steps.~1! The center of the distribution is minimized on
the effective smoothed potential surface to bringr̂(r ,b) to
an ‘‘equilibrium’’ position.16 This is equivalent to a steepest-
descent minimization on the averaged potential,

dr0
db

52¹ r0
^V&, ~7!

~2! Equation~6! for the widths is integrated.~3! Return to
~1!. the first stage was accomplished using the conjugate gra-
dient algorithm. The integrator used to integrate the equation
of motion for the widths was the fourth-order Runge-Kutte
algorithm. This version of the AGDA algorithm has provided
good results for systems including Lennard-Jones clusters,9

water clusters,16 and a model protein.14
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C. Alkali halide interaction potential

Alkali halide clusters have been commonly studied, using
a two-body interaction potential. We chose to use the rigid
core model,1 which is composed of a long-range Coulomb
interaction and a short-range repulsive Born-Mayer interac-
tion,

V~r i j !5
qiqj
r i j

1A expF2
r i j
r G . ~8!

There are only two parametersA51.4731029 erg and
r50.328 Å ~Refs. 19 and 20!. This potential does not take
into account charge-dipole and dipole-dipole interactions.
Each particle is taken to be a rigid ion and the Na1 and
Cl2 ions are modeled with identical radii and opposite
charges. This simple model, independent of the cluster size,
has proved to give very good results in modeling the basic
properties of~NaCl! n and ~NaCl! nNa

1 clusters.1,20

To apply the AGDA algorithm, we need to evaluate the
expression for the averaged potential^V& and its derivatives.
The potential being pairwise, we can evaluate the effective
potential required in Eqs.~5! and ~6! defined as

^V& i j5E dr iE dr jr i~r i !r j~r j !V~ ur i2r j u!, ~9!

wherer i(r i) andr j (r j ) are the density distributions for the
i th and j th sites. The details of the derivation of^V& and its
first and second derivatives are given in the Appendix.

III. RESULTS AND ANALYSIS

We applied the AGDA algorithm and molecular-
dynamics simulated annealing to two different types of
clusters—neutral ~NaCl! n and positively charged
~NaCl! nNa

1. For each cluster size, we took 100 random
starting configurations. In the AGDA runs, the initial width
for each packet was taken to be between 50 Å2 and 200
Å2, depending on the cluster size. In the MD simulated an-
nealing, the initial temperature was set to 1500 K and the
friction constant determining the coupling to the heat bath
was set tog50.61 ps21. This latter rate was chosen so that
the annealing timings of both minimization methods were
comparable. For both methods, a confining potential of the
form Vconf5(k/2)( i(r i2r com)

2 was used to avoid the explo-
sion of the clusters during the simulation. The energies are
given in eV and the lengths are given in Å.

A. Neutral „NaCl…n clusters

The global optimization results for~NaCl! n clusters are
reported in Fig. 1. Overall the AGDA method was more
efficient than the MD simulated annealing in finding the
lowest-lying minimum. However, the global minimum was
isolated for every cluster, using either method with the ex-
ception of cluster~NaCl! 10. Clusters withn54, 6, and 9
were found to be particularly stable, as reported in other
studies.21 The density of minima obtained with MD and
AGDA is given in Fig. 1. For each cluster size, the MD was
trapped in a broad range of local minima, while the AGDA
typically converged to a far smaller number of low-lying
local minima.

For then>6 clusters, the AGDA algorithm located the
global minima. The minima for these small clusters are the
same as those obtained in previous studies of these systems.
The MD simulated annealing typically provided average re-
sults and a particularly poor result for the tetramern54. The
tetramer has been widely studied and found to have two
minima very close in energy. The structure of the lowest
minimum is a cube and the first local minimum is an eight-
atom ring. It was reported22 that below 500 K, the cubic
configuration is favored over the ring. This result indicates
that the choice of initial temperature~or in the AGDA, the
choice of the initial distribution width! is an important factor
in the cluster minimization. As we increased the starting
temperature of the MD annealing run, there was an increased
preference for the ring structure, as opposed to the lowest-
energy cubic structure. On the other hand, in the case of the
AGDA, as the initial value of the width of the packets was
increased, the cubic configuration was favored over the ring.
This can be explained by our choice for the boundary poten-
tial, which is crucial for the AGDA method.14 When the
M2 is large (b near 0!, the intermolecular potential is
smoothed and the boundary potential becomes a significant
part of the total potential energy. The potential that we used
confines the particles to the center-of-mass, which makes the
cubic configuration more likely to occur, since it is a more
compact structure. As a result, our choice of boundary po-
tential caused some problems for the optimization of larger
clusters for which the global minimum is not the most com-
pact state.

For n.6 clusters, the AGDA method did well in consis-
tently identifying low-lying minima. Figure 2~a! shows the
gap between the energy of the first two local minima and the
global minimum for the different cluster sizes. As the cluster
size increases, the energy gap is relatively smaller, which
makes it difficult to locate the global minimum. We have
noticed previously, in the case of a model protein, that a
significant gap between the lowest minimum and the next
lowest local minimum was strongly correlated with the suc-
cess of the AGDA method.14 Clustersn58, 10, and 11 have
many minima close in energy. Figure 2~b! compares the
compactness of the minima and it shows that~NaCl! n clus-
ters have local minima that are more compact than the global
minimum. In that case, the AGDA will tend to locate these
compact local minima, because of our choice of boundary
potential. For example, the first and second excited states of
the ~NaCl! 10 cluster are more compact@see Fig. 2~b!# than

FIG. 1. The spectrum of minima obtained after both minimiza-
tion methods ~MD left, AGDA right! for neutral clusters
~NaCl!n from n54 to 12.
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the lowest minimum, which explains the failure of our algo-
rithm in isolating the lowest-energy minimum.

~NaCl! 9 is a very stable cluster, since it is built from
stable six-ring units. This stability was confirmed by our
minimization in which that structure was located 100% of
the time. The lowest minimum found for~NaCl! 11 was re-
ported by Phillips, Conover, and Bloomfield.6 However,
most of the time, the AGDA was trapped in the first local
minimum, which is very stable and had been reported earlier
to be the most stable structure.5 The density of local minima
for the ~NaCl! 11 cluster is shown in Fig. 3. It was obtained
by quenching 1000 configurations from a constant tempera-

ture MD trajectory generated at initial temperatures of
T51500 and 1000 K. The density of each minimum is
weighted by the number of times it was located. In Fig. 3, we
can see that several local minima are very stable with ener-
gies comparable to that of the global minimum.

Since~NaCl! 12 contains 24 atoms—a multiple of 6 as is
the case for~NaCl! 6 and~NaCl! 9—the most stable structure
is four six-ring stacked. In our search of the potential hyper-
surface using the AGDA algorithm, we obtained a structure
very similar to the~NaCl! 11 first local minimum. This pack-
ing was the most abundant in our minimization of
~NaCl! 11, as shown in Fig. 4.

FIG. 4. Stable structures for the endecamer~NaCl!11 and the
dodecamer~NaCl!12.

FIG. 2. ~a! The energy gaps~in eV! between the global mini-
mum and the first excited state (E12E0) and the second excited
state (E22E0) are plotted as a function of the cluster size for
~NaCl!n . ~b! The differences in radius of gyration~in Å! between
the global minimum and the first excited state (Rg,12Rg,0) and the
second excited state (Rg,22Rg,0) are also shown.

FIG. 3. The weighted density of local minima for the~NaCl!11
cluster.
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For larger clusters, such asn513218, the cubic growth
structures dominate. This finding is in agreement with ex-
periments, as well as previous energy calculations.

B. Charged „NaCl…nNa
1 clusters

Charged clusters are a harder optimization problem than
are neutral ones. For all cluster sizes, there are many low-
energy stable structures. It has been shown that these struc-
tures are also more strongly model dependent than are the
neutral clusters.5 The results of energy optimization for these
clusters are reported in Fig. 5. Both the AGDA and MD
simulated annealing algorithms were successful in locating
the global energy minimum. An exception is the lowest-
energy minimum forn510, which was never located with
our method. The density of states for this cluster size in Fig.
6 shows a high density of local minima with large weights
that are close in energy. These large statistical weights de-
rived from energy minimization are correlated with a large
density of states for the corresponding minimum implying a
large basin of attraction. These states are expected to have a
lower free energy and larger statistical weight. The probabil-
ity of locating a minimum is well correlated with the
weighted density of states.

Clustersn54, 8, and 13 were found to be particularly
stable. For these three clusters, the energy splittings pre-
sented in Fig. 7~a! are relatively significant and it is rare that
the system is trapped in a local minimum. In general, most of
the positively charged clusters have a small energy gap and
numerous compact states, as demonstrated in Fig. 7~b! for
clustersn5527 andn59212. As in the case of neutral
clusters, the MD simulated annealing runs are often trapped
in high-lying local minima, while the AGDA algorithm tends
to isolate a few low-lying minima.

The ~NaCl! 13Na
1 cluster has a relatively high binding

energy, due to its high symmetry (33333). Its global mini-

FIG. 5. The spectrum of minima obtained after both minimiza-
tion methods~MD left, AGDA right! for positively charged clusters
~NaCl!nNa

1 from n53 to 13.

FIG. 6. The weighted density of local minima for the
~NaCl!10Na

1 cluster.

FIG. 7. ~a! The energy gaps~in eV! between the global mini-
mum and the first excited state (E12E0) and the second excited
state (E22E0) are plotted as a function of the cluster size for
~NaCl!nNa

1. ~b! The differences in radius of gyration~in Å! be-
tween the global minimum and the first excited state (Rg,12Rg,0)
and the second excited state (Rg,22Rg,0) are also shown.
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mum is a cubic portion of an fcc lattice. This high stability
was confirmed by our study. The cubic growth structure is
found to be prevalent forn>13 as for the neutral clusters.

IV. CONCLUSIONS

We find that both the AGDA and MD simulated anneal-
ing algorithms are successful in isolating the global mini-
mum of alkali halide clusters. We find that clusters that were
known to be thermodynamically very stable with a large en-
ergy gap between the ground and first excited-state minima
tend to be relatively easy optimization problems. Clusters,
which have many low-lying minima that are at the bottom of
large basins of attraction, represent hard optimization prob-
lems. For such clusters, runs are often trapped in low-lying
local minima. There is a strong correlation between the en-
ergy gap and the success of either algorithm. In cases where
local minima were more compact than the global energy
minimum @see the~NaCl! 10 cluster#, the AGDA algorithm
applied with a spherically symmetric boundary potential
tended to isolate low-lying local minima.

In their study, Phillips and co-workers6 argued that simu-
lated annealing using molecular dynamics failed for alkali
halide clusters, because of the character of the energy land-
scape~a point discussed in detail in this study!. Most of these
clusters have many low-lying minima, which demands that
the MD annealing be done very slowly. The method they
used23 is a Monte Carlo~MC! technique, combined with a
slow cooling schedule that gave good results for a series of
Lennard-Jones clusters. Phillips found that, for the alkali ha-
lide clusters, the cooling time became too large as the num-
ber of atoms increased. However, in our study, we employed
an annealing protocol based on a modified Langevin dynam-
ics. This algorithm led to excellent results, as it did for the
Lennard-Jones clusters.17 The conclusion is that the effec-
tiveness of simulated annealing is strongly dependent on the
search algorithm~MC or MD! for cases where a nonoptimal
cooling schedule is employed. The MD simulated annealing
algorithm employed in this study appears to be significantly
more effective than any simulated annealing algorithms, that
we are aware of, which are used in the study of molecular
optimization problems.
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APPENDIX: DERIVATION OF ŠV‹ AND ITS FIRST
AND SECOND DERIVATIVES

Here, we state the coarse-grained effective potential and
its derivatives for the Born-Mayer potential
VBM5exp@2rij /r# and the spherical Gaussian density distri-
bution.

^VBM&5S 12
1

2br i jr
D erfc~xm!

2
expF2

r i j
r

1
1

4br2G
1S 11

1

2br i jr
D erfc~xp!2

expF r i jr
1

1

4br2G ,
~A1!

¹ r0,i
^VBM&52

1

2r i jr
~r i2r j !H 2

2

br i j
S b

p D 1/2exp@2br i j
2 #

1erfc~xm!expF2
r i j
r

1
1

4br2GF11r i j /r

2br i j
2 21G

1erfc~xp!expF r i jr
1

1

4br2GF211r i j /r

2br i j
2 11G J ,

~A2!

¹ r0,i
2 ^VBM&5

1

r i jr
H erfc~xm!expF2

r i j
r

1
1

4br2G
3S 212

1

4br2
1
r i j
2r D1erfc~xp!

3expF r i jr
1

1

4br2G S 11
1

4br2
1
r i j
2r D J ,

~A3!

where b5d/@M2( i )1M2( j )#, xm52Abr i j11/(2Abr),
andxp5Abr i j11/(2Abr).

For the Coulomb interaction, we need to average the po-
tential of the formVc51/r i j . The average potential and its
derivatives are

^Vc&5
1

r i j
erf~r i jAb!, ~A4!

¹ r0,i
^Vc&5~r i2r j !F2

erf~r i jAb!

r i j
3 1

2Ab

r i j
2Ap

exp@2br i j
2 #G ,

~A5!

¹ r0,i
2 ^Vc&524bAb/pexp@2br i j

2 #. ~A6!

For the confining potential of the form
Vconf5(k/2)( i(r i2r com)

2, the effective potential and its de-
rivatives are

^Vconf&5
k

2(i @~r0,i2r com!21M2~ i !#, ~A7!

¹ r0,i
^Vconf&5k~r0,i2r com!, ~A8!

¹ r0,i
2 ^Vconf&5kd. ~A9!

We used a small value fork to bias our search in favor of the
set of compact, low-energy minima.
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