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Abstract

We present results obtained for anisotropic potentials for protein simulations extracted from the continually growing databases of protein

structures. This work is based on the assumption that the detailed information on molecular conformations can be used to derive statistical

(a.k.a. ‘knowledge-based’) potentials that can describe on a coarse-grained level the side chain–side chain interactions in peptides and

proteins. The complexity of inter-residue interactions is reflected in a high degree of orientational anisotropy for the twenty amino acids. By

including in this coarse-grained interaction model the possibility of quantifying the backbone–backbone and backbone–side chain

interactions, important improvements are obtained in characterizing the native protein states. Results obtained from tests that involve the

identification of native-like conformations from large sets of decoy structures are presented. The method for deriving orientation-dependent

statistical potentials is also applied to obtain water–water interactions. Monte Carlo simulations using the new coarse-grained water model

show that the locations of the minima and maxima of the oxygen–oxygen radial distribution function correspond well with experimental

measurements.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Large-scale protein folding and protein structure predic-

tion is essential in research fields like proteomics and

structure-based molecular biology. Despite substantial

advances in both all-atom molecular simulation methods

and computational technologies, it is infeasible to perform

three-dimensional, off-lattice protein simulations on thou-

sands of proteins at a time to describe in detail processes like

protein–protein interactions or even protein folding path-

ways. Many drug companies and molecular biology

laboratories use all atom structure-based methods for drug

design, but this approach is too computationally intensive

for large scale applications.

To address these shortcomings, there is an on-going

effort to develop a class of interaction potentials between

amino acids that can describe in a simplified, yet accurate,

manner the essential intra- and inter-protein interactions that

dictate the thermodynamic and kinetic biochemical proper-

ties. Construction of such models requires the determination

of interaction potentials between amino acid residues. More

than twenty years ago, Tanaka and Scheraga [1] proposed

that the frequencies of amino acid pairing can be used to

determine potential interaction parameters. Since that

pioneering work, the wealth of structural data on a number

of proteins in the Protein Data Bank (PDB) [2] has been a

source for obtaining interaction potentials. [3–5] With the

exception of a few studies [6], most ‘knowledge-based’

potentials have been obtained solely in terms of residue–

residue contacts.

Sippl [6] introduced an explicit distance dependence in

the database-derived mean force potentials using the

Boltzmann formula. This method, known as the ‘Boltzmann

device’, assumes that the known protein structures from the

PDB correspond to classical equilibrium states. Therefore,

the distribution of the distance r between two side chains,

should correspond to the equilibrium Boltzmann distribution

0032-3861/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.polymer.2003.10.093

Polymer 45 (2004) 597–608

www.elsevier.com/locate/polymer

1 Current address: Laboratory of Chemical Physics, National Institute of

Diabetes and Digestive and Kidney Diseases, National Institutes of Health,

Bethesda, MD 20892, USA.

* Corresponding author. Tel.: þ1-617-353-6816; fax: þ1-617-353-6466.

E-mail address: straub@bu.edu (J.E. Straub).

http://www.elsevier.com/locate/polymer


corresponding to a particular potential of mean force. Given

the distribution, the potential may be derived. Sippl [7]

suggested that other structural parameters, such as dihedral

angles, can be treated in a similar manner.

In this paper, we present new methods for extracting

orientation-dependent statistical potentials for coarse-

grained representations of groups of atoms such as side-

chains, atoms involved in the peptide link or water. The

method is used to develop a novel set of coarse-grained

distance- and orientation-dependent residue–residue stat-

istical potentials [8] as well as a statistical potential for

water molecules. We present results obtained by including

an extra anisotropic backbone interaction center located at

the peptide bond and by studying their performance in

discriminating the native protein structures in tests that

employ multiple protein decoy sets [9]. This new approach

can be extrapolated to build a statistical description of

water–water interactions that could be useful in coarse-

grained simulations, as suggested by results obtained from

Monte Carlo simulations.

2. Statistical potentials for proteins

2.1. The underlying models of the peptide chains

In Fig. 1 are presented the examples of models of

different levels of description that are commonly used in the

coarse-grained representations of polypeptides. All the

models aim to employ the simplest description that can

provide a high degree of accuracy and realism of the

predicted properties of the peptide systems. The simplest

models used for residue–residue interactions consider the

peptides as simple chains of interacting beads (as in Fig. 1,

model A) [10]. In order to account for the various sizes and

specific packing features of the 20 different types of amino

acids, more detailed models must be employed in

estimations of the relative magnitudes of residue–residue

interactions. In such models (Fig. 1, model B) [1,11,12] the

backbone is described using one type of non-interacting

backbone site located at the positions of the Ca atoms, with

a second type of interaction centers Si that are correspond-

ing to each side chain (SC). The Si interaction centers are

typically located at the center of mass of the heavy atoms in

each side chain, with the exception of Gly, where it

coincides with the position of the Ca atom. The backbone

sites Ci
a are used to describe the backbone structure, but

only the Si interaction centers are considered to interact with

each other. Models similar to B have been successfully used

to obtain contact-based side chain–side chain (SC–SC)

interaction potentials, distance-dependent potentials [6,7]

and, more recently, distance- and orientation-dependent

potentials [8]. While useful, these models do not allow for

the explicit treatment of side chain–backbone and back-

bone–backbone interactions. Recent estimates [13] suggest

that the number of backbone–backbone contacts can range

from 12% to as much as 35% depending on the protein class

(e.g. alpha, beta, mixed alpha–beta [14]) and of the

topological interaction level along the sequence that is

considered (e.g. li 2 jl $ 3; li 2 jl $ 4; etc.). The import-

ance of including the backbone interactions is also

supported by the results of previous statistical derivations

of backbone potentials that used virtual bond and torsion

angles [15] and secondary structure information [16].

Therefore, we employ a more complex model (Fig. 1,

model C) that includes an additional interaction center

located on the backbone [11] at the geometric center of each

peptide bond ðPepiÞ: In this description, we assume that the

local conformation of a certain residue i is sufficiently well

described by the corresponding Ci
a; Si and Pepi interaction

centers. Our results from tests on decoy sets suggest that

model C offers important improvements over model B in the

ability to recognize native-like states of proteins.

2.2. Local reference frames of side chains

Previous studies have demonstrated the importance of

orientational dependence of side chain–side chain inter-

actions [8,17–20]. To extract quantitative parameters for

the orientational dependence of coarse-grained potentials

from PDB structures [2] we define local reference frames

(LRFs) for each amino acid by using the approach described

in Ref. [8] and summarized next.

The LRFs were constructed by considering at least three

non-collinear points (P1; P2 and P3) that uniquely define the

orientation of the LRF, and a fourth point (usually denoted

by Si for the ith side chain) that specifies the location of the

LRF origin. In the coarse-grained representation, the Si

Fig. 1. Levels of commonly employed coarse-grained re presentations of

peptides. While the main goal is the simplest description (as in A), an

accurate description of the backbone needs to include the Ca positions

(model B) and even specific sites for backbone–backbone and backbone–

side chains interactions (model C).
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points can be considered to be the ‘interaction centers’ since

all the relative side chain–side chain distances and

orientations are measured with respect to them. Let ~rp1
;

~rp2
; ~rp3

; and ~rsi be the position vectors of the points P1; P2;

P3; and Si; respectively. The Ôz axis vector can be defined as

Ôz ¼
~rp2

2 ~rp1

l~rp2
2 ~rp1

l
: ð1Þ

A second direction Ôp
y ; pointing toward the Oy axis can be

similarly constructed as

Ôp
y ¼

~rp3
2 ~rp2

l~rp3
2 ~rp2

l
: ð2Þ

Finally, the Ôx and Ôy axis vectors are defined in terms of

the cross products

Ôx ¼ Ôp
y^Ôz and Ôy ¼ Ôz^Ôx: ð3Þ

For side chains, the positions of the three reference points

P1; P2 and P3 are identified with the positions of the Ca; Cb

and Cg atoms [8]. The position of the interaction centers Si

are identified with the geometric center (GC) of the heavy

atoms in the side chain. Exceptions to this rule are made for

the special cases of Gly, Ala, Cys, Ser, Ile and Val as

described in Ref. [8]. These definitions have the advantage

that, while being side-chain dependent, the positive Oz axis

is always oriented away from the local backbone while the

positive Oy axis points toward more ‘remote’ Cg atoms in

the SC. For small side chains, Oy will point towards the next

SC on the backbone sequence.

Significant improvements are obtained by considering a

virtual backbone interaction center in the middle of the

peptide bond (Pep). We were motivated to include this

additional, twenty-first interaction center by the observation

that folded structures are stabilized by a substantial number

of side chain–backbone contacts. For Pep, the positions of

the three reference points P1; P2 and P3 are identified with

the positions of the carbonyl C atom, its O atom and the

peptide bond N atom. The interaction center Si for Pep is

placed in the middle of its C–N peptide link. These

definitions of the LRFs permit the investigation of relative

coordination probabilities (e.g. for hydrogen bonding) as

well as of hydropathic effects in side chain packing.

2.3. From orientational probabilities to statistical

potentials: the Boltzmann device

Once the local reference systems for special groups of

atoms (e.g. the heavy atoms in side chains, or the C, O and N

for the peptide link Pep) are defined, the statistics collected

from a database of nonhomologous proteins can be used to

estimate the pair distributions for each specific type of site–

site interaction. We used a standard, reproducible approach,

by employing the set of nonhomologous proteins that was

used by Scheraga et al. [18–20] for similar purposes. A

larger training set of protein structures could be used if

higher accuracy is necessary. The pair distributions are

further normalized by considering the corresponding

volume element and the total number of observations for

building orientational probabilities Pijðr;f; uÞ for each type

of interaction. In this notation, Pijðr;f; uÞ represents the

probability to observe a side chain of type j in the spherical

volume element corresponding to the set of coordinates

r;f; andu in the local frame LRFi of side chain i:

The construction of the orientational statistical potentials

is done using the ‘Boltzmann device’ [6,8]. By using the

basic assumption that the known protein structures from

protein databases (such as PDB) correspond to classical

equilibrium states, we can define

U
ij
DOðr;f; uÞ ¼ 2kT ln

Pijðr;f; uÞ

Prefðr;f; uÞ

" #
ð4Þ

as the distance- and orientation-dependent statistical

potential for the ij pair. Here Prefðr;f; uÞ is the reference

probability density which can be obtained from the

interactions between all the residue types.

The total potential for the residue pair ij is

U
ij
DOðrij;fij; uij;fji; ujiÞ

¼ U
ij
DOðrij;fij; uijÞ þ U

ij
DOðrji;fji; ujiÞ ð5Þ

where pairwise additivity is assumed. The UDO notation is

used for statistical potentials that are both distance- and

orientation-dependent. Eq. (5) is based on the major

assumption of pairwise additivity of the inter-residue

potentials in proteins. For Boltzmann equilibrium, this

separability is consistent with the probabilistic relation

between the individual probabilities Pijðrij;fij; uijÞ and

Pjiðrji;fji; ujiÞ estimated from the observed frequencies of

interaction, and the total interaction probability

Pijðrij;fij; uij;fji; ujiÞ [8]. Also, in this implementation, the

dependence of the U
ij
DO potentials on the torsional angle

around rij (see Fig. 3 in Ref. [8]) is averaged out. The results

suggest that the effect on the accuracy of the UDO potentials

of the assumption that the interaction terms can be truncated

as in Eq. (5) is not very large.

An important issue that appears when using probability

density functions with the Boltzmann device is ‘the problem

of small data sets’. As noted by Sippl [6], dividing the SC–

SC pair frequencies by both side chain type and distance

intervals results in situations when the available data is too

small for conventional statistical procedures. This problem

was solved by Sippl by proposing a ‘sparse data correction’

formula that builds the correct probability densities as linear

combinations between the measured data and the reference.

The total probability densities are obtained by averaging

over all twenty SC types.

For the general, orientation-dependent probability
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densities the sparse data correction can be written as

Pij
corrðr;f; uÞ ¼

1

1 þ m0s
Prefðr;f; uÞ þ

m0s

1 þ m0s

�Pijðr;f; uÞ ð6Þ

where Pij are the actual probability densities obtained from

the database for the ij pair of side chains, and P
ij
corr are the

corrected probabilities. Pref is the reference probability

density obtained by averaging over all the residue types. A

modification introduced by the orientational dependence in

our case is that the number of measurements m becomes

m0 ¼ m=sinðukÞ; as k equiangular intervals are used for the u

angle. This is necessary for accounting for the azimuthal

dependence of volume elements in spherical coordinates.

The s parameter, which is a constant, controls how many

actual measurements m0 must be observed so that both the

actual probabilities and the reference would have equal

weights. As in other studies, we used s ¼ 1=50 [6,21,22].

2.4. The importance of the relative side chain–side chain

orientations: results from decoy tests using model B

To asses the importance of the relative side chain–side

chain orientations using only the simple model B (see

Fig. 1), we performed tests using the distance- and

orientation-dependent statistical potentials (UDO) as scor-

ing functions. Their performance in correctly recognizing

the native structure was assesed using a standard database of

decoys developed by Samudrala and Levitt [9]. The results

are shown in terms of the values of the energy and root-

mean-square distance Z-scores (ZE and ZRMSD) that are

defined next. The root-mean-square distance (RMSD) is

calculated with respect to the Ca atoms. The general

definition of the Z-score of a statistical quantity x is

Z ¼
x 2 �x

s
ð7Þ

where s is the standard deviation and �x is the mean of the

distribution of x values.

For comparing the performance of various interaction

potentials on sets of decoy structures, we have computed

both the energy and root mean square distance Z-scores (ZE

and ZRMSD) for the distribution of the total energies for each

protein decoy set. [8] The energy Z-score ðZEÞ is a relative

measure of the value of the energy of the native state with

respect to the distribution of all decoy energies. The RMSD

Z-score ðZRMSDÞ is a relative measure of the value of the Ca

root-mean-square distance (RMSD) from the native state of

the decoy with the lowest energy with respect to the

distribution of RMSDs of the other decoys. Both ZE and

ZRMSD are important [9]. The data shown in Fig. 2 illustrates

the method of calculating energy Z-scores for the set of 500

decoys of the 2cro protein from the ‘fisa’ family [9,23]. The

two distributions correspond to the distance-dependent

statistical potential (red histogram, left) for a 20 £ 20

interaction scheme, and to the present smoothed distance-

and orientation-dependent 21 £ 21 potential (blue, right)

that includes backbone interactions. The values for the

corresponding energies of the native 2cro state and the mean

values are also shown for illustrating the definitions of the

energy Z-scores ðZEÞ used in our analysis. For ideal

potentials it is expected that the structure corresponding to

the native state would have the most negative energy Z-

score ðZEÞ: We also expect that, a good potential scoring

function, one consistent with a single ‘funnel-like’ energy

landscape, should also assign a very negative Ca root mean

square distance Z-score ðZRMSDÞ to the decoy structure that

has the lowest energy.

In Fig. 3 are shown energy ðZEÞ and Ca RMSD Z-scores

ðZRMSDÞ calculated for the multiple decoy sets ‘lmds’,

‘fisa_casp3’, fisa and ‘4state’ [9].

Z-scores calculated for the distance-only dependent

statistical potentials UD (dark bars) and for the new

distance- and orientation-dependent UDO potential (white

bars) values are compared. In all the cases presented here

regarding Z-scores, more negative values are better, and the

cases in which UDO leads to better results than UD are

emphasized using arrows. Based on considerations regard-

ing the limited experimental resolutions of the nonhomo-

logous structures that are analyzed in the training set [8], for

the UD potentials used here we employed 20 radial distance

bins of width L ¼ 1:2 �A for distances starting at 2 Å. For the

UDO potentials the analysis was performed using 12 angular

bins for u and 24 bins for f: It is observed that in a large

Fig. 2. The distributions of energy values for the set of 500 decoys of the

2cro protein from the “fisa’ family [9,23]. The two distributions correspond

to the distance-dependent statistical potential (red histogram, left) for a

20 £ 20 interaction scheme, and to the present smoothed distance- and

orientation-dependent 21 £ 21 potential (blue, right) that includes back-

bone interactions. The values for the corresponding energies of the native

2cro state and the mean values are also shown to illustrate the definitions of

the energy Z-scores (ZE) used in our analysis. The Z-scores are a measure

of how far the native energy values are displaced from the mean of the

corresponding distribution as compared to the standard deviation.
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number of cases the inclusion of orientational information

improves the performance of both ZE and ZRMSD scores. An

especially interesting case is the one of the ‘lmds’ set in

which all-atom distance-dependent scores were shown to

perform poorly [9,24]. In this case, when both the ZE and

ZRMSD Z-scores are considered, the new distance- and

orientation-dependent potentials UDO performed much

better than the distance-only dependent UD in a majority

of cases. A more extensive analysis of these tests is

presented elsewhere [8].

Our results show that the information encoded in the

relative side chain–side chain orientations in native-like

structures of proteins could be as important (and in many

cases more important) than the information that can be

extracted from relative distances alone. Even though in

many structures the essential features of inter-residue

interactions can be extracted by analyzing only the

residue–residue distances, the complementary information

contained by relative orientations is also important in a

significant number of cases.

2.5. Including backbone interactions in a smooth,

continuous version of the coarse-grained potentials

It is important to have a more realistic, spatially

continuous description of the statistical potentials that also

includes the backbone interactions explicitly (see model C

in Fig. 1). However the amount of statistical data that is

available in the training set of nonhomologous structures is

limited. To overcome this limitation, besides the implemen-

tation of the ‘sparse data correction’ method (see Eq. (6)),

we have also reduced the number of radial interaction

ranges to only three. As shown by other studies [25], the

short-range distance-dependence of the statistical potentials

in globular proteins reflects specific differences between

hydrophobic and hydrophilic side chains. We observed

Fig. 3. Energy ðZEÞ and Ca RMSD Z-scores ðZRMSDÞ calculated for the multiple decoy sets ‘lmds’, ‘fisa casp3’, ‘fisa’ and ‘4state’ [9]. The numbers in brackets

represent the number of decoys in each set, including the native structure. Z-scores calculated using statistical potentials dependent only on distance UD (dark

bars) and distance- and orientation-dependent potentials (UDO; white) are compared. More negative Z-scores are better, and the cases in which UDO leads to

better results than UD are emphasized by the arrows on the left. When both ZE and ZRMSD Z-scores are considered, the inclusion of orientational information

improves the performance in a majority of cases.

Fig. 4. The definitions of local reference frames for specific groups of atoms

(e.g. heavy atoms in side chains and backbone atoms involved in the

peptide link) permit the collection of data on relative distances and

orientations between those groups. To obtain sufficient data to permit a

smooth, continuous description of the relative orientational dependence, we

employed only three distance ranges, corresponding to short-, medium- and

long-range interactions. As shown in this figure, the volume elements at the

given orientation have different size; the appropriate normalization must be

performed for building orientation-dependent probabilities.
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similar qualitative differences (Figs. 4 and 5 in Ref. [8]) in

the orientational probability maps extracted from protein

structures. Due to the orientation dependence, the coarse

graining of the distance dependence does not prevent the

observation of hydropathic effects in the short-range UDO

potentials.

In Fig. 4 are illustrated the three levels of volume

elements in spherical coordinates that were employed for

collecting data on side chain–side chain, side chain–

backbone and backbone–backbone interactions. When

computing the interaction probabilities, the raw histogram

data must be normalized not only by dividing by the

corresponding volume of each shell, but also by sinðuÞ in

order to eliminate the ‘pole effects’.

As shown in Fig. 4, in our approach we have considered

three specific interaction ranges, corresponding to short-,

medium- and long-range interactions (i.e. 2.0 ! 5.6 Å,

5.6 ! 9.2 Å, and 9.2 ! 12.8 Å). The new orientation-

dependent potentials present sufficient continuity properties

to allow for spherical harmonic analysis (SHA) [13,26]. The

numerical spherical harmonic analysis of the new 21 £ 21

(i.e. backbone dependent) potentials UDO-21 was performed

using the technique developed by Adams and Swarztrauber

and implemented in the FORTRAN package Spherepack

3.0 [26,27]. We used 2ðN 2 1Þ grid points for f; where

N ¼ 13 is the number of grid points corresponding to

sampling the data along the u angle [27]. These sampling

points are placed on the following equiangular grid

ui ¼ iDu2 p=2; i ¼ 0; 1;…;N 2 1; Du ¼
p

N 2 1
ð8Þ

fi ¼ jDf; j ¼ 0; 1;…; 2N 2 1; Df ¼ Du:

Since the angular dependent potential functions are

sufficiently smooth, we performed their spherical harmonic

analysis and find the corresponding coefficients

amn ¼ amn

ð2p

0

ðp=2

2p=2
Uðu;fÞ Pm

n ðcos uÞcosðmfÞ cos u

df du ð9Þ

bmn ¼ amn

ð2p

0

ðp=2

2p=2
Uðu;fÞ Pm

n ðcos uÞsinðmfÞ cos u

df du ð10Þ

where

anm ¼
2n þ 1

2p

ðn 2 mÞ!

ðn þ mÞ!
ð11Þ

and Pm
n are the associated Legendre functions [26,28].

Alternatively, if the coefficients am
n and bm

n are known, the

corresponding smooth potential function Uðu;fÞ can be

reconstructed using the spherical harmonics synthesis

(SHS) formula

Uðu;fÞ ¼
XN
n¼0

X
0

n

m¼0

Pm
n ðcos uÞ½amncosðmfÞ þ bmn

sinðmfÞ�: ð12Þ

The prime notation [26] on the sum indicates that the first

term corresponding to m ¼ 0 must be multiplied by 0.5. We

use the notation UDO-21s for the 21 £ 21 distance- and

orientation-dependent potentials that were reconstructed by

using the SHA/SHS procedure.

To illustrate the process of calculating the potential

values by SHS, we show in Fig. 5 the reconstructed Ile-Arg

Fig. 5. The smooth Ile-Arg orientational potentials represented for short-range (top), middle-range (middle) and long-range (bottom) interactions. The potential

values, calculated originally for a 12 £ 24 equiangular grid, are shown on the right (a, c and e), and the corresponding smooth potentials computed for a

72 £ 144 grid using spherical harmonic synthesis are shown on the left (b, d and f). Blue regions correspond to attractive (i.e. negative) potentials, while red

regions are positive, thus less likely to correspond to interaction loci.
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orientational potential using 12 £ 24 equiangular bins (left)

and a 72 £ 144 grid (right), for short-range (top), middle-

range (middle) and long-range (bottom) interactions. By

comparing the SHS potential values reconstructed on the

72 £ 144 grid to the original orientational potential values

for Ile-Arg shown in Fig. 5 (left), the smoothing effect of the

SHA/SHS procedure becomes apparent.

The results of the same type of SHA/SHS process are

shown in Fig. 6 for the anisotropic virtual backbone

interaction centers (Pep) located in the middle of the

peptide bond (see Fig. 1c). The smooth Pep-Pep orienta-

tional potentials are represented for short-range (top),

middle-range (middle) and long-range (bottom) inter-

actions. Blue regions correspond to attractive (i.e. negative)

potentials, while red regions are positive, thus less likely to

correspond to interaction loci. From both Figs. 5 and 6 we

can see that, for each interaction range, there are specific

anisotropic features of the orientation-dependent statistical

potentials. Some of the attractive or repulsive angular

regions are conserved from one interaction shell to the other.

However, some present significant changes that may

account for the specific features of residue–residue,

residue–backbone and backbone–backbone interactions.

The continuous and smooth properties of the recon-

structed statistical potentials allow us to represent them as

three dimensional contour maps (Fig. 7). This figure also

illustrates the relative LRF orientation of the virtual

backbone interaction centers (Pep), with respect to the

reconstructed statistical potential shown in Fig. 6. For the

objects shown here, the color is directly proportional to

the amplitude of the potentials. The negative attractive

potential values are indicated as dark blue angular regions.

The presence of other Pep particles are favored at these

orientations. The red regions represent unfavorable and

repulsive regions around Pep. This type of three dimen-

sional representation can be used to effectively investigate

all the possible side chain–side chain, side chain–Pep, and

Pep–Pep orientation-dependent statistical potentials and

their complex features.

2.6. Testing the smooth potentials: results from decoy sets

using model C

One of the main features of the SHA/SHS approach is

that specific values of the orientational potentials can be

calculated (reconstructed) from the amn and bmn coeffi-

cients for each specific value of the orientational

parameters u and f: As such, the discontinuities that

were originally present in the binned orientational

potentials are eliminated. Our results indicate that the

SHA/SHS procedure can be successfully used to describe

the orientation-dependent potentials in a uniform and

computationally convenient manner. One needs to keep

in mind that there is an intrinsic information loss

introduced by the SHS/SHA procedure that needs to be

examined before the smooth reconstructed potentials can

successfully replace the coarse, raw statistical data in

coarse grained simulations [26,27].

After using the corresponding spherical harmonics

coefficients to reconstruct the potentials, we performed

tests for discriminating the native state from multiple decoy

sets [8,9]. In Fig. 8 we present the results that were obtained

for a test of the efficacy of our statistical potentials in

Fig. 6. The smooth Pep–Pep orientational potentials represented for short-range (top), middle-range (middle) and long-range (bottom) interactions. The

potential values, calculated originally for a 12 £ 24 equiangular grid are shown on the right (a, c and e), and the corresponding smooth potentials computed for

a 72 £ 144 grid using spherical harmonic synthesis are shown on the left (b, d and f). Blue regions correspond to attractive (i.e. negative) potentials, while red

regions are positive, thus less likely to correspond to interaction loci.
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discriminating the native structure of a protein from the

Samudrala and Levitt [9] decoy structures.

The results for the energy Z-score ðZEÞ and Ca RMSD Z

score ðZRMSDÞ calculated for the multiple decoy sets [9,23,

29–32] lmds, fisa, ‘fisa casp3’ and 4state are compared in Fig.

8. The values of the distance- and orientation-dependent

potentials ðUDOÞ were calculated using both the old 20 £ 20

method (UDO-20; dark bars) and the new 21 £ 21 interaction

scheme (UDO-21; white). The cases where the new UDO-21

potentials perform better are emphasized by the arrows on the

left. It is observed that for a large majority of decoy sets (84%

when considering the energy score ZE) the performance is

improved by including the backbone interaction centers.

The results of the tests to discriminate the native states

from decoy sets show that the new 21 £ 21 smoothed

potentials perform better in a majority of cases. The results

suggest that the anisotropic backbone interactions play an

important role that might not be fully captured by simpler

20 £ 20 models that consider only the interactions and

conformations of side chains in an explicit manner.

3. A statistical potential for water

The derivation of knowledge-based inter-residue poten-

tials for proteins is based on the assumption that the

influence of the solvent environment is included implicitly

in the interaction scheme, through a proper consideration of

Fig. 7. Three-dimensional representations of the statistical potential field for the smooth short-range (right), middle-range (middle) and long-range (left) Pep–

Pep interactions. The relative orientation of the Pep group of atoms is also shown. The blue, attractive regions responsible for hydrogen bonding are apparent

for mid-range interactions (middle).

Fig. 8. Results from decoy tests. The energy ðZEÞ and Ca RMSD Z-score ðZRMSDÞ calculated for multiple decoy sets [9,23,30,31] ‘lmds’, ‘fisa casp3’, ‘fisa’ and

‘4state’ are compared. More negative Z-scores are better. The name of each protein and the number of decoys in its corresponding set are shown in the center.

The values of the distance- and orientation-dependent potentials ðUDOÞ were calculated using both the old 20 £ 20 method (UDO-20; dark bars) and the new

21 £ 21 interaction scheme (UDO-21; white). The cases where the new UDO-21 potentials perform better in discriminating the native state from decoys are

emphasized by the arrows on the left. For a majority of decoy sets (84% for ZE and 56% for ZRMSD) the performance is improved by including the backbone

interaction centers.
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the reference state [22,33]. However, in many cases (e.g.

large scale coarse-grained simulations) it might be necess-

ary to include the solvent explicitly. While there are many

effective 2D [34,35] and 3D water models [36,37] that are

currently used in molecular simulations, none is in

full agreement with the measured equilibrium structural

properties of water. Moreover, there is an on-going interest

in investigating how the specific features of the underlying

pair potential functions influence the structural and dynamic

properties of various water models. [38] Our new methods

for extracting orientation-dependent statistical pair-poten-

tials for residue–residue interactions can be directly applied

to investigating the effects of orientational anisotropy in

water simulations. This approach serves both as a new test

of the feasibility of building and using knowledge-based

orientation-dependent potentials for molecular systems, as

well as a novel method to build a simple, yet accurate,

coarse-grained model for intermolecular interactions in

liquid water. In this preliminary investigation we describe

the most direct approach: deriving a single orientation-

dependent interaction potential ‘shell’ and testing it in a

small scale Monte Carlo NPT simulation [39,40]. The

successful features and the limits of this simple statistical

potential for liquid water are presented and discussed in this

work. The simulated oxygen–oxygen radial distribution

agrees reasonably well with recent experimental measure-

ments [41,42].

3.1. Extracting the new water–water statistical potential

We applied the orientation-dependent ‘Boltzmann

device’ procedure described in the previous sections to

investigate the equilibrium statistical properties of liquid

water. We performed a standard large molecular dynamics

NPT simulation [39], of an equilibrated box of transferable

inter-molecular potential with three points (TIP3P) [43]

water at 310 K using NAMD [44]. We defined local

reference frames for the individual water molecules, similar

to the one previously employed [37], and we used these

simulation results to extract a short range ([2,4] Å)

statistical interaction potential for water. The results are

shown as 2D and 3D maps in Fig. 9. The red and blue areas

on these orientational probability maps (appearing as dark

regions on a gray-scale plot of this figure) correspond to

attractive regions (i.e. with a higher probability to

coordinate another H2O molecule) and, respectively,

repulsive regions (i.e. with a lower interaction probability).

The orientational probability maps for liquid water are

further used to build the corresponding orientation-depen-

dent statistical potential maps for water, by employing the

Boltzmann device. The water–water potentials can there-

fore be related to probability pair distribution functions

Pðr;f;uÞ by the generalized distance- and orientation-

dependent relation for the potential

U
ij
DO-watðr;f; uÞ ¼ 2kT ln

P
ij
watðr;f; uÞ

Prefðr;f; uÞ

" #
: ð13Þ

We use the UDO notation for the statistical potentials that are

both distance-and orientation- dependent. For these studies

of liquid bulk water, we consider the reference probability

functions Prefðr; ðf; uÞ to be a uniform radial or angular pair

distribution.

In Fig. 10 is presented an orientational statistical

Fig. 9. Orientational interaction probability map for water. The 3D

representation (top) and the corresponding orientation-dependent inter-

action probability map (bottom) for water molecules constructed on a

12 £ 24 equiangular grid. The most and least probable interaction regions

(red and blue, appearing both as dark on a gray-scale plot of this figure) are

observed at locations related to the hydrogen bond formation loci.

Fig. 10. Orientational statistical potential map for water. The orientation-

dependent statistical potential map for water molecules constructed on a

12 £ 24 equiangular grid for the [2,4] Å interaction range. The attractive

and repulsive regions (red and blue, or appearing as dark on gray-scale

representations of this figure) are related to the positions of hydrogen bond

formation loci.
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potential map for water constructed with this ‘Boltzmann

device.’ This potential map for liquid water molecules was

built on a 12 £ 24 equiangular grid for the [2,4] Å

interaction range. The attractive and repulsive regions (red

and blue, or appearing as dark in gray-scale representations

of this figure) are related to the positions of hydrogen bond

formation loci.

3.2. Discussion: the static equilibrium features of the new

water potential

We test the quality of this statistical potential by

investigating the structural properties measured by the

radial distribution functions [36,39]. In Fig. 11 is shown a

comparison between an experimentally measured [41,42]

radial distribution function for water at room temperature

(ALS, borken curve) and the data (MC125) that we obtained

from a Monte Carlo simulation using a small box of only

125 molecules with periodic boundary conditions. The

potential employed in the MC simulation consisted of a hard

core repulsive region up to 2 Å (region A), an orientation-

dependent statistical potential shell from 2 to 4 Å (region

B), and a very weak attractive region (C) with an isotropic

potential of only 20.05 kT. The continuous line data

(MC125-dr2’) was collected with a bin size dr2 ¼ 0:4 �A and

the dotted line (MC125-dr1’) corresponds to a bin size

dr1 ¼ dr2=10:

A good correlation exists between the positions of the

minima and maxima of the experimental and the simulation-

derived radial distribution functions. The differences

noticeable for the shape and position of the first peak are

due to the fact that the orientation-dependent potential

‘shell’ has attractive regions that span the entire [2,4] Å

interaction range. It is, therefore, an artifact of the simple,

most direct application of the statistical potentials to this

case. Such artifacts can be corrected by a more detailed

model that employs multiple interaction ranges and which,

at close separations (,2 Å), are better fitted for water–

water interactions than the simplest hard core repulsive

region A that is employed here.

These calculations demonstrate that a good modeling of

the structural characteristics of liquid water may be obtained

by employing statistically derived orientation-dependent

potentials. The specific packing and local coordination

geometry are controlled by the orientational anisotropy of

the interaction potentials, an important factor that is usually

treated by other potentials using distributed sites interacting

via centrosymmetric Lennard–Jones and coulombic poten-

tials. Our approach shows that specific structural features,

such as the shape, position and number of the main peaks of

the radial distribution function, which are generally thought

to be directly related to various parameter values of

distance-dependent-only or of more complex three-dimen-

sional potentials, can be also obtained by employing a

simple orientation-dependent ‘knowledge-based’ approach.

4. Conclusions

This paper presents results obtained by developing a new

statistical method for building coarse-grained potentials

using a generalized distance- and orientation-dependent

Boltzmann device. Our successful application of this

method to develop simple conformational models of

proteins and small peptides demonstrates that the perform-

ance of energy based scoring functions can be improved by

using statistical information extracted from the relative

residue–residue orientations. The ability of the scoring

functions to discriminate native-like protein structures is

significantly enhanced by including the orientational

dependence of side chain–side chain interactions as well

as by including explicit anisotropic interaction centers that

can model the side chain–backbone and backbone–back-

bone potentials. We have also demonstrated that the

statistical data extracted from protein databases can be

successfully used to build orientation-dependent potentials

that have sufficient continuity properties to make possible

their spherical harmonic analysis. Our novel smooth,

continuous interaction potential is defined using separate

spherical harmonic expansions of the orientation-dependent

potential for short-, medium- and long-range interactions.

The new potentials were tested on a standard data base of

artificially generated decoy structures [9] and the results

demonstrate that the orientational information has both

common and complementary significance as compared to

the information that can be extracted from the relative

Fig. 11. Oxygen–oxygen radial distribution functions for water. Compari-

son between an experimentally measured radial distribution function for

water at room temperature (ALS, dashed curve) and the data (MC125) from

a Monte Carlo simulation using a small box of 125 molecules with periodic

boundary conditions. The potential employed in the MC simulation

consisted of a hard core repulsive region up to 2 Å (region A), an

orientation-dependent statistical potential shell from 2 to 4 Å (region B),

and a very week attractive region (C) with an isotropic potential of only

20.05 kT. The continuous line data (MC125-dr2) was collected with a bin

size dr2 ¼ 0:4 �A and the dotted line (MC125-dr1) corresponds to a bin size

dr1 ¼ dr2=10:
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residue–residue distances alone. From a computational

point of view, there are potential benefits both for free

energy calculations and for coarse-grained dynamical

simulations that might employ the continuous, smoother

statistical potentials. The memory requirements for storing

the spherical harmonic coefficients, as opposed to the raw

orientational data, are smaller. In addition, the values of the

potentials can be readily computed for any values of the (u

and f orientational parameters specified over the entire

spherical domain.

We have investigated further the feasibility of applying

the orientation-dependent Boltzmann device to develop a

new class of anisotropic statistical potentials for liquid

water. These new potentials were extracted from detailed

molecular dynamics simulations and were tested in a

standard NPT Metropolis Monte Carlo simulation of liquid

water [39,40]. The preliminary use of the new coarse-

grained water model in simulations shows that specific

features of the liquid water structure can be correctly

reproduced. While other, more detailed anisotropic water

potential models [36,37] have been also developed, our

approach has the advantage of simplicity and the ability to

be generalized to cases were a coarse-grained representation

of groups of molecules is desirable.

Our orientation-dependent statistical potentials could be

instrumental in developing more efficient computational

methods for protein structure prediction as well as coarse-

grained simulations on mesoscopic length scales.
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