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Abstract

We develop a generalized version of the parallel tempering algorithm, based upon the non-
extensive thermostatistics of Tsallis and coworkers. The e1ectiveness of the method is demon-
strated on a simple one-dimensional problem and on a Lennard-Jones cluster. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Recently, the “parallel tempering” [1–7] method has gathered attention [8–12] as
a way to mitigate the problem of “broken ergodicity” [13,14] (also called “quasi-
ergodicity” [15]) which can present challenges to Monte Carlo simulations in the canon-
ical ensemble. Broken ergodicity occurs when the simulation temperature is low enough
that the con$guration space of a system becomes e1ectively partitioned into important
low-energy regions, or basins, connected by low transition probabilities. In such cases,
the simulation time required to sample the complete set of basins becomes prohibitively
long, and calculations of equilibrium averages become intractable. Broken ergodicity
is characteristic of complex systems with rugged potential energy landscapes, like spin
glasses, atomic clusters and biomolecules.
At high enough temperatures, however, transition probabilities become suBciently

large that standard Monte Carlo methods can sample all important basins. Parallel
tempering (also called “replica-exchange” [3,4]), along with the related methods of
“simulated tempering” [16–18] and “J-walking” [19,8], take advantage of the ergodic-
ity present at higher temperatures by e1ectively allowing the exchange of con$gurations
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between low and high temperatures. With the parallel tempering method in particular,
this is accomplished by running a number of independent and simultaneous simulations
of the same system at di1erent temperatures, and allowing con$gurational exchanges
between neighbouring (or perhaps just di1erent [8]) temperatures. The set of temper-
atures chosen for a parallel tempering simulation is determined by the criteria that a
Monte Carlo simulation at the highest temperature be ergodic, and that con$gurational
exchanges between pairs of temperatures are accepted with appreciable frequency.
The J-walking method may be viewed as a special case of parallel tempering [8],

where only two temperatures are used, and the set of con$gurations sampled at the
high temperature is computed and stored beforehand. High-temperature con$gurations
are then occasionally fed to the low-temperature simulation as trial moves. Although
such “jump” moves have the same formal acceptance probability as do exchanges in
the parallel tempering method, the exchange is not symmetric in the sense that the
low-temperature con$gurations are not added to the stored set sampled from the higher
temperature. In completely analogous fashion, the “q-jumping” method [20] feeds con-
$gurations from an ergodic simulation (within the standard Monte Carlo scheme) into
one plagued with broken ergodicity. In the case of q-jumping, however, the stored con-
$gurations are sampled from a simulation which is ergodic not because of thermally
enhanced rates of barrier crossing but due to sampling from a non-Boltzmann distribu-
tion. In particular, q-jumping uses conformational distributions from the nonextensive
thermostatistics proposed by Tsallis [21]. Previous studies have successfully applied
the q-jumping technique to atomic clusters [20], peptide folding [22] and molecular
docking problems [23].
In this paper we present a generalization of the parallel tempering method, which uses

extensivity, rather than temperature, to parameterize the di1erent parallel simulations.
The method is shown to be e1ective at overcoming problems of broken ergodicity in
Monte Carlo simulations. We develop the method $rst on a simple one-dimensional
system, and later apply it to a 13-atom Lennard-Jones cluster.

2. Methods

In this section we $rst review the nonextensive thermostatistics of Tsallis and cowork-
ers [21,24–26] before introducing the generalized parallel sampling (GPS) method.

2.1. Generalized thermostatistics

The generalized thermostatistics proposed by Tsallis begins with the following de$-
nition of the generalized con$gurational entropy for an N -body system:

Sq =
k

q− 1

∫
drNpq(r)(1− [pq(r)]q−1) ; (1)

where q is a real number and Sq goes to the Gibbs–Shannon entropy, S=−k
∫
drNp(r)

× lnp(r), for q → 1. The con$gurational probability distribution function, pq(rN ), is
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determined by extremizing Eq. (1) subject to the constraints,∫
drNpq(rN ) = 1;

∫
drN [pq(rN )]qU (rN ) = Uq ; (2)

where U (rN ) is the potential energy. One $nds

pq(rN ) =
1
Zq

(1− (1− q)	U (rN ))1=(1−q) ; (3)

where

Zq =
∫

drN (1− (1− q)	U (rN ))1=(1−q) (4)

is the generalized con$gurational partition function. The so-called “q-expectation value”
for an operator O is de$ned as

〈O〉q =
∫

drN [pq(rN )]qO(rN ) : (5)

To sample the con$gurational distribution [pq(rN )]q, the following Monte Carlo ac-
ceptance probability has been used [27,20]:

p=min

[
1;
(
pq(rNnew)
pq(rNold)

)q]
=min

[
1;

(
e−	 MU (r Nnew)

e−	 MU (r Nold)

)]
; (6)

where

MU (rN ) =
q

	(q− 1)
ln(1− (1− q)	U (rN )) (7)

de$nes an e1ective potential. In order to guarantee that pq(rN ) be real it is customary
to introduce a constant shift, � (¿ the ground state energy), to the potential energy,

MU(rN ) =
q

	(q− 1)
ln(1− (1− q)	[U (rN ) + �]) : (8)

In all the simulations presented here, � is the ground state energy of the system.
Note that limq→1 MU = U . The acceptance probability therefore goes to that of the

standard Metropolis Monte Carlo method as q → 1. Instead, for q �=1, while much of
the structure of the Boltzmann–Gibbs statistical mechanics remains intact [26], thermo-
dynamic state functions like the entropy and internal energy are no longer extensive
functions of the system. In particular, q parameterizes the degree of extensivity of state
functions [25]. For example, for q¿ 1 the entropy [Eq. (1)] is subadditive, while it is
superadditive for q¡ 1.
For enhanced sampling methods in Monte Carlo simulations, it is useful to consider

the e1ect on the con$gurational distribution (or on the e1ective potential) of having q
di1erent from unity. For q¡ 1, distributions become narrower and more focused around
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minima [26,28], while for q¿ 1 they become broader and exhibit greater probability
in barrier regions of U (rN ).

2.2. Generalized parallel sampling

The delocalized nature of the Tsallis distributions may be exploited to sample Boltz-
mann statistics in systems for which ergodicity is broken in standard Monte Carlo
simulations. One approach is to sample from [pq(rN )]q and reweight averages [29].
That is, the Tsallis distributions may be used in umbrella sampling [30]. An alternative
approach is the q-jumping method [20], in which con$gurations from a q¿ 1 simula-
tion are occasionally supplied as trial moves for a simulation at q=1. These “q-jump”
moves are accepted with probability

p=min

[
1;

e−	U (r ′N )e−	 MU(r N )

e−	U (r N )e−	 MU(r ′N )

]
; (9)

where the primed coordinates are taken from the q¿ 1 distribution. Inspection of
Eq. (9) immediately makes apparent the possibility of sampling the q = 1 and q¿ 1
distributions in parallel. When sampling from Tsallis distributions in parallel, exchanges
between con$gurations at di1erent values of q (alternatively, the qs may be exchanged)
are accepted with probability

p=min

[
1;

e−	 MU(r′N ;q)e−	 MU(r N ;q′)

e−	 MU(r N ;q)e−	 MU(r′N ;q′)

]
: (10)

It is easy to show that Eq. (10) leads to detailed balance being satis$ed for the com-
posite simulation [8].
The scheme we are proposing here, generalized parallel sampling (GPS), consists of

performing a series of simultaneous simulations at di1erent values of q. The simulations
are independent, apart from occasional exchanges accepted according to Eq. (10). When
exchange moves are not attempted, the acceptance rule for particle moves is given by
Eq. (6), after choosing an appropriate �.
One can immediately see how GPS is analogous with parallel tempering. With par-

allel tempering, choosing the set of temperatures to include is a crucial component in
eBciently calculating equilibrium properties for complex systems. In general, one of
the temperatures must be high enough such that the important con$guration space is
rapidly sampled, and the simulation should include enough temperatures so that ex-
changes between them are frequently accepted. Maintaining a consistent acceptance
ratio for exchanges implies a higher density of temperatures in regions where the heat
capacity is large [4–6].
With GPS, one has these same technical concerns in determining a set of qs. To

explore this point further, we rewrite Eq. (10) as

p=min[1; e−�] ; (11)
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where

� ≈ 	�
[
U
′
(r′N )− U

′
(rN )

]
; (12)

and U
′
(rN ) is just the $rst derivative of U(rN ) with respect to q,

U
′
(rN ) =

1
q(q− 1)

[
q2

	
F(rN )− U(rN )

]
: (13)

We have set q′ = q+ � and

F(rN ) ≡ 	[U (rN ) + �](
1− (1− q)	

[
U (rN ) + �

]) : (14)

The primed co-ordinates are sampled from the distribution characterized by q′. Aver-
aging over con$gurations and approximating derivatives as forward di1erences gives

〈�〉q ≈ 	�2
d〈U′〉q
dq

: (15)

For q − 1 small, we can expand the logarithm in U(rN ) and substitute into equation
(13). Including terms up to $rst order gives

〈�〉q ≈ �2
d〈F〉q
dq

: (16)

Two things are apparent from this result: $rst, to keep � of order unity, we should
reduce the spacing between adjacent qs in regions where the derivative appearing in
equations (16) is larger and second, divergences in the derivative will prohibit ex-
changes between con$gurations in di1erent phases.

3. Results and discussion

The eBcacy of the GPS method was $rst tested on a simple one-dimensional po-
tential. Features of the technique were also explored with the 13-atom Lennard-Jones
cluster. In both systems, comparisons are made with standard Metropolis Monte Carlo
methods and with parallel tempering.

3.1. Model potential

In this section we explore the proposed scheme using the following one-dimensional
“udder” potential [20]:

U (x) = x2 − ae−b(x+2)2 − ce−d(x−2)2 − fe−g(x−3)2 + � : (17)

Looking at Fig. 1, we can see that U (x) has four minima, including two relatively deep
wells around x=2 and the global minimum at x=−1:98673. We have set a=f=15,
b = c = 10, d = g = 3 and � = 11:0265 (setting the global minimum energy to zero).
The barrier heights vary, with the largest one being ≈ 13.
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Fig. 1. Probability distributions for the one-dimensional “udder” potential. The exact Boltzmann distribution
at T =1, indicated with a solid line, is compared with that calculated from standard Monte Carlo techniques
(∗) and the GPS method (+). The potential, U (x), has been rescaled to $t in the $gure, and is indicated
with a dashed line.

Fig. 2. Position of the walker versus number of Monte Carlo moves at q=1 for (a) a GPS simulation over
the one-dimensional “udder” potential and (b) the corresponding standard Monte Carlo simulation. The total
number of Monte Carlo moves, N , is the same for both simulations.

We have run a GPS simulation, using three parallel random walkers at T = 1, and
compared with standard Monte Carlo simulations. For both simulations, the box size for
attempting displacement moves was adjusted so as to maintain a 50% acceptance ratio.
Exchanges between walkers at di1erent q (q1 =1; q2 =1:9; q3 =2) were attempted with
probability 0:1. In this GPS simulation, and all exchange-type simulations throughout
this work, exchanges were only attempted between simulations at neighbouring values
of q. The neighbouring pairs which attempted exchanges were chosen at random from
a uniform distribution. After $xing q3 at 2, which has been shown to be a good choice
for enhanced sampling in this system [20], the intermediate value of q was chosen to
maximize the rate of self-averaging (see following section). In Figs. 1 and 2, we see
that the standard Monte Carlo simulation becomes trapped in one of the deep wells,
while the GPS simulation makes excursions across the barrier and accurately samples
the equilibrium distribution.
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3.2. Measuring ergodicity

As useful indicators of ergodicity, we employ the “energy metric” and the “Puctua-
tion metric” [31–33]. Both of these measures estimate the rate of self-averaging in equi-
librium simulations. Self-averaging is a necessary but not suBcient condition that the
ergodic hypothesis be satis$ed. In Monte Carlo simulations, the rate of self-averaging
for a given observable is expected to be proportional to the rate of con$guration space
sampling. Looking at the potential energy, we de$ne these two measures as follows.
Consider a pair of independent Monte Carlo “trajectories”, a and b, starting from dif-
ferent initial conditions. Let uja(N ) be the average potential energy, after N moves, of
particle j over trajectory a,

uja(N ) =
1
N

N∑
k=1

Uja(k) ; (18)

where Uja(k) is the potential energy of particle j at the kth Monte Carlo move of
trajectory a. The limiting value of uja(N ), averaged over all M particles in the system
is

ua(N ) =
1
M

M∑
j=1

uja(N ) : (19)

The Puctuation metric is now de$ned as

#a(N ) =
1
M

M∑
j=1

[uja(N )− ua(N )]2 : (20)

For ergodic systems, the average potential energy does not depend on the initial con-
ditions. In that case, the asymptotic behaviour of the Puctuation metric is

#(N )
#(0)

≈ 1
D#N

; (21)

where D# is a rate of self-averaging, or generalized di1usion constant, for the potential
energy. That is, for ergodic sampling in the asymptotic regions, #(0)=#(N ) is linear
in N , with the slope indicating the rate of self-averaging.
For the one-dimensional “udder” potential, where M = 1, we have looked at a sim-

pli$ed metric,

#a(N ) = [ua(N )− uex ]2 ; (22)

where

ua(N ) =
1
N

N∑
k=1

Ua(k) ; (23)

and uex is the exact Boltzmann average for the potential energy. In Fig. 3, we compare
a parallel tempering simulation with the GPS simulation. Using the Puctuation metric,
both simulations were optimized for three walkers by $rst adjusting the simulation
parameters. The GPS parameters are those given above, while the parallel tempering
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Fig. 3. Reciprocal potential energy Puctuation metric, #U (0)=#U (0), for simulations of the one-dimensional
“udder” potential. The heavy solid line corresponds to the GPS simulation and the light solid line to a
parallel tempering simulation. All data are averages over 300 independent simulations. Inset is the potential
energy Puctuation metric, which clearly decays to zero for both simulations in the limit that N → ∞.

simulation was run at the temperatures (T1 = 1; T2 = 2; T3 = 25). For both simula-
tions, a 50% acceptance ratio was maintained for the particle displacement moves and
exchanges were attempted with probability 0.1. In Fig. 3 we compare the reciprocal
Puctuation metric for the low temperature, q = 1 ensemble, in both simulations. At
this temperature, the barrier height is many times greater than the thermal energy.
Nevertheless, we note that both simulations are ergodic, with GPS having a somewhat
greater rate of self-averaging.
Another useful gauge of self-averaging is the energy metric, de$ned as

d(N ) =
1
M

M∑
j=1

[uja(N )− ujb(N )]2 : (24)

The energy metric uses a pair of independent Monte Carlo “trajectories” to measure
the rate of self-averaging. The Puctuation and energy metrics are related by

d(N ) = #a(N ) + #b(N ) + Xab(N ) ; (25)

where the cross term, Xab, measures the correlations between potential energy Puctua-
tions on trajectories a and b. For ergodic systems, the cross term is [33],

Xab(N ) =− 2
M

M∑
j=1

[uja(N )− ua(N )][ujb(N )− ub(N )] ; (26)

which clearly goes to zero as the Puctuation metric relaxes. When the simulated system
is not ergodic, however, Eq. (26) is no longer valid and Xab may remain $nite even
when #a and #b both relax to zero. This may happen for example, when simulation
a is self-averaging within a di1erent basin from simulation b, and inter-basin motion
is shut down. It has been noted [33] that whereas the Puctuation metric is a measure
of relaxation processes occurring on a single trajectory, the energy metric can be used
to probe rare crossing events between basins. This is a feature that proves useful in
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evaluating the e1ectiveness of sampling methods in complex systems, like the atomic
clusters investigated here.

3.3. Lennard-Jones cluster

To further explore the e1ectiveness of the GPS method, we sample the low-
temperature structural properties of the 13-atom Lennard-Jones cluster. The system
is de$ned by the familiar pairwise additive potential for M particles,

U (rM ) = 4j
M∑
j¿i

[(
'
rij

)12
−
(

'
rij

)6]
+ Uc ; (27)

where ' and j are the Lennard-Jones length and energy parameters, respectively. The
distance between particles i and j is given by rij and Uc is a constraining potential
given by

Uc =
M∑
i=1

u(ri) ; (28)

where

u(r) =

{∞ |r− rcm|¿Rc ;

0 |r− rcm|¡Rc ;
(29)

where rcm is the centre of mass position and we have used a con$ning radius of
Rc = 2:25.
With the “udder” potential, we have seen how infrequent barrier crossing can become

problematic in low-temperature simulations. For the atomic cluster, the radial distribu-
tion function can indicate if the correct lowest-energy structure is being sampled, or if
the simulation is con$ned to a higher-energy local minimum.
A GPS simulation for LJ13 has been set up with $ve walkers arranged linearly

between q1 = 1 and q5 = 1:026 and at a reduced temperature of T = 0:02. The highest
value of q was chosen with the work of Hansmann and Okamoto [34,35] in mind,
which shows that q= 1+ q=nf, where nf is the number of degrees of freedom of the
system, represents an optimal choice of q for enhancing the sampling rate using Tsallis
statistics.
In Fig. 4, we see that one of the requirements of a successful GPS simulation is

met with this selection of qs: exchanges between simulations at neighbouring qs are
frequently accepted. We track the cluster which started the GPS simulation at q1 = 1.
As the simulation progresses, the cluster is free to di1use through all di1erent values
of q with no obvious bias.
Another key feature required for the success of the GPS simulation is apparent from

Fig. 5. In that $gure, we note that a standard Monte Carlo simulation (i.e., a single
walker), performed using an e1ective potential with q = 1:026 leads to self-averaging
of the potential energy. Both the Puctuation metric and the energy metric relax to
zero, indicating not only e1ective local self-averaging, but basin-hopping
as well.



166 T.W. Whit&eld et al. / Physica A 305 (2002) 157–171

Fig. 4. Random walk in q throughout a GPS simulation of LJ13. The value of q for the walker initially
starting at q = 1 is plotted as a function of the total number of Monte Carlo steps, N .

Fig. 5. Ergodic behaviour for standard Monte Carlo simulation of LJ13 at T = 0:02 and q = 1:026. Shown
here are d(N ) (heavy solid line), Xab(N ) (light solid line), #a(N ) and #b(N ) (dashed lines).

In order to ensure that the low-temperature self-averaging was not stymied by
particle-exchange e1ects within the cluster, particle identities were shuQed during
the simulations in which d(N ) and #(N ) were calculated. Without such exchanges,
simulations in which the system samples con$gurations corresponding to physically
realistic harmonic motion about the global minimum structure do not appear to be
self-averaging. Exchanging particle identities has no e1ect on the Monte Carlo deci-
sions, nor on the structures that are being sampled.
In contrast to the simulation at q=1:026, Fig. 6 shows the self-averaging properties

of a standard Monte Carlo simulation at q = 1. While there is self-averaging around
local minima, as indicated by the decay of #a(N ) and #b(N ) to zero, there is frustrated
motion between local minima, as indicated by d(N ) remaining $nite for large N .
Fig. 7 shows the self-averaging properties of the potential energy at q = 1 from a

GPS simulation. As expected, based on the ergodicity of the q=1:026 simulation, and
the frequent exchanges between walkers at neighbouring qs, the GPS simulation is also
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Fig. 6. Ergodic behaviour for standard Monte Carlo simulation of LJ13 at T = 0:02 and q = 1. Shown here
are d(N ) (heavy solid line), Xab(N ) (light solid line), #a(N ) and #b(N ) (dashed lines).

Fig. 7. Ergodic behaviour for GPS simulation of LJ13 at T = 0:02 with two walkers (at q = 1 and 1.026).
Shown here are d(N ) (heavy solid line), Xab(N ) (light solid line), #a(N ) and #b(N ) (dashed lines).

self-averaging. In Fig. 8, we see that the GPS technique accurately captures harmonic
motion about the global minimum for this system.
The most remarkable thing about the data in Figs. 7 and 8, however, is that only two

walkers were needed to generate it. Although the full $ve parallel walkers certainly
solve the broken ergodicity problem in this simulation, using only the walkers at q=1
and 1.026 is also e1ective. Looking at Fig. 9, we can appreciate why these two walkers
suBce. Since the potential energy histograms for q=1 and 1.026 substantially overlap
one another, we expect exchanges to be frequently accepted. Note that a GPS simulation
with only two walkers is essentially a q-jumping simulation.
It is interesting to compare the situation with that in a parallel tempering simulation

of the same system. In Fig. 10, we plot potential energy distributions taken from a
parallel tempering simulation of LJ13. The parallel tempering simulation was performed
with 40 walkers spaced between T = 0:02 and 0.5. Without including higher tempera-
tures, the $ve temperatures (between T = 0:02 and T = 0:0808) used to generate the
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Fig. 8. Radial distribution function, g(r), for LJ13 at (a) T = 0 (icosahedral global minimum structure)
and (b) at T = 0:02. In (b), the correct radial distribution function from an ergodic GPS simulation at
T = 0:02 is drawn with a solid line. The dashed line in (b) is a radial distribution function obtained during
a quasi-ergodic simulation.

Fig. 9. Potential energy distributions for 5 walkers in a GPS simulation of LJ13. The parameter q is uniformly
spaced over the interval 16 q6 1:026.

histograms in Fig. 10 would not be equilibrium distributions. To understand this, we ran
a standard Monte Carlo simulation on the cluster at T=0:0808 (the highest temperature
appearing in Fig. 10). At that temperature, the energy metric does not decay to zero,
and the simulation is not ergodic. Even if the simulation at T = 0:0808 were ergodic,
however, there is very little overlap between the distributions at T=0:02 and 0.0808 and
intermediate walkers would be required to ensure suBcient acceptance of exchanges.
Finally, to further explore the issue of selecting a good set of qs, and the guideline

implied by Eq. (16), we ran a larger GPS simulation which included higher values of
q. In Fig. 11, we plot the caloric curve for LJ13, along with an analogous curve in q.
The lowest point on each curve, corresponds to the T = 0:02, q = 1 structure that is
characterized by the solid-like radial distribution function plotted in Fig. 8. For high
enough values of both T and q, the cluster has a liquid-like structure. Indeed, the bend
in the caloric curve (Fig. 11(a)) around T = 0:3 corresponds to the well known phase
change for this cluster [19,36,37]. The transition as q is increased beyond q ≈ 1:032,
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Fig. 10. Potential energy distributions for 5 walkers in a parallel tempering simulation of LJ13. The temper-
ature of the walkers plotted here is uniformly spaced over the interval 0:026 T 6 0:0808.

Fig. 11. (a) Caloric curve for LJ13 from a parallel tempering simulation at q = 1 (i.e., standard
Gibbs–Boltzmann statistics). (b) The “q-expectation” value for the potential energy of LJ13, plotted as
a function of q, at T = 0:02.

however, is very sharp by comparison. Looking at Eq. (16), this would imply that one
should use an extremely close spacing between neighbouring qs in that region.

4. Conclusions

The idea of generalizing the parallel tempering method to sampling from non-
Boltzmann distributions [38,11] has been explored using Tsallis statistics. The method
has e1ectively been applied to a one-dimensional problem and to an atomic cluster
where, in both cases, broken ergodicity is present. We have shown that GPS can ef-
fectively sample low-temperature equilibrium distributions in the canonical ensemble.
As such, GPS may be an e1ective technique for global optimization.
With the Lennard-Jones cluster, our method was more eBcient than the parallel tem-

pering method. Evidently in this system, increasing q has the e1ect, over a broad range,
of facilitating barrier crossing from local minima to the global minimum. Certainly the
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topology of the potential energy surface must help in determining how e1ective GPS
can be.
As q is increased in the cluster, we have noted an abrupt phase change. This posed

no diBculty in our simulations, since the sampling was ergodic for q below this tran-
sition. One can certainly imagine, however, cases in which it might be important to
sample con$gurations across the transition region. If the transition is not too sharp,
increasing the number of parallel simulations in that region should be e1ective. In
parallel tempering and simulated tempering simulations, iterative schemes, which could
certainly be applied to GPS, have been used to adjust the set of temperatures [39,4].
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