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1. The Rugged Energy Landscape of Proteins

Proteins are complex macromolecules which exhibit a variety of interesting
structural and dynamical properties. While they typically consist of thou-
sands of conformational degrees of freedom, proteins fold into well-defined
three-dimensional structures which allow them to carry out functions such
as reaction catalysis with great precision. Studies on protein folding have
demonstrated that the number of conformations available to a protein is
far too large to allow for the folding to occur by a random search.! Still,
proteins fold. Apparently, the sequence of a protein has been designed to
fold rapidly into a stable native state reliably. Unraveling exactly how that
is done has been recognized as one of the most interesting and important
scientific challenges of our time.23
It is clear that proteins fold into compact low energy states with re-
markably harmonious designs. This property has been expressed in the
“consistency principle” of Go6,* the “principle of minimal frustration” of
Bryngelson and Wolynes,® and in the studies of the importance of the “sta-
bility gap” between the lowest energy state and the manifold of higher
energy native-like states®® and the “energy gap” between the lowest en-
ergy and first excited conformations of model proteins.” If the native state
of the protein is assumed to be the global free energy minimum, the prob-
lem of identifying the native state is reduced to the problem of finding the
global minimum of a complicated many dimensional energy function. This
view has been made popular principally through the work of Scheraga who
has also contributed a fantastic number of creative approaches to the diffi-
cult problem of optimizing protein structure.® The difficulty of finding the
global minimum is closely related to the character of the multidimensional
energy function — the energy landscape — of the protein.

Experiment and computer simulations have had some success in pro-
viding the details of the energy landscape of proteins. For example, there
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is some fuzziness to the definition of the native state of a protein. The
dominant folded states of proteins are often thermally stable, but at times
appear to be metastable states.” Moreover, even when a protein structure
is well-defined, X-ray crystal structures as well as solution NMR studies
have demonstrated that there is some variety in the ensemble of structures
making-up the sample of the native protein. This disorder, often important
to the function of the protein, is in the form of conformational substates
— conformations of the protein which are similar in structure and energy
but which represent distinct conformations of the protein. The seminal ex-
periments of Frauenfelder and coworkers on the kinetics of ligand rebinding
in myoglobin following photodissociation have shown that these substates
can be biologically active but may carry out their function with varying
ability.!® Conformational substates have also been identified in the com-
puter simulation study of Elber and Karplus who found that in a 300 ps
trajectory of myoglobin the protein underwent many transitions between
substates (or local energy minima).!! Similar studies by Noguti and G6 of
a trypsin inhibitor have drawn the similar conclusion that during an equi-
librium simulation of less than 1 ns a variety of substates are sampled.!?
They classed the transitions between substates as (1) local conformational
changes involving a few residues which lead to elastic deformations of the
protein and (2) cooperative rearrangements which induce plastic deforma-
tions in the whole molecule.

Simulation studies of Straub and Thirumalai involving ribonuclease A
have demonstrated the existence of conformational substates which are sam-
pled in a dynamics trajectory of less than 100 ps at room temperature.!3
It was determined that these substates are separated by barriers of a few
kcal/mol. Their studies have demonstrated the existence of a broad distri-
bution of energy barriers ranging from a tenth to tens of kcal/mol.!3 It is
likely that the distribution of barrier heights is intimately connected to the
broad distribution of relaxation times found in proteins. More insights into
the gross features of the energy landscape have been provided by studies of
protein folding based on simple “minimal” models of the protein. Camacho
and Thirumalai have studied the thermodynamic and kinetic properties of
model heteropolymers.!* They found that there exists a relatively small
number of compact states of low energy and that these states are separated
by significant energy barriers. Detailed analysis of the density of states has
been carried out by Sali, Shakhnovich and Karplus for lattice Monte Carlo
simulations of a simple model protein in three dimensions.!®
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These studies demonstrate that the thermodynamics and kinetics of
proteins are best described in terms of the details of the potential energy
hypersurface — the energy landscape.!® The picture of the energy land-
scape of a protein which is consistent with the experimental and simulation
evidence is a rugged one with a large number of minima and a distribution
of energy scales. The general features of the landscape are dominated by
a relatively small number of low lying energy minima. The lowest energy
state in many cases is believed to represent the native state of a protein.
This picture is in harmony with the frustration observed in low temperature
kinetics experiments as well as the important features of protein folding ob-
served in the simulation of folding of model heteropolymers. Superimposed
on this gross structure is a substructure of many local minima. This sub-
structure explains the minor disorder observed in X-ray crystal structures
and solution NMR structures of proteins as well as the frequent transitions
observed between substates on a picosecond time scale in room temperature
computer simulations. Landscapes of this kind have been used to explain
many properties of spin glasses and a variety of theories developed for their
study have been profitably extended to the study of proteins, most notably
by the group of Wolynes,® and by Shakhnovich and coworkers.!?

The topological details of these rugged energy landscapes are currently
being defined using computer simulations of minimal models of proteins as
well as all atomic models in terms of the distribution of energy minima,
the connectivity of the minima, and the distribution of energy barriers
separating the minima. In the study of protein folding, more than the
distribution of energy minima, it is important to identify the lowest lying
energy states of the compact protein which are likely to include folding
intermediates and the subset of native protein configurations. Therefore,
it is important to develop reliable methods for finding the compact, lowest
lying energy states of the protein. From this point of view, an important
part of the protein folding problem is a global energy minimization problem
— a search for the lowest energy compact states of the system. This chapter
will review some of the more promising algorithms for finding low lying
energy minima of complex biomolecules.

2. Strategies for Global Energy Minimization

Problems centering on the global optimization of proteins share many
characteristics of a large class of “hard” problems known as N'P-
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complete.'®1? These problems can be solved by a straightforward, exhaus-
tive search of the set of possible solutions, such as the set of all possible
conformations of the protein. Unfortunately, for this class of hard prob-
lems, the complexity increases faster than any polynomial in N, where N
is a measure of the system size such as the number of atoms. This makes
the solution of a problem, such as finding the lowest energy conformation
of a large protein and folding the protein in machina,® a currently in-
tractable problem — one which cannot be solved in a realizable time using
an exhaustive search of configuration space.

This is good and bad news. The bad news is that we will have to be
very clever to make progress in finding the lowest energy configuration for
a protein of even 50 residues. The good news is that because this is a
common problem found throughout the physical sciences, there are many
techniques being developed which have provided very promising results. In
this chapter I try to provide a unified way of viewing what 1 believe to
be the most promising approaches to the global optimization problem for
proteins.

All problems of global optimization may be reduced to the same problem
— how best to find the extremum of a “cost function” which is a measure
of how well the problem has been solved. In the best known optimization
problem, that of the “traveling salesman,” the goal is to find the shortest
path which connects a set of cities that the salesman must visit.2!?? For
a small number of cities, the number of paths is small and the solution
is easily found using an exhaustive search. However, as the number of
cities increases, the number of possible paths rapidly exceeds the number
of paths one can consider, and an exhaustive search is rendered impotent.
In the protein folding problem, one might assume that the native folded
state of the protein is the thermodynamically most probable configuration.
The cost function is the potential energy (or more accurately and ambi-
tiously the free energy) of the protein. To find the folded configuration
of the protein one must find the global minimum of the cost function —
the potential or free energy of the protein.?3 Other examples include the
problem of identifying the ground state configuration of a spin glass or
very large-scale integrated circuits,* the optimum reaction coordinate in a
many dimensional chemical reaction,?3727 or the optimum configuration of
a molecule subject to distance constraints provided by X-ray diffraction or
NMR experiments.?8-3! Having abandoned the exhaustive search, we must
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find more intelligent strategies which can simplify the problem without loss
of essential details.

2.1. Simulated Annealing (SA)

A breakthrough was made in 1983 by Kirkpatrick, Gellat and Vecchi2* who
proposed what is now known as the Simulated Annealing (SA) algorithm.
This method is based on an analogy with statistical mechanics where the
cost function may be thought of as a rugged potential energy surface. The
temperature of the system is at first very high, and barriers in the system
are easily crossed. The temperature is then slowly reduced according to a
“cooling schedule” until the temperature is small or zero.!® The slow cool-
ing of the system has the effect of annealing the system, reducing strains
by finding lower and lower energy basins on the vast potential energy hy-
persurface. While the “optimal” cooling schedule3? cannot be realized in
most problems of interest, many realistic cooling schedules have provided
fabulous results on a wide variety of problems ranging from the design of
circuits to the global energy minimization of molecular clusters. However,
we are interested in proteins, and the results of a number of careful stud-
ies indicate that for proteins SA is an ineffective strategy for finding the
lowest energy configuration.3334 I believe this is due to the wide array of
energy scales in the biopolymers which tends to frustrate SA by making
the optimal cooling schedule particularly difficult to realize. This point is
discussed in detail in Sec. 4.

2.2. Potential Smoothing and Coarse Graining

Hoare and McInnes®® noted that softer potentials tend to favor a regular
crystal configuration (as the global minimum) while shorter range potentials
tend to encourage amorphous structures. In an elegant analysis of the non-
linear optimization problem, Stillinger and Weber3® recognized that while
the number of local energy minima is a strongly (exponentially3”) increas-
ing function of the system size, how fast the absolute number of minima
increases has a great deal to do with the length scale of the interparticle
interactions.3® Systems with short range potentials dominated by nearest
neighbor interactions have large numbers of local minima. When the range
of interaction is increased, the number of minima can be drastically re-
duced. Several detailed studies have shown how dramatic this effect can
be.383% The program of smoothing the potential energy hypersurface to
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remove high lying local minima, and to deepen and broaden the global
energy minimum, has been was referred to as the “antlion strategy.”36:38
Berry has written a fine review of the related work done examining the char-
acter of the rugged energy landscapes of atomic and molecular clusters.4°
The structure of this chapter rests on the foundation of these two im-
portant advances. I hope to convince you that the most promising methods
for global optimization of proteins can be understood as variations on the
simulated annealing and antlion paradigms. The next section is a selective
review of some useful “tailored” optimization strategies which have been
developed for specific applications. The most interesting of these algorithms
are at heart potential smoothing algorithms. The rest of the chapter will
concentrate on “general” algorithms for global optimization which may be

SD

QMA/GDA

‘‘tunneling’’

Fig. 1. A schematic of the paths taken by three optimization algorithms on a rugged
potential energy surface. The local steepest descent minimizer (SD) locates the nearest
local minimum. The simulated annealing (SA) algorithm searches a larger region of
configuration space, but with rapid (more practical) cooling schedules, one may fail
to clear important barriers and become trapped in a local minimum. The quantum
mechanical annealing (QMA) method, as well as the GPP and GDA algorithms, has
the advantage of working with a coarse grained potential energy surface where the wave
packets can tunnel through potential barriers.
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applied to any molecular structural optimization problem and to a variety
of problems outside of molecular energy minimization. The third section
describes simulated annealing in time using an approximate classical dy-
namics which results from an attempt to anneal simultaneously an ensemble
of systems rather than a single point on the vast configuration space. In
the third section, I discuss an unconventional annealing strategy (Gaussian
Density Annealing, or GDA) where the system is followed in temperature
rather than time, avoiding the problematic cooling schedule. Alongside
this method, I mention two related techniques which are in the same spirit.
The fourth section covers a variety of methods for performing “quantum
mechanical annealing” (QMA) where the annealing process can benefit from
tunneling (which dominates the system relaxation at low temperatures) as
well as activated barrier crossing (effective only at high temperatures). A
graphical overview of these techniques is provided in Fig. 1.

Several excellent overviews of local optimization techniques exist which
are complimentary to the methods discussed in this chapter.4!-44 While
many of the algorithms discussed here have been tested on proteins, some
have not. The global energy minimization of clusters of Lennard-Jones
atoms has emerged as a standard test case for algorithms designed for
molecular optimization problems and many results presented here deal with
this useful system with known results.40:45-47

3. Tailored Algorithms

In a broad sense, tailored -algorithms refer to optimization methods which
are designed ad hoc for a specific problem. In the cases I will discuss, what
is tailored about an algorithm is that it only applies to potential functions of
a certain symmetry or functional form. For example, an algorithm which
exploits the functional form of a centrosymmetric potential is not easily
generalized to treat covalently bonded systems, and vice versa. However, as
will be clear, many of these algorithms, while tailored to specific problems,
may be applied to the broad class of problems involving molecular energy
minimization.*® Moreover, they are recognizable as specific forms of the
more general class of potential smoothing algorithms.

3.1. Potential Shift and Bond Scaling

Piela and coworkers have presented a method for global energy minimiza-
tion designed for centrosymmetric potentials.*® The method is based on a



Optlimization Technigues with Applications to Proteins 145

potential deformation where the range of the attractive interaction is ef-
fectively increased relative to the length scale of the repulsive (excluded
volume) interaction. In an application to atomic clusters, the Lennard-
Jones potential was transformed as*®

Viy(rij) = Viy(ri; + armin) , (1)

where 0 < a £ 1 and 7y, is the minimum of the initial potential energy
function i, (see Fig. 2). When a = 1 the potential is transformed such
that the potential minimum is moved to the origin r;; = 0 and the portion
of the potential with a repulsive force is eliminated — the potential is purely
attractive. As a decreases to zero the physical potential is restored.

In practice, the algorithm is implemented by (1) finding the minimum of
the scaled potential with a = 1 (in the case of atomic clusters all atoms are

Fig. 2. A schematic of the potential energy surface for a Lennard-Jones interaction
V{(r). The physical potential energy has a minimum at rni,. When the potential is
transformed through the shift of r — r + ary,;, the potential minimum moves towards
the origin, increasing the relative importance of the attractive interaction.
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superimposed at the origin), (2) changing a — a — é followed by (3) energy
minimization to track the minimum on the new surface, and (4) a return to
step (2) until the energy minimum is mapped back to the physical potential
where a = 0. This method has been successful in finding the global energy
minimum for a series of Lennard-Jones clusters ranging from 5 to 19 atoms
but appears to be quite CPU intensive (reported to take 100 hours on an
IBM 386 for the 19 atom cluster).

Loop closure is a fundamental problem in protein modeling.5° DelLisi
and coworkers®! have introduced an effective method for loop closure which
has been applied to model loop segments (of seven residues), including a-
helical, B-strand and surface loops, in a variety of systems®? as well as to
bound peptides in class I major histocompatibility complex receptors.53 The
algorithms are based on a simple scaling of the bond lengths and van der
Waals interactions coupled with energy minimization. Suppose the goal is
to model a peptide segment into a site with a known end-to-end distance d.
(1) The peptide segment is extended using random values of the backbone
dihedrals leading to an initial end-to-end length of dg. (2) The bond lengths
are then uniformly scaled by adjusting the equilibrium distance as

To — To(d/do)(N"i)/N (2)

such that the end-to-end distance equals the known value (see Fig. 3). (3)
The energy of the peptide is then minimized (if possible in the external field
of the protein) where the repulsive van der Waals interactions are also scaled
by a factor of (d/dg)* ¥ —*)/N _ (4) Returning to step (2) the cycle is repeated
N times until the peptide bonds are scaled back to their equilibrium lengths
and the segment is energy minimized (hopefully) globally. This procedure
should be repeated with a variety of initial conditions leading to a final
ensemble of possible configurations. While this method has been employed
with a local minimizer in step (3) it might be improved by substituting
a more effective energy minimization method such as a form of simulated
annealing discussed in the next section.

The scaling of the peptide bond is quite similar to the bond shift algo-
rithms of Piela and coworkers.*® Note that a primitive version of the bond
shift algorithm of Eq. (1) is

V(ri;) = V(ri; +arp), (3)

where 1 —d/dy < a <1 and 7¢ is the minimum of the bond stretching
potential energy function. When a = 1 - d/dy the potential is transformed
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Fig. 8. A schematic of the potential energy surface for a bond stretching interaction
V(r). The physical potential energy has a minimum at ro. When the potential is
transformed through the shift of r — r + arg the potential minimum moves towards the
origin, increasing the relative importance of the attractive interaction.

such that the potential minimum is moved toward the origin r;; = 0 and
the portion of the potential with a repulsive force is reduced (when a = 1
the potential is purely attractive). As a decreases to zero the physical po-
tential is restored. A combination of the primitive bond shift algorithm
with the nonbonded shift of Piela and coworkers discussed here is a varia-
tion of the successful loop closure algorithm of DeLisi and coworkers worth
investigation.

3.2. Sigma and Torsion Potential Fluctuation

An inventive method for enhanced conformational space sampling has been
presented by Liu and Berne.®* This method rests on the very general idea
of allowing constants which determine the length and energy scales of the
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interaction potential to fluctuate during a simulation according to deter-
ministic (or stochastic) equations of motion. Their method is in the spirit of
the extended dynamical methods of Andersen,>® and Nosé,%¢ and Hoover®’
for applying external constraints on temperature or pressure. While their
applications involve Monte Carlo studies of a binary Lennard-Jones fluid
and chain folding in normal alkanes, they provide a clear prescription for
applications involving molecular dynamics which may be more suitable for
biomolecular systems.5*

For example, consider a Lennard-Jones fluid of particles with physical
diameter 0. We allow the particle diameters to fluctuate between the values
of Omin and og. Writing the Lennard-Jones diameters o as variables which
depend on a parameter w we have

o(w) = 0o + (Tmin — 00)s(w), (4)

where s(w) is a sigmoidal function which varies between 0 and 1 switching
o between 0g and ois. By defining a “kinetic energy” for the parameters
wy of the kth atom with fictitious mass m; the generalized Hamiltonian
energy function becomes®

=%Z

NI'—‘

N
+ g i 4V W)+ F (W) (5)

with corresponding equations of motion
M;i = —V,‘= V(r,w) (6)
=V V(r,w)-V,, F(w). (7)

Mty

F(w) is a cost function which constrains the fluctuations of the variables w
during an otherwise standard molecular dynamics simulation. The first set
of equations is for molecular dynamics on a potential which depends on the
fluctuating parameter w. Fluctuations in w will deform the potential and
occasionally lower barriers allowing infrequent events to occur with greater
frequency. This leads to enhanced sampling of the configuration space (see
Fig. 4).
Similarly, in a polymer the torsion angle potential can be written%*

V(¢,'CU) = V0(¢) + [Vm(¢) - Vo(¢)]3(1l)) ' (8)
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y:

V(x)

a/2

40/5

x

Fig. 4. The potential energy for the interaction of a single atom passing along the
z-axis between two atoms fixed at (z = 0,y = £A). When the diameter o of the
interior atom is allowed to fluctuate to smaller values, the potential surface for moving
between the two particles changes from a separated “double well” with a high barrier, to
a double well with significantly lower potential barrier, to a minimum with no barrier.
This mechanism allows for enhanced barrier crossing and configurational sampling in the
sigma fluctuation algorithm.

where Vy(¢) is the physical potential and V,,,(¢) is a potential with lower
barriers than V(¢). The fluctuations of the Lennard-Jones atomic diame-
ters and torsion angle potential have been shown to lead to greatly enhanced
sampling in Monte Carlo simulations of n-pentane and Csq H;02.5* For the
Lennard-Jones simulations, the effect of the sigma fluctuations is to soften
the interactions allowing for closer contacts and smaller amplitude oscilla-
tions in the structure (radial distribution function) indicating a lowering in
the barriers of the potential of mean force which leads to enhanced sam-
pling. The qualitative trends are similar to those seen in the approximate
dynamical annealing methods discussed in the next section.® The sigma
fluctuation method shares many of the features of the potential smooth-
ing algorithms featured in this chapter. Moreover, it is also possible to
compute averages in the ensemble of the physical potential (fixed o) using
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the enhanced sampling trajectories (fluctuating o) via umbrella sampling
techniques.>* Similar results are expected in simulations of proteins where
the use of molecular dynamics, rather than Monte Carlo, may be more
attractive. This enhanced conformational space sampling should lead to
more rapid folding as well as information on the distribution of low energy
conformations of the molecule.

3.3. The Antlion Method applied to Proteins

A slightly different approach which combines potential smoothing with a
novel implementation of secondary structure prediction information has
been developed by Stillinger and coworkers in the form of the “antlion
method.” This method has been applied to a blocked alanine dipeptide and
tetrapeptide®® as well as the a-helical protein melittin.®® In each case the
potential surface was deformed by applying constraints on the (¢,) angles
which bias the configuration towards a given local secondary structure. In
the case of melittin, the deformation included (1) a bias towards the trans
peptide backbone configuration, (2) a bias towards the L conformer of each
amino acid using an improper torsion potential around the C,, (3) a penalty
function to encourage a set of ideal (¢o,%) angles of the form

Vo,u = ko[l — cos(¢ — ¢o)] + ky[1 — cos(¢ — o)), 9)

where the values of the force constants k4 and ky are determined by a
neural network trained on a learning set, (4) a penalty function in the form
of a Coulombic potential which encourages hydrogen bonding between the
backbone carbonyl O of residue i and the backbone amide H of residue i +4
where the charges were determined using a neural network, and (5) setting
to zero the side chain atomic charges.

Following the determination of parameters for the penalty functions (to
encourage secondary structure formation) the conformation of melittin was
minimized from an initial extended conformation on the smoothed potential
surface. (For the application to melittin, the ideal (¢g,%o) angles were
those of an a-helix (—57°, —47°).) This was followed by minimization on
the physical potential surface until convergence. This method succeeded
in finding a structure within an overall 2.45 A root-mean-square difference
from the minimized crystal structure.50

Some protein optimization algorithms, such as that of Friesner and
coworkers which was applied to myoglobin,%! rely on an initial step of sec-
ondary structure prediction. If it is possible to identify regions of secondary
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structure, extended regions of protein substructure can be fixed, thereby
greatly reducing the number of degrees of freedom which must be included
in the search for the global energy minimum. With regions of secondary
structure frozen in, folding is expected to occur as described in the diffusion-
collision model of Karplus and Weaver.52 However, secondary structure
prediction methods are less than perfect (usually around 70% accuracy per
residue) and any folding optimization algorithm which assumes this knowl-
edge will have difficulties with the accumulating error. The antlion method
overcomes this problem by using a penalty function which biases the residue
towards a given set of idealized (¢, ) angles rather than rigidly fixing the
backbone (¢, ) angles of a given residue. However, one must specify the
ideal angles (¢o, %) about which the penalty function will constrain the
residue. In the case where the secondary structure is of one kind, such as
melittin®® or even the example of myoglobin,®! this might succeed. How-
ever, in cases where there is a known mix of secondary structure types, the
problem of best choosing (¢g,%p) must be addressed. Nevertheless, this
tailored algorithm appears to be very promising.

The methods discussed in this section have been tailored to exploit
detailed aspects of specific problems. In the remainder of this chapter,
I will describe three classes of general algorithms for the optimization of
molecular systems which have much in common with the successful tailored
methods discussed here.

4. Classical Simulated Annealing in Time

The paradigm of global optimization of complex systems is simulated annea-
ling.18:24.63.64 This method makes use of a powerful analogy between the
statistical mechanical process of annealing and the challenge of global opti-
mization of a complex cost function. In global energy minimization, where
our cost function is the potential energy surface, this requires no stretch
of the imagination. The system is simulated at an initially high tempera-
ture using molecular dynamics or Monte Carlo. The temperature is slowly
lowered according to a cooling schedule, annealing the system to a low or
zero temperature. The final configuration of the system is the guess at the
global energy minimum. If the cooling schedule is chosen properly, we can
expect to find the global minimum with a high probability.

The difficulty comes in finding a practical cooling schedule which can
guarantee a high probability of finding the global energy minimum.® A
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typical cooling schedule is defined by decreasing the temperature by a factor
£ < 1 from one step to the next so that!®

Ty =&T; . (10)

While this is convenient and faster for smaller values of ¢, it is arbitrary. In
many complex systems, we know that there are a variety of energy scales
on the rugged energy landscape.!9-12:13 [t is reasonable to expect that the
optimal cooling schedule will be intimately related to the disparity between
the largest and smallest energy scales in the system. A simple heuristic
analysis in one dimension demonstrates this by estimating the lower bound
on the simulation time t,;,;, necessary for finding the global minimum with
a reasonable probability.

Taking the global energy minimum to be the zero of energy, E,,, is the
highest barrier on the potential surface (see Fig. 5). If we choose the initial

*
E max

AE

Fig. 5. A schematic of an energy landscape showing the important energy scales which
determine the effectiveness of the simulated annealing algorithm. At the high end is the
largest energy barrier which must be crossed E7,,, for a trajectory to explore all of the
configuration space. At the low end is the energy gap AFE separating the global and
next lowest energy minimum. For many problems, the ratio of energy scales E.,,/AE
defines the difficulty of the optimization problem.
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maximum value of the temperature such that
kgTimax = 1/Bmin = Ejax
then
ePminEans = O(1). (11)

At this high temperature, the trajectory will be free to cover the entire
configuration space unhindered by the energy barriers in the system.

On the other hand, the lowest temperature we need to consider is one
where kpTimin = 1/Bmax < AE where AE = E; — E; is the “energy gap”
between the global energy minimum and the next lowest energy minimum.
This inequality should be satisfied so that the mole fraction of being found
in the global energy minimum X, (compared to the mole fraction for all
other minima 1 — Xj) is large. For many problems, at low enough temper-
atures there is an effective two level system dominated by the global and
next lowest energy minimum, so we simply demand that

X
Bm.lAB —3 _0
e - X, (12)
be reasonably large (meaning that X is reasonably close to 1).

Ideally, at any point along the annealing trajectory, the system will
be at thermal equilibrium. To effectively sample the system at a given
the trajectory should spend a time of at least ¢t = 7,exp(8E,,,) required
to cross any barrier in the system; 7, is a characteristic time scale for
vibrational motion. For that to be true, the time spent (dt) in a given
temperature interval (3, 8 + df) should be at least

dt = E*, 1,6’ Fmex dg. (13)

max ‘S

7, is a short time scale fixed by the highest frequency motion in our system
which sets the upper bound on the time step we can take in the integration
of our system.

The lower bound on the total simulation time ., can be found by
integrating Eq. (13) between the initial 8,;, and final B, leading to a
number of simulation steps N, = t4n /7, which scales as

_Xo_\ _Es./b6E
N, (I—Xo)e . (14)
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This result can be used to estimate the simulation time required in molec-
ular dynamics to find the global energy minimum with a probability Xj.
The exponential dependence of N, on the ratio of energy scales E,ay /AE
shows that the most difficult optimization problems involve systems with
a great disparity in energy scales. It is not possible to explain the diffi-
culty of a given minimization problem solely in terms of a small energy gap
separating the lowest and next lowest energy minima, or the presence of
high barriers separating regions of configuration space. It is the ratio in the
coarsest and finest energy scales that dictates the simulation time needed.
Similar results hold for more commonly employed cooling schedules.

When the rate of lowering temperature in time is fixed, the simulation
time required will be set by the limits of the initial and final temperatures.
In the global optimization of biomolecular systems there is a range of energy
scales, the ratio Ey,,, /AE is large, and the necessary simulation time will be
significantly longer than for simple systems. A rough estimate of this time,
taking Xo = 0.01 and E},, /AE = 10, indicates that such a simulation is
out of the question at the present time. In fact, reasonable estimates should
be close to the real time required to simulate the dynamical folding of the
protein in machina without the help of simulated annealing which now can
only be performed for model systems.%6-68

For simulated annealing to be an effective strategy for optimization of
proteins, some changes are required. Think of applying the simulated an-
nealing algorithm using an ensemble of systems in parallel. One may then
explore a variety of mean field approximations for the approximate integra-
tion of an ensemble of systems. I will summarize a few of these techniques
in this section. Unlike an ad hoc potential transform, these methods are
rooted in the approximate integration of the classical Liouville equation
which describes the time evolution of the classical density distribution (an
ensemble of classical systems) just as Newton's equations employed in clas-
sical simulated annealing describe the time evolution of a single trajectory.

4.1. Classical Dynamical Annealing using the Liouville Equation

A method for global optimization which is becoming increasingly popu-
lar involves the use of straightforward ensemble integration on massively
parallel computers. In the simplest application, an ensemble of initial con-
figurations is generated (representing copies of the system) and each copy
is simulated independently, for example, using simulated annealing. When
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it is determined that a trajectory has reached its lowest energy, or has
moved outside of the region of interest in configuration space, the system is
removed and replaced by a new copy of the system. In this way an ensem-
ble of systems — a density distribution — is simulated. However, this is
computationally demanding and the time over which the system dynamics
must be followed is very long (according to the argument given above).

In the development of new methods, it is often desirable to describe
the time evolution of an ensemble of systems (to derive the benefits of
enhanced sampling) while treating the dynamics approximately (to reduce
the computational cost of simulating so many systems in parallel). One
place to start is the classical Liouville equation which defines the exact
dynamics of the classical density distribution p(r,p,t).

In the time evolution of an ensemble of classical systems, where
each system follows the classical mechanics defined by Newton'’s equations
of motion,” the time evolution of the distribution p(r, p,t) is described by
the Liouville equation?%73

69,70

o
ap(r,p‘,t) = —Lop(r,p,t) (15)
where L is the Liouville operator
P9 9
Ly = . Br + F(r) ap (16)

and F(r) is the force and m is the mass. F(r), r and p are d-dimensional
vectors.

An exact description of the dynamics of p(r,p,t) is provided by the
equations of motion for the average position and momentum?*

d(r) _ (p) d(p)
dt m dt (F) (a7)
and for the higher-order moments of position and momentum
dM,, n
o k= M1k + kWn k1. (18)

The moments of the distribution are defined as M,, x = ((r —70)™(p — po)*)
and W, x = ((r —r0)"(p—po)*(F — Fp)) where 1o = {r), po = (p), and Fy =
(F(r)). The brackets (...) imply an average over the density distribution®®

(A4) = / drdpA(r,p)o(r,p. 1) . (19)
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Integration of this hierarchy of equations provides an exact description of
the dynamics of the ensemble. However, in practice this is intractable since
for most anharmonic potentials the moments are coupled (up to infinite or-
der moments). Therefore, one must either truncate the moment expansion
(which can be numerically unstable) or approximate p(r, p,t).

As a first approximation, Ma, Hsu and Straub’®7® have taken p(r, p, t)
for a many body system to be a product of single particle distributions rep-
resented by d-dimensional spherically symmetric Gaussian phase packets
(GPP).7%77 Each GPP is completely defined by the first and second mo-
ments — the packet center (ro,po) and widths (M3, M) 1, My 2) in phase
space. It is straightforward to derive equations of motion for each Gaussian
using Eq. (18).

The appeal of these simple equations of motion comes from their ori-
gin as an approximate solution of the Liouville equation for an ensemble
of systems, while requiring little more computational investment than is
required to integrate Newton’s equations for a single representation of the
system. The equations of motion are variationally optimized, meaning that
the error between this approximate solution and the exact solution has been
minimized in a least squares sense. While being approximate, the algorithm
leads to significantly enhanced sampling in both applications to equilibrium
averaging and global optimization.”

In general

miy = =V, (V) (20)

which has the form of Newton’s equation for the Gaussian center ro moving
on a coarse-grained effective potential (V). When M, = 0 the equations
of motion reduce to the usual equations of classical molecular dynamics.
The second moment equations depend on the Laplacian of the effective
potential. It has been found” that the average value of the second moment

in position M is related to the generalized Einstein frequency’®:7®
1 —
0f = =—(V?V) ~ dkpT/2mMy, . (21)

This provides some insights into the dynamics of the approximate Gaussian
density distribution. The center of the distribution moves to minimize the
force while the widths adjust to the curvature of the effective potential.
Moreover, they adjust in a way that instantaneously provides the ensem-
ble of states represented by a fluctuation about the average structure. In
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this sense it is similar to an effective harmonic or quasiharmonic model of
the protein where the configuration space is represented by a given con-
formation of the protein (the center of the distribution) and the harmonic
fluctuations around this configuration. In the Gaussian phase packet rep-
resentation, this effective harmonic representation follows the evolution of
the centers. At each instantaneous configuration the density distribution
represents a distribution of protein structures and no normal mode analysis
or time averaging of fluctuations (quasiharmonic analysis) is required. Fur-
thermore, as the centers evolve, the density distribution carves out a tube
in phase space representing a volume of many single protein trajectories.
It is this enhanced sampling which provides the ability to find the global
energy minimum most effectively during simulated annealing.

4.1.1. Evaluating the Effective Potential for Proteins

Any difficulty associated with the application of the GPP dynamics comes
in calculating the effective potential (V') for a protein using a general em-
pirical energy function of the ECEPP8%:8! or CHARMM?®? form. Once (V)
is known, the GPP dynamical trajectory is found by solving the first or-
der differential equations in the fashion of molecular dynamics.”"82:83 For
covalently bonded systems such as polymers and proteins this is a simple
matter while, in contrast, defining effective Monte Carlo moves can be quite
challenging.

How do we calculate (V) for a protein? To start we need to calculate the
effective potential between a pair of interacting atoms. For a many body
system it is convenient to approximate the N body distribution function as
a Hartree product of the single particle distribution functions®¢

N
p(r™,pV,t) = [T pu(re, pit). (22)
k=1

This approximation makes it particularly easy to evaluate the pair potential

N
(V) = Z /drN/de p(rN  pM WV (Iri = 1))

t>j=1

i /dr"/d”i/dri/dl’j pi(ri, pi)p;(rj, )V (|ri — 7j]). (23)

i>j=1
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The final effective potential is the interaction energy of the Gaussian
densities of the two atoms. That is, the probability of the two atoms being
a certain distance apart is smeared out over a range of distances. The
result is an averaged potential energy with the features of a coarse grained
potential — raised and fewer minima and lower barriers.

The effective pair potential (V') is a function of the separation of the
centers of the two interacting density packets (as well as the widths of those
packets). It turns out that we can reduce the 2d-dimensional integral above
to a one-dimensional integral over the interpacket separation.” The result
is that the potential is averaged as

oo ,
(V) = / drG(r)V(r) (29)
0
over a distribution function
T
G(r) = (¢/m* = [exp(=((r = 14;)?) - exp(=C(r +75))]  (25)
ij
where r;; = |r,()‘) - rgj )| is the interpacket center separation and { =
d/[2(MS) + Mé_’o))] is the reciprocal sum of the density packet widths (the
mean square spread in position). The effective potential is easily evaluated
when V(r) is a Gaussian, exponential, or a polynomial. As we will discuss
below, it is most common to represent the nonbonded potential energy as a
sum of Gaussians or exponentials, and the intermolecular potential in the
form of polynomials.

The general form for the empirical potential energy function most pop-
ular in studies of proteins is®!:82.85

V(TN) = Vbond + Vlngle + ‘/tonion + VLJ + VCoulomb . (26)

In evaluating the effective potential for the density distribution we can em-
ploy a very useful trick — we will write the total potential as a sum of pair
potential terms. This is a simple matter for the bond potential which is
typically modeled' as a harmonic Hook’s law form Vpona = «|ri — Tis)?
The nonbonded interaction is typically a pair potential consisting of the
Lennard-Jones interaction of a hard core repulsion (modeled as a 1/r!?
form or just as well as an exponential) and a longer range attractive Lon-
don dispersion energy (which varies as 1/7%). In some cases it is important
to include ion-induced dipole terms (varying as 1/r* and proportional to
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the atomic polarizability). Higher order effects such as self-consistent po-
larizability can be added but with a significant computational overhead.
For all but the last interactions, the potential is a simple pairwise additive
function.

For the Coulombic interaction (which varies as 1/r), the average po-
tential of Eq. (24) can be calculated exactly in a simple form. For the
Lennard-Jones potential we find it easiest to fit the potential to a sum
of Gaussians and/or exponentials for which the average potential is easily
calculated.”

Other interactions are often treated using three or four atom interac-
tions. The angle term is usually treated using internal angle coordinates
defined by the three atoms forming the angle. However, this form may be
replaced by a Urey-Bradley interaction of the form V,,ge = &lr; — Tip2|?
(however, the force constants must be adjusted). For the case of rigid
bonds, the usual angle term may be written as a harmonic interaction in
|ri = 7i42|. The torsional potential is usually written in terms of four atom
torsional angles but in the case where the bonds and angles are constant
it may be rewritten using a simple polynomial as a sum over powers of
|r; — ri43|® making it a simple pair potential. The take home message
is that the protein potential function can be readily written in terms of
pairwise additive interactions. Once this is done, we can use Eq. (24) to
evaluate the effective potential energy of interaction between the density of
two atoms in the protein modeled using Gaussian phase packets.

An alternative is to treat the internal potential (bond, angle, torsions)
as a force acting only on the packet centers. The effective potential is

(V) = Vbond + Vnngle + Vtornion + (V>LJ + (V)Conlomb ) (27)

where only the nonbonded potential is averaged over the density distri-
bution. The centers of the packets define an underlying protein structure
which is confined to a manifold of states of well defined bond lengths and
angles.

4.1.2. Temperature Control during Annealing

In applying the GPP algorithm to an optimization problem we perform a
simulated annealing of the continuous density distribution, which requires
that we control the temperature during cooling. There are a variety of ways
to do this. One method involves a rigid constraint on the temperature.
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Other methods involve coupling the system to a heat bath such that the
temperature of the system may fluctuate. We will discuss and compare
these methods in the next two sections.

4.1.2.1. A Rigid Constraint on the Temperature

To apply the constant temperature constraint which truly holds the temper-
ature constant, we appeal to Gauss’s principle®®:87 and write the generalized
Liouvillian™

d
£=£o+£c=£o—75;'17a (28)

where L, is the streaming operator of the system and L, is the collision op-
erator which couples the system to the bath. v is determined by the external
temperature constraint equation dT'(t)/dt = 0 or equivalently d(p?)/dt = 0
which guarantees that the temperature remains constant at every instant
in time.

Using the Liouville equation we find equations of motion for the average
position and momentum?*

- Ry (29)

and for the higher-order moments of position and momentum

dM,,'k _n
= EMn-—l.kd-l + k(Wn.k—l ‘YMn,k) . (30)

The above equations are exact and completely general. For the Gaussian
phase packet, the time evolution of the first and second-order moments is
given by"4

fo=B0 o= =Vro(V) - 1m0 (31)
: 2
Map=—M;,
m
. 1 1
My = —Mos ~— =Mz oV2 (V) = M),
m d
. 2
Mo,z = -‘Ml,l Vfo(V) - 2“‘/M0.2 .

d
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The temperature constraint equation which specifies the cooling schedule
dT(t)/dt determines the value of 4. For an exponential cooling schedule
dT(t)/dt = —~4T(t). Note that (V) is the bare potential energy averaged
over the phase space distribution

(V)= /dr/dp p(r,p)V(r). (32)

Averaging over the density distribution p(r, p) effectively coarse-grains the
potential surface. In Fig. 6 we show how the effective potential is smoothed
as the width of the density distribution increases.

Note that in general

mio = =V, (V) — 1po (33)
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Fig. 6. The effective potential defined by Eq. (32) is plotted for an asymmetric double
well for a series of squared widths M3 o. The bare potential used in molecular dynamics
corresponds to My, 0 = 0. The units are arbitrary. The potential is approximately what
would be seen by a Lennard-Jones atom moving along r between two atoms (of different
types) centered at r = 2.
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which has the form of a Langevin equation (minus the explicit random force)
for the Gaussian center ro moving on a coarse-grained effective potential.
In the limit that M, = 0 the equations of motion reduce to the constant
temperature algorithm of Evans and Hoover®? for classical point particles.

4.1.2.2. Coupling to a Bath through Weak and Strong Collisions

The rigorous constraint on the temperature leads to a set of equations which
are easily integrated and which in practice lead to a continually fluctuating
p(r,p,t). In a more realistic treatment of coupling a system to a heat bath
we expect that the density distribution will relax to the static equilibrium
density distribution where peq = —Lpeq = 0. This can be achieved, even in
an approximate representation of p(r,p,t), by coupling the system to the
heat bath through a collision operator L. of the Fokker-Planck8® or BGK
form.89
Consider a “weak collision” Fokker-Planck operator®®

L.= —'ya% . [p+ mkgTa%] . (34)

The final equations of motion for the Gaussian density distribution of a
particle coupled to a heat bath through the Fokker-Planck collision opera-
tor are identical to Eq. (31) with the exception that the equation of motion
for the second moment of the momentum M, ; is

2
d
A related result has been presented where the momenta are adiabatically
eliminated leading to a Gaussian packet solution of the Smoluchowski
equation,183.154

Following the hybrid constant temperature algorithm of Andersen,5®
one might choose a BGK-like collision operator®?:90

Mys=— M, V2 (V) = 2y[My 2 — dmkpT) .

d/2
L. = 7[1 - (ﬁ) exp(—p2/2kaT)/dp] (35)

which thermalizes the momentum with a rate v according to the Maxwell
distribution. In our GPP dynamics algorithm this corresponds to integrat-
ing a deterministic dynamics specified by Eq. (31) where the equation of
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motion for M, 2 is replaced by™*

2

M0,2 =_d

MiaV3,(V) =7 [Moa — (9 + dmksT)| (36)

In each algorithm the value of the friction + is fixed and the temperature
is controlled by an external cooling schedule. If the equations of motion
are integrated at a fixed T for a long enough time (long compared to 1/7)
the distribution is damped and p(r, p) approaches an estimate of the steady
state distribution.

The simulated annealing using GPP dynamics and an exponential cool-
ing schedule has been applied to the global energy minimization of atomic
clusters ranging from 2 to 55 atoms with excellent results.”*:®! The results
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Fig. 7. The probability of locating the global energy minimum for a sample of one
hundred independent configurations is plotted for a series of Lennard-Jones clusters for
three algorithms: simulated annealing with Gaussian Phase Packets (GPP), simulated
annealing using the Fokker-Planck GPP algorithm (FP) and simulated annealing in
temperature using the Gaussian density annealing (GDA) algorithm. The energy gap
AFE between the global energy minimum and the next lowest energy state found is plotted
(in Lennard-Jones reduced units per particle) to show the inverse correlation between
the size of the energy gap and the probability for finding the global minimum.
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for annealing using the (1) a rigid temperature control (GPP) and (2)
coupling to a bath using the Fokker-Planck collision operator (FP) are
summarized in Fig. 7. For comparison, the energy gap AE = E, — Ey
between the global and next lowest lying energy minimum found in the
study is plotted. There is a strong correlation between the probability of
finding the global minimum and the magnitude of the energy gap. The
hardest optimization problems are those for which the energy gap is small
(for example, n = 17).

4.2. Annealing using Locally Enhanced Sampling (LES)

For conformational searches of peptides and small proteins, a powerful
method which stays close to the spirit of sampling conformation space
through molecular dynamics is the Locally Enhanced Sampling (LES) al-
gorithm developed by Elber and coworkers.!!:8492 This method relies on
making a “mean-field” approximation where a set of atoms or amino acid
residues are simulated by an averaged “field of copies” of those residues.
To explain, assume we have a protein which binds small peptides. While
the protein is large, we are mostly interested in the binding-site region and
how the peptide binds to it. If we were to run Z simulations of the full
system, for all these simulations much of the protein will be in the same
conformation. That is, the time spent updating the unaffected portion of
the system is wasted.

In the LES procedure we divide the atoms or residues into a “system,”
consisting of the peptide and those residues in the binding region, and a
“bath” of residues which are not strongly affected by the binding process. Z
trajectories of the “system” are run simultaneously feeling the full force of
the single set of “bath” coordinates; atoms of the “bath” feel the averaged
force of the Z systems. This is an approximate method which has been quite
successful in exploring reaction pathways for carbon monoxide diffusing
through the heme protein myoglobin where the ligand is treated as the
“system” by Z copies (Z as large as 60).!! For most problems of interest
the “system” will be small compared to the “bath” and the LES algorithm
provides an approximate method of dramatically increasing the sampling
of peptide conformations (optimally by a factor of Z) while only marginally
increasing the computer time required.

Using the formalism of the Liouville equation based algorithms discussed
above, we express the density distribution of the LES algorithm as
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p(TN ’ PN ’ t) = PbathPsystem

M N
=60 -r)se—pe) [ peystem(respe)  (37)
k=1 k=M+1

and

4
Pomsem(ri,p1) = 35 3007 = T1)8(p = ) (38)

=1

where Z is the number of “copies” of the system particles. The density
distribution of the peptide bath interacts with an approximate mean field
distribution of the protein system.

While the LES method is a powerful technique, it is approximate. For
example, as a result of the lack of equal-and-opposite forces the system does
not equipartition energy as one would find in normal molecular dynamics
— energy is collected in the “system” coordinates effectively heating the
system to Z times the temperature of the bath.®3 However, there are ap-
proximate methods for correcting this problem®* including holding the bath
coordinates fixed when no sampling of the bath coordinates is desired.?%:%¢
An additional difficulty arises from the excluded volume of the system. In
the limit that the system copies have little overlap, the excluded volume
will be Z times that of a single system. Nevertheless, the LES algorithm is
a very effective enhanced sampling algorithm which is easily applied using
molecular dynamics or Monte Carlo.

Roitberg and Elber have applied the LES method to optimization prob-
lems using a dynamical simulated annealing strategy with impressive results
for two tetrapeptides and aromatic side chains in BPTI.?” Moreover, they
provide a beautifully simple proof that the result of an ideal annealing run
using the LES algorithm will result in the ezact result for the global energy
minimum which would be found using MD simulated annealing.

The strength of the LES algorithm is that is it very simple to imple-
ment. No effective potential is required, and the equations of motion are
Newton’s equations. For problems involving proteins, the empirical poten-
tial energy function is a combination of terms simply expressed in either
Cartesian or internal coordinates, but not both. This makes the calcula-
tion of the effective potential required by the wave packet methods rather
tedious. The LES algorithm maintains many of the desirable features of a
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mean field approximation (lower barriers, fewer minima) while remaining
simple.

4.3. Selectively Optimized Sampling

We can imagine a combination of the Gaussian phase packet (GPP)"* and
LES!! algorithms which provides enhanced sampling for a selected sub-
set of coordinates (as in LES). The bath coordinates are represented by
a delta-function distribution of single point particles while a mobile ba-
sis of Gaussian packets is used to represent the system coordinates where
enhanced sampling is desired.?® For example, the density distribution of
the peptide “system” coordinates can be smeared out as a product of sin-
gle Gaussian phase packets while the protein “bath” is represented using
point particles as in standard molecular dynamics. Such a choice for the
density distribution allows for optimized sampling of a selected set of coor-
dinates, i € (M + 1, N), while the remaining coordinates, i € (1, M), are
treated as point particles in the standard way using Newton’s equations of
motion

M N
mix =3 'Flre =)+ > (Flre — 1)), . (39)
1=1 JI=M+1

The primed sum indicates the restriction j # k. The bracket (); indicates
an average over the density distribution of the jth phase packet. We expect
to find the correct energy equipartitioning and avoid any excluded volume
problems using this hybrid representation.

5. Classical Simulated Annealing in Temperature

The nut to crack in applying simulated annealing to proteins is the defini-
tion of a cooling schedule which leads to a reasonable probability of finding
the global minimum in a computationally realizable time. An appealing
alternative is to replace the cooling schedule necessary when annealing in
real or Monte Carlo time with direct integration in temperature. As we
shall see later, this is closely related to quantum dynamics in imaginary
time. There is no real time and therefore no cooling schedule that must be
specified as part of the annealing protocol. There is only a set of equations
describing the evolution of the ensemble of systems in temperature. In this
section I discuss a method which directly anneals an approximation to the
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classical density distribution in temperature and then describe a few closely
related algorithms.

5.1. The Gaussian Density Annealing (GDA) Algorithm

Ma and Straub®! have recently explored the possibility of performing sim-
ulated annealing directly in temperature by approximately integrating the
classical Bloch equation®®

% = ~(H - (M) (40)
to obtain the equilibrium classical density distribution for the canonical
ensemble peq(r, p, B), = exp(—PH)/Q(B) at a given temperature. H(r,p) is
the classical Hamiltonian energy function and Q(8) = [drdp exp(—fH)
is the canonical partition function. In fact, Eq. (40) is the classical analog
of the imaginary time Schrodinger equation (discussed in the next section).
For an N body system it is convenient to make the Hartree approximation
to the many body density distribution as a product of the single body
density distributions (employed in the GPP integration®® of the Liouville
equation)

(s, ) = (2w My/d) /% exp [ - 5—1-’,-2« ~n)]. (41)

The equations of motion in reciprocal temperature for the center ro and
second moment M, of a single Gaussian packet in d-dimensions are

61-0 _ l

_55 = dMQV"o(V> (42)
oM. 1
—a—ﬂz = —EZ-M%'Vfo(V) .

(V) is the pair potential averaged over the density distribution
(V)apa(ro, B) = (2rMa/d)~*/* / dr'v (r')e=dlio=rI/2Ma (43

This effective potential is of the form that appears in the approximate solu-
tion of the Liouville equation using Gaussian phase packets. The evaluation
of this potential for a protein was discussed in the previous section.

The form of these equations is quite appealing. The centers move ac-
cording to a steepest descent energy minimization equation on the effective
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potential energy surface while the widths of the density distribution adjust
themselves to the curvature of the effective potential surface. Therefore,
the method incorporates the general properties of potential smoothing algo-
rithms. Moreover, the annealing minimization evolves directly in temper-
ature with no real time dynamics. While the equations define a simulated
annealing protocol the algorithm is independent of cooling schedule — if the
equations of motion are integrated accurately we should have the optimal
annealing protocol for that representation of the density distribution.

The strength of the GDA method is that the problematic cooling sched-
ule has been replaced by a set of deterministic equations of motion for the
annealing of the density distribution. It is a simple matter to interpret
the evolution of the density distribution in temperature. Starting with the
known infinite temperature distribution

Peq(B = 0) = constant (44)

the equations are integrated in temperature to a final value fn.x which
must satisfy 1/Bmax < AE where AE is the energy gap between the global
and next lowest energy minimum (see Fig. 7). For small 8, the Gaussian
representation of the density distribution should be quite reasonable. In the
intermediate 3 regime, we expect that many minima contribute to the exact
equilibrium density distribution of the protein and the Gaussian density ap-
proximation will be at best an incomplete representation of the equilibrium
ensemble of configurations. However at large 8 (low enough temperatures),
we expect that the equilibrium density distribution will be localized in a
single potential minimum and the Gaussian density approximation should
be a good representation of the exact equilibrium distribution.

This method has been applied to the standard case of Lennard-Jones
clusters ranging from 2 to 55 atoms with excellent results®! (see Fig. 7). It
has also been shown that the evolution of the density distribution in tem-
perature according to the GDA algorithm leads to physically reasonable
results for the system density and distribution functions. Initially, at small
B (high temperature), the density corresponds to that of a gas. As the
temperature is lowered there is a weak phase change to a liquid-like den-
sity distribution, followed by a stronger phase change to a solid-like density
distribution localized in the global (or a low lying) energy minimum. Dur-
ing the periods of phase change the equations of motion can become stiff;
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however, as long as they are integrated accurately there is an adequate
amount of time spent in the transition region. This is in contrast to the
standard simulated annealing algorithm where one must guess how long
to spend in a region of phase change where there are long length scale
correlations and relaxation times.

Amara and Straub!® have applied the GDA algorithm to a model
protein.®® The model consists of 22 residues where each residue is a sphere
of neutral (N), hydrophobic (B) or hydrophilic (L) nature. A pair of hy-
drophobic sites interact with a favorable Lennard-Jones 12-6 potential. A
neutral site interacts with any other site through a purely repulsive 1/r!?
interaction. A hydrophilic site interacts with a hydrophilic or hydrophobic
residue through a 12-6 type potential where the 1/r® term, as well as the
core potential, is purely repulsive. The torsion potential for dihedral angles

Fig. 8. The global energy minimum of the model protein studied by Amara and Straub
using the GDA algorithm.
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made-up of two or more neutral residues (in the center of the chain) are
floppy, one fold sinusoidal functions while all other dihedrals are more rigid
and made of a linear combination of one and three fold sinusoidal terms.
The details of this potential can be found elsewhere .68

The sequence studied is B(LB)s N, (LB)s which leads to a global energy
minimum configuration of a B-sheet (see Fig. 8). The role of the rigid dihe-
drals is to form the two linear chain regions while the more flexible central
torsion angles allow for the bend to form a §-sheet. The global energy mini-
mum configuration allows for a maximum number of energetically favorable
hydrophobic pair contacts. This is a minimal model for protein folding
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Fig. 9. The probability of locating a configuration with energy E or less from an initial
distribution of one hundred independent configurations is plotted for a model protein
for five algorithms: simulated annealing in time using molecular dynamics (MD) and
Gaussian phase packet dynamics (GPP), simulated annealing in temperature using the
Gaussian density annealing (GDA) algorithm, the “adiabatic” GDA algorithm (aG DA),
the GDA algorithm using a single “preconditioning” step (pGDA) and the diffusion
equation method (DEM) of Scheraga and coworkers.
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and represents a serious test of the optimization algorithms. It is a short
step from the potential function used for this model protein to the more
general all atom empirical potential energy function such as ECEPP or
CHARMM.

The results for the energy minimization of this model are presented in
Fig. 9.1% Simulated annealing using molecular dynamics (MD) was applied
using an exponential cooling schedule. This schedule is not optimal and was
chosen as a standard for the comparison of algorithms. The same cooling
schedule was employed in a simulated annealing protocol using the Gaus-
sian phase packet (GPP) dynamics with the rigid temperature constraint.
The third method applied was the Gaussian Density Annealing (GDA) al-
gorithm which is free of a cooling schedule. The initial mean squared width
for the Gaussian density of each residue was M, = 5. In each case a weak
pairwise harmonic boundary potential was used to encourage the molecule
to explore compact configurations and the effective potential of Eq. (27)
was used. The results are summarized in Fig. 9 in terms of the probability
of finding a minimum energy configuration with energy E or less from a
distribution of independent configurations chosen from a high temperature
molecular dynamics trajectory. The data indicate that the GPP annealing
algorithm performs significantly better than the standard MD simulated
annealing for the same cooling schedule. The GPP results locate the global
energy minimum more frequently and tend to find significantly lower local
energy minima. The GDA algorithm outperforms both the GPP and MD
simulated annealing algorithms by isolating the global minimum more fre-
quently and tending to locate only very low energy local minima. However,
while the GPP results can be improved by optimizing the cooling sched-
ule (allowing for slower cooling), the GDA algorithm (which is free of any
cooling schedule) can be improved only through a better choice of initial
conditions and boundary potential or a more complete representation of
the density distribution p(r, 3).

5.2. The Diffusion Equation Method (DEM)

I find it useful to think of the highly successful DEM of Piela, Kostrowicki
and Scheraga'! as a classical annealing algorithm. In the DEM, a steepest
descent minimization is carried out on a transformed potential energy sur-
face. The potential transformation is the convolution of the potential with
a Gaussian function of a given width. This leads to a coarse graining of the
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potential function over a length scale defined by the width of the Gaussian.
Initially, the Gaussian width is taken to be large and it is hoped that the
transformed potential has one or a few minima. (This can be guaranteed
by a clever adjustment of the boundary potential which primarily changes
the initial conditions.) Energy minimization is used to find the minimum
of the transformed surface. The width is then gradually decreased and
the minimum is mapped to an energy minimum of the physical potential
surface (where the Gaussian widths are zero).

The transformed potential energy function used in the DEM can be
written!0?

(V)pEm(nt) = (4rt)=4/2 / dr'V (r')e-lir=r'II* /4t (45)

where t is the diffusion “time.” The larger the value of ¢, the wider the
Gaussian and the longer the length scale for the potential smoothing. This
transformed interaction potential employed in the DEM is exactly the ef-
fective potential employed in the GDA algorithm where the squared width
of the Gaussian M; = 2td is proportional to the diffusion “time” of the
DEM. In fact, the ad hoc potential deformation used in the DEM re-
sults from a fundamental treatment of the temperature evolution of the
equilibrium density distribution for the special case of a Gaussian density
approximation.

We can take this comparison an extra step. In the GDA algorithm one
initially chooses large M;'s and then allows the centers to follow a steep-
est descent trajectory to the minimum potential energy conformation. In
the DEM there is a single diffusion time meaning that all particles are
constrained to have the same M;, and as the diffusion time is reduced,
corresponding to 3 — oo, the effective widths decrease monotonically. In
the case of the GDA algorithm the widths are variationally optimized de-
pending on the environment of each particle. The DEM can be thought of
as a special case of the GDA algorithm where (1) the second-moments M,
for all wave packets are identical, and (2) the magnitude of M, is initially
set to something large and then monotonically decreased to zero while in-
tegrating the ro equation to converge at each value of M,. For this reason,
it is profitable to think of the DEM as a classical annealing algorithm.

The DEM has been applied to water clusters with mixed results.!%3 As
has been noted, a Gaussian coarse grained smoothing of the sort employed
in the GDA and DEM might fill in a deep narrow well (the global energy
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minimum) before it fills a shallow broad well. Perhaps this “pathology” is
present in the water-water interactions which makes certain cluster sizes
difficult optimization problems. Of course, it might be that the higher lying
broad potential minimum is a lower free energy minimum.!%*

In an application of the DEM to the Met-enkephalin pentapeptide (see
Fig. 10), the torsional angle potential was set to zero and the bond lengths
and angles were fixed. The solution found by the diffusion equation method
was one on the manifold of peptide conformational states where the bonds
and angles are fixed and the nonbonded (Lennard-Jones and Coulombic)
potential is favorable. In this study, Kostrowicki and Scheraga showed that
the initial boundary conditions are extremely important in the solution of
the DEM. Depending on the form of the boundary potential and the initial
diffusion time it is possible to find one or a number of initial conforma-
tions and some or none of these can lead to the global energy minimum.
For example, a two Gaussian representation of the nonbonded and hydro-
gen bonding functions of the ECEPP potential was used. After the initial
minimization on the transformed potential there was one minimum corre-
sponding to a rather extended conformation. This minimum mapped onto

Fig. 10. View of the Met-enkephalin pentapeptide energy minimum isolated by the
DEM taken from the study of Kostrowicki and Scheraga.}32
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a local (and relatively high lying) potential minimum for the pentapeptide.
However, when a three Gaussian representation of the nonbonded and hy-
drogen bonding functions was used, two compact initial minima were found
for the transformed potential and both of these minima mapped to a single
structure which was very close to the form of the global energy minimum.
The small differences between the DEM result and the global minimum are
due to the absence of the torsional angle potential.

These results demonstrate the crucial importance of the initial condi-
tions used for the DEM. Similar conclusions follow for the application of
the GDA method. Their study also demonstrates that with a good choice
of boundary conditions the DEM can be a very successful algorithm for
energy minimization on the complex potential energy surface of peptides
and proteins. This point has been discussed in detail by Scheraga and
coworkers.!%® More research needs to be performed to understand the de-
tails of the influence of the initial (boundary) conditions for these methods.
Another important point is that the DEM is a deterministic procedure, in
that once the few minima are initially isolated on the transformed potential
surface, there is an exact procedure for mapping these minima on to the
physical potential surface. This is a positive aspect of the DEM and GDA
methods which those methods built on simulated annealing in time lack.

To allow for comparison with other optimization methods discussed in
this chapter, the DEM was applied to the model protein (discussed in the
previous section) and the results are displayed in Fig. 9. (The comparison
made here is used to demonstrate the general properties of the algorithms
and not the absolute best results which can be obtained.) Note that the
DEM isolates a single final configuration and that configuration is the global
energy minimum. In contrast, the GDA algorithm finds a distribution of
minima which includes the global minimum and all low lying “excited”
states. In the DEM, the first step consisted of a local energy minimization
on the transformed potential surface for a set of one hundred random con-
figurations taken from a high temperature molecular dynamics run. With a
large enough initial diffusion time (in this case 1000) and a proper choice of
boundary conditions one can expect to find a few (in this case one) energy
minima on the transformed potential surface. The DEM then consisted of a
single trajectory which mapped the lone minimum energy configuration on
the transformed surface on to the global energy minimum of the physical
potential surface.
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5.3. Adiabatic Gaussian Density Annealing (aGDA)

An important variation of the GDA algorithm is the “adiabatic GDA”
(aGDA) method. As I noted above in the discussion of the simulated an-
nealing algorithms, the hope is that at each temperature the density distri-
bution simulated is close to the equilibrium distribution. In the primitive
GDA algorithm there are errors that develop due to the fact that the basis
set for p(r) is incomplete. These errors can lead the density distribution
away from the equilibrium value. Tsoo and Brooks recognized that such
errors propagate and increase during integration.!® They suggested that
this problem could be minimized by occasionally fixing the values of the
set of {M2} and running a steepest decent trajectory on the corresponding
effective potential surface. This step allows the centers to adjust to the set
of packet widths leading to a closer approximation to the “steady state”
or hopetully equilibrium solution. The results for a series of Lennard-Jones
clusters were excellent. They also applied the modified GDA algorithm to
water clusters with interesting results.106

In earlier work on a related imaginary time optimization algorithm,!0”
it was suggested that the equations of motion for ry and M, could be decou-
pled. For the primitive GDA, problems result when the M, values decrease
too quickly. Therefore, a useful “adiabatic® approximation provides that
for every set of {M>} the position of the density distribution center relaxes
“instantaneously” to its equilibrium value. The algorithm is applied as
follows. (1) The steepest descent equation

i'o = ‘Vro(V(TGaM2)) (46)

is solved with a fixed set of widths {M,} to find the minimum on the
effective potential surface for a particular temperature r3%(3). This can be
performed using a favorite local minimizer. (2) The widths of each packet
are integrated out in 3 holding fixed the set of center positions {rg¢} by

solving 5
M. 1 a
95 = ~EMIV(V M) (47)
(3) Return to step (1) and repeat the cycle.
The resulting algorithm is very much like the DEM in that the positions
of the centers follow changes in the widths adiabatically. We refer to this
method as the “adiabatic” GDA algorithm (aGDA). An important differ-

ence between this algorithm and the DEM is that each width is allowed to
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evolve in an optimal way which depends on the curvature of the effective
potential surface; in the DEM each particle “density” has the same width.
This difference should be particularly important in studies of inhomoge-
neous systems such as proteins which lack the symmetry of the solutions
for the atomic clusters. The results for the aGDA algorithm are shown in
Fig. 9. As we found in the case of the DEM, the distribution of initial
configurations mapped on to a single energy minimum on the transformed
potential surface where the particle widths were M, = 5. Following the
initial minimization, there was a single trajectory which led to the global
energy minimum.

It is also possible to perform a “preconditioning” step by solving Eq. (46)
for the initial set of {M:} and subsequently running a trajectory according
to the usual GDA equations of motion Eq. (42). This preconditioned GDA
(pPGDA) was applied to the model protein and the results are shown in
Fig. 9. Like the aGDA and DEM algorithms, the pGDA algorithm tends
to isolate very few minima. However, for this particular run the aGDA
and DEM isolated the global energy minimum while the pGDA algorithm
found a higher lying local minimum. Similar results were found by Tsoo
and Brooks'% in their optimization study of water clusters. It is important
to allow the packet centers to “keep up” with any rapid variation in the
packet widths. This seems to explain the success of the aGDA method in
finding the global energy minimum.

5.4. Shalloway’s Packet Annealing (PA)

The strength of both the Gaussian Density Annealing algorithm®! and the
Diffusion Equation Method!®! rests on the use of a similar transformed
potential energy function. In the former case, the use of the transformed
potential energy follows from a solution of the classical Bloch equation.
However, while the lowest potential energy is desirable, thermodynami-
cally, it is the basin of lowest free energy that will predominate at low
temperatures. Shalloway has developed an intriguing method which resem-
bles the GDA and DEM algorithms, with the important difference that the
optimization problem is solved on a transformed free energy surface.!98-110

The GDA and DEM methods employ a Gaussian transform of the po-
tential energy function. In Shalloway’s Packet Annealing (PA) method, the
transformed potential is replaced by a Gaussian transform of the Boltzmann
factor!0®
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(F)r) = -3 In [(ﬂAz) 4/2 /dr'e_ﬂv(' Je~lir=r "2/“] . (48)

The Boltzmann factor is coarse grained over a region of length scale A to
provide an effective free energy (F). This is simple to write, but difficult to
evaluate (except for quadratic potential functions). Nevertheless, Shalloway
and coworkers have developed an efficient quadrature method which has
been applied to the Lennard-Jones potential in the optimization of atomic
clusters.!!?

The PA method begins with the specification of an initial value of the
temperature and the smoothing length scale A. A schedule for the reduc-
tion of the temperature and A is then specified. At each temperature, a
Monte Carlo search of the configuration space is carried out with a careful
choice of step size. The distribution generated by the Monte Carlo search
on the effective free energy surface is annealed according to the cooling
schedule until a low temperature is reached. The resulting distribution
provides a guess at the global energy minimum. The number of Monte
Carlo steps taken at a given temperature was varied as nlog(n)(1 — log T')
as the temperature decreased, n being the number of atoms in the cluster.
The cooling schedule was defined by decreasing the temperature by a factor
of £ < 1 from the temperature at the previous step.!!®

Reasonable results are obtained for the optimization of Lennard-Jones
clusters using the strategy described above. Coleman, Shalloway and Wu!1?
examined two variations: (1) where a local minimization algorithm was
applied at the end of the packet annealing process described above, and
(2) where local annealing was performed at the end of each cooling step.
The latter algorithm which makes use of the information provided by the
whole trajectory, rather than the endpoint above, was the more effective
one in our finding the global minima of Lennard-Jones clusters from 3 to
27 atoms as well as larger clusters of 36, 54 and 100 atoms with reasonable
probability.

The most appealing aspect of the PA method is that it employs an ef-
fective free energy function rather than the potential energy surface. Like
the GDA and DEM, the PA method has had success for the optimization
of atomic clusters. However, for the optimization of complex molecular
systems, calculation of the effective free energy function is expected to be
significantly more time consuming. As discussed above, the technical prob-
lems are easily solved for the calculation of (V'), required by the GDA
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and DEM algorithms, from an empirical energy function of a protein. One
expects to have a more difficult time in the calculation of (F). Recent appli-
cation of the PA method to met-enkephalin has provided very encouraging
results. 33

6. Quantum Mechanical Annealing

The dynamics of classical and quantum mechanical systems are qualita-
tively different. To a classical point particle, energy barriers are impreg-
nable. Energy barriers must be crossed over, and if the total energy for the
system is less than the barrier energy, the barrier cannot be crossed. How-
ever, a quantum mechanical particle may tunnel through a barrier whose
height is greater than the total energy of the system. As a result, quantum
mechanical annealing methods are particularly attractive as methods for
global optimization (see Fig. 1).

I will mention several approaches to this problem. Each method is an
extension of a well developed method for finding the ground state wave
function of a quantum mechanical system. The hope is that for a system
with a nondegenerate ground state, the density ||¢(r)||?> associated with
the wave function ¢(r) will be localized in the region of the classical global
energy minimum. The optimization process is then approached in two
steps, (1) an estimate for the ground state wave function is found, and (2)
the classical limit is taken (by reducing h to zero, or increasing the mass,
or simply reducing the ratio h%/2m to zero).

6.1. Variational Calculations

The most successful methods for finding an estimate of the ground state
wave function of an atomic or molecular system rely on the time-indepen
-dent variational method.!!! Given a system where the ground state energy
is £o, any guess ¢(r) at the wave function of the system will have an energy

E = (¢|H|¢) 2 &, (49)

where M is the Hamiltonian operator. That is, the energy of the guess is
always greater than or equal to the exact ground state energy.

Somorjai proposed using a distributed fixed Gaussian basis set.!1? While
this suggestion is a reasonable approach for one-dimensional problems,!!3
there are reasons to doubt the efficacy of such an approach for larger systems



Optimization Techniques with Applications to Proteins 179

of hundreds of atoms which can extend over large regions of configuration
space. For a long chain molecule, extended states of the system may explore
large volumes while occupying relatively little of it at any given time. The
space fixed basis set is everywhere, all the time. As such, it can spend
significant amounts of computational time monitoring empty space. This
problem can be addressed by exploring mobile basis sets that are functions
of atomic or internal molecular coordinates.

Olszewski, Piela and Scheraga'!* have developed a method for finding
the global energy minimum of a protein by approximating the ground state
wave function of the system. Their Self-Consistent Multi-Torsional Field
(SCMTF) method is based on approximating the protein wave function by
a Hartree product of normalized single torsion angle wave functions ¢, (6;),
leading to a set of coupled one-dimensional time-independent Schrédinger
equations with the effective Hamiltonian

2 52
M= =37 g7+ (VIe(60) (50)
where I is an averaged moment of inertia for the kth torsion angle, and
(V)i(6x) is the mean field potential energy for the kth torsion angle —
the potential energy averaged over all degrees of freedom other than 6.
The minimization procedure consists of (1) generating an initial configu-
ration of the protein (a set of dihedral angles), (2) estimating the various

Fig. 11. View of the global energy minimum configuration of melittin isolated using the
SCMTF method taken from the study of Olszewski, Piela and Scheraga.!1®
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moments of inertia I; from an ensemble of configurations, (3) calculation of
the mean field effective potential (V). (8;) where the required integrals are
computed using a Monte Carlo procedure, and (4) solution of the set of cou-
pled one-dimensional Schrodinger equations, iterating until the estimates
of the ¢4(6x) no longer change. The lowest energy configuration found in
this procedure is the guess at the global minimum. The SCMTF method
has been applied to Met-enkephalin,!** decaglycine and icosalanine,!!® and
a 20 residue portion of the protein melittin.}!® For melittin the SCMTF
method effectively located the global potential energy minimum for the
system from four independent starting configurations (see Fig. 11).

6.2. Imaginary (Euclidean) Time Methods

The time-dependent Schrodinger equation is!!?

ih—-a-¢(r t) = -—”iv2¢(r t) + V(r)e(r,t) (51)
ot '’ 2m ’ ’

where ¢(r,t) is in general a complex function. % is Planck’s constant, V(r)
is the potential energy, and m is the mass. The imaginary (Euclidean) time
form of the time-dependent Schrédinger equation is defined by substituting
the imaginary time variable 7 = it/h so that

9 (r,7) = 2920, 7) = Vi(r)(rs7) (52)
or "’ 2m ’ A

We arbitrarily take ¢(r, 7) to be real. The wonderful property of this equa-
tion is that the formal solution is of the form

¢(r,7) = e—‘)‘lr¢(r‘0) . (53)

Suppose we know the eigenfunctions and energies for  which are un(r)
and £, for the nth excited state. We can rewrite the wave function as

¢(r,7) = cpun(r)e™é". (54)

At large enough values of 7 the dominant contribution to the wave function
comes from the ground state

¢(r,7) = ug(r)e%" (55)
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while the contribution from all excited states is exponentially smaller.
Starting from a guess at ¢(r,7), the imaginary time method consists of
integrating Eq. (52) to find an estimate of the ground state wave function.
This method is widely employed and can be used to find accurate ground
and excited state energies of small molecular systems.

6.2.1. Quantum Mechanical Annealing using Diffusion Monte Carlo
(DMC)

As Schrédinger originally noted, the imaginary time Schrodinger equation
has the familiar form of the classical diffusion equation

ba—f-C(r, 1) = DV3C(r, 1) — kC(r,T) (56)
with concentration C(r,7), diffusion constant D, and rate constant k (for
the first-order rate process).!!® As this analogy makes clear, one can simu-
late the imaginary time Schrodinger equation as a classical diffusion equa-
tion for a distribution of system replicas (a concentration profile or density
distribution). The first-order rate process leads to the spawning and death
of system replicas. In practice, one simulates an ensemble of replicas of the
system. Each replica diffuses through a Monte Carlo walk in configuration
space. At each step a decision is made whether to spawn or kill system
replicas based on the rate constant k = V(r).119:118

Doll and coworkers have recently adapted the DMC method!!?:12¢ to
treat the classical optimization problem. They apply the DMC to determine
the ground state wave function and energy at a given value of h%/2m. The
mass of the particles is then gradually increased, each time applying the
DMC method, until the classical limit is reached. At this point, they arrive
at an estimate of the giobal energy minimum of the system. Their method
has been applied to Lennard-Jones atomic clusters with perfect results for
clusters of up to 19 atoms.}?!

The use of DMC is particularly attractive since (1) no approximation
to the wave function is required, and (2) no effective potential (or matrix
elements) or derivatives are required, only evaluations of the potential en-
ergy function. It appears to be a very attractive method for applications to
biomolecules where an empirical energy function is complicated by the mix
of terms depending on Cartesian and internal coordinates (see Sec. 4.1.1).
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There are two possible drawbacks. One is that DMC is exact and be-
comes more computationally intensive than an approximate solution. More-
over, there is the difficulty of applying Monte Carlo to proteins in an ef-
ficient manner. It is well-known that a simple Metropolis algorithm of
random atomic moves distributed uniformly in a cube will typically lead
to an increase in energy due to the stiff bond and angle constraints. How-
ever, more intelligent algorithms have been designed which make use of
internal coordinates or normal modes!22:123 and these appear to be quite
promising. Nevertheless, molecular dynamics remains the paradigm for the
simulation of thermodynamic properties of proteins. For these reasons, it
is important to develop an approximate method for solving the imaginary
time Schrodinger equation based on the solution of deterministic equations
of motion (akin to molecular dynamics). One such method is based on
Gaussian wave packet dynamics in imaginary time.

6.2.2. Quantum Mechanical Annealing using Gaussian Wave Packets

The formal solution of the imaginary time Schrédinger equation is ¢(r, 7) =
exp(—H7)¢(r,0). The form of the equilibrium distribution function is
exp(—HM/kpT), where kg is Boltzmann’s constant and T is the temper-
ature. Here, time plays the role of an inverse temperature. Lowering the
temperature to anneal the system is equivalent to increasing the imagi-
nary time. Amara, Hsu and Straub have exploited this idea in searching
for the global energy minimum through approximate solution of the imag-
inary time Schrédinger equation for the ground state wave function using
Gaussian wave packets.!07

The starting point is an alternative normalized expression which is a
variation of Eq. (52), namely

5o9(r7) = = (M~ (1) 9(r,7). (57)
If we take the wave function of each particle to be a Gaussian
8(r.7) = (@M /&)~ exp| ~ (s~ 70)?] (59)
2
we can fully define the Gaussian by its average position 9 = (r), and

its squared width or second moment, M, = ((r — 19)?) = do?. It is a
simple matter to derive equations of motion for the evolution of the GWP
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in imaginary time!%7: )
o = _EM2Vro(V) ) (59)
_dr? 2,0,
My =5 - ZMEVA(V).

These are the optimal equations of motion for the Gaussian which mini-
mizes the square of the error between the approximate and exact solutions.
(1) As has been noted by Heller, in real time the equations of motion for
a GWP have no explicit dependence on k.'?4 However, the imaginary time
equations do depend explicitly on h. (2) The evolution of the packet center
resembles that of a steepest descent** down the effective potential (V')

fo x =V, (V). (60)

The term dh?/2m acts to expand the wave packet and is a measure of
the quantum nature of the particle. For an effectively classical system we
expect h%/2m to be small. If we choose, we can increase this parameter to
encourage the system to delocalize and tunnel. (3) The packet will evolve
to minimize the effective total energy, a sum of the potential (V(rq, M2))
and kinetic dh?/8mM, energies (see Fig. 12). Larger values of h increase
the importance of the kinetic energy and raise the zero point energies of the
well minima. The effective total energy surface has many of the features
of quantum effective potentials which may be used in the simulation of
quantum systems.’®!25 (4) For a many-body system we approximate the
total wave function by a Hartree product of N single particle wave functions

N
W™, 7) =[] telre, 7). (61)
k=1
The effective potential energy can be written as a sum over the individual
pair interaction energies

V= [ar[]ntravis) (62)
k

where the density of a given particle is p;i(r;) = ¢{(r:)¢i(r;) and V(r)
is averaged over the positions of all the other particles — a mean field
potential.!26 This method has been very successful in locating the global
energy minimum for a series of Lennard-Jones clusters.!%”
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The difficulty in applying this method to biomolecules is that the ef-
fective potential (V) must be calculated. When the GWP is written in
Cartesian coordinates, the effective potential for the Coulombic interaction
may be calculated exactly. The Lennard-Jones potential (or an ion induced
dipole interaction, etc.) must be fit to a series of Gaussians. The dihedral
potential may be expressed in terms of a polynomial in the distance 7; ;44
to perform the integrals in Eq. (62). So, it is possible to evaluate (V) for
the standard empirical energy function for a protein, but with some added
complexity when compared with the DMC method which requires only an
evaluation of the empirical energy function itself (see Sec. 4.1.1).

The appeal of the imaginary time method is that the equations of mo-
tion are deterministic and, due to the small number of parameters which
must be followed, the integration is readily performed for a biomolecule or
polymer. One is relieved of the burden of finding clever Monte Carlo moves
which efficiently explore configuration space. A natural and promising ex-
tension of the methods discussed in this section involves quantum mechan-
ical annealing using a path integral representation of the protein.!27:128

6.3. “Tunneling” in General

In an early study of this kind of quantum mechanical annealing, Rujin
adapted the Green Function Monte Carlo (GFMC) technique to create
an algorithm called “simulated tunneling.”??® In the GFMC method, an
ensemble of systems (or population of configurations) is generated, and each
member of the ensemble is allowed to diffuse until an equilibrium fluctuating
population of configurations is found. The end result is an estimate of the
energy and wave function of the quantum mechanical ground state.

Since the goal is to find the classical global energy minimum, and not the
quantum mechanical ground state energy, Rujin made some simplifications
of the GFMC method inspired by classical simulated annealing which led to
his simulated tunneling algorithm. (1) An ensemble of systems is generated
and a cooling schedule is chosen. (2) Each system in the ensemble is allowed
to diffuse following a Monte Carlo procedure as the temperature is lowered
according to a cooling schedule. (3) If a new minimum is located by the
ensemble, return to (1) and generate a new ensemble of states; if not, stop.

Rujan applied his method to the traveling salesman problem, with ap-
parently excellent results. He observed that this algorithm, which em-
ploys a diffusing population of systems, resembles not only imaginary time
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quantum mechanical evolution and classical reaction diffusion dynamics,
but also evolutionary systems, and computational ecologies.

Reflecting on our discussion of the GDA method, we can recognize that
while a single classical point particle cannot tunnel through an energy bar-
rier, a distribution of classical particles can. This is evident in Fig. 12 where
the barrier in the effective total energy is lopped off even in the classical
h = 0 limit. With a distribution of particles, even if the average energy of
the distribution is less than the barrier energy, the distribution can cross
the barrier. This is a form of “classical tunneling” which provides a mech-
anism for barrier crossing in simulated annealing optimization employing a
density distribution (of the GPP or GDA sort) rather than a single point
particle.
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Fig. 12. The effective energy of the quartic double well potential is plotted for three
values of i = 0 (classical limit), 0.6 and 1 in Lennard-Jones reduced units. The effective
energy is determined as the sum of the kinetic energy, dhz/BmMz, and the effective
potential, (V(ro, M;")), using the optimal value of M3 at each value of rg.
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7. Sampling with Monte Carlo or Molecular Dynamics

In this review, I have tried to emphasize what a variety of successful and
promising optimization strategies have in common. I have also stated what
I think are the important differences. Occasionally, I have referred to the
usefulness of having a deterministic set of equations of motion to integrate,
as opposed to a function to sample using Monte Carlo. Also, some of the
techniques presented involve some form of molecular dynamics or Monte
Carlo calculation. As such, it seems worthwhile to mention some important
developments in MC and MD methodology.

A great deal of work has been done since the first study of the effec-
tiveness of Monte Carlo sampling for proteins.}3® Currently, there is some
disagreement over the effectiveness of Brownian dynamics,%’ noisy molec-
ular dynamics,®® or molecular dynamics'3' when applied to large organic
molecules and proteins.!327135 Some evidence supports the use of improved
Monte Carlo sampling using internal coordinate (torsion angle) moves!22:123
and Monte Carlo schemes coupled with energy minimization!3® which have
led to significantly improved results over simulated annealing strategies33
in applications to enkephalin.!3® However, most of this discussion has oc-
curred before recent improvements in the numerical efficiency of MC and
MD calculations on proteins.

A problem facing MC or MD simulations of complex systems is re-
lated to “broken ergodicity.” The presence of high energy barriers sepa-
rating regions of configuration space can cause a trajectory (Monte Carlo
or molecular dynamics) to be locked into one phase of the system.!3 It
may well be that there are phases of lower free energy meaning that the
simulated phase is a supercooled state of the system.!3?7 A number of ad-
vances in Monte Carlo methodology which address the problem of broken
ergodicity’3® have been reported in recent years. Cao and Berne have
developed an “anti-force bias” method which helps to accelerate barrier
crossing.!3® Ferrenberg and Swendsen,!*® and Frantz, Freeman and Doll!4!
have proposed methods which use a high temperature MC run, where bar-
riers may be crossed easily, overcoming problems of broken ergodicity, to
compute averages at a lower temperature of interest. These latter methods
have been combined by Tsai and Jordan to examine phase changes in small
rare gas and water clusters.'¥> Extended electrostatics techniques,!43:144
like potential smoothing methods, enhance both MD and MC calculation.
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More recently, Andricioaei and Straub!>® have developed an enhanced
sampling algorithm which uses a Monte Carlo protocol to explore a gener-
alized statistical distribution of the form proposed by Tsallis

p(r) « [1 = (1 - @BV(r)] ™5

where V() is the potential energy and “g” is a parameter. When g — 1 the
standard Gibbs—Boltzmann statistics are recovered. Otherwise, it has been
shown that for ¢ > 1 the sampling is greatly enhanced as is the probability
of locating the global energy minimum.!%® The mechanism underlying the
enhanced sampling is a dramatic increase in the probability of being in a
barrier region relative to being in a minimum. The result is an increase in
the rate of barrier crossing and sampling phase space. This is similar to
the effect of tunneling in quantum annealing methods and barrier lowering
due to potential smoothing.

There have also been significant advances in molecular dynamics meth-
ods. Multiple time step algorithms'*> can enhance molecular dynamics
calculations on proteins by at least a factor of 4 to 5 over traditional in-
tegration methods.!*® This should be important not only for extending
simulation times in the study of dynamics, but also in the use of MD for
configurational space sampling.

Furthermore, molecular dynamics in higher dimensions, which provides
a mechanism for lowering barriers, is akin to potential smoothing.}*” The
transform from three to four dimensions appears as

o tw =22 +y 422 + 0l (63)
and is easily implemented in a standard molecular dynamics calculation.
A boundary potential may be placed on w to control its fluctuation. Fluc-
tuations of the parameter w in the fourth dimension can help to lower
barriers in the system by acting as an effective “random smoothing” of the
potential in three dimensions. This method looks a great deal like the po-
tential shift algorithm of Piela and coworkers mentioned previously, and has
some conceptual similarity to distance geometry?®14® and energy embed-
ding procedures.!49:1%0 Similar effects have been achieved through coupling
of the system to an “energy bath” which has a well-defined reference po-
tential energy.!®!

Clearly, there are many possibilities involving both MD and MC tech-
niques, combined with some form of potential smoothing and modern algo-
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rithms for integration and updating of nonbonded interaction lists, which
will lead to improved algorithms for enhanced sampling of proteins.

8. Future Directions

There are many important directions for future research into optimization
algorithms for proteins. This chapter was written to give an overview,
however incomplete, of a number of areas where progress has been made
and where improvements are likely to follow. In addition to many areas in
the field of optimization not discussed in this chapter, I believe there is no
method discussed here which can be described as finished or complete. As
such, there remain many interesting unanswered questions.

The work discussed in this chapter points to the importance of po-
tential smoothing techniques in molecular optimization algorithms. While
smoothing methods may be applied ad hoc to take advantage of the spe-
cial properties of a given problem, it is also possible to develop algorithms
which represent the system using continuous classical density distributions
or quantum mechanical wave functions which display the positive properties
of smoothing methods. The quantum mechanical annealing methods have
the further advantage of being able to tunnel to a lower energy minimum,
although algorithms based on the purely classical density distribution dis-
play generalized “tunneling” as well — an ensemble of states may pass over
a barrier whose energy is higher than the mean energy of the ensemble.

The GDA algorithm, which is essentially an annealing algorithm but
which evolves in temperature rather than time, has the desirable property
of being free of a cooling schedule. This property is shared by the quan-
tum mechanical algorithms which evolve in imaginary time. It is easy to
imagine a variety of quantum mechanical annealing methods beyond the
wave packet and DMC methods discussed here and these methods seem
well worth exploring.

Some of the algorithms discussed are deterministic and their results are
strongly dependent on the choice of boundary conditions. An important
area for future work on methods such as the DEM and aGDA algorithms
is in specifying improved boundary conditions and understanding in detail
their link to the final minimum energy structures isolated. Other methods
such as the GDA and LES algorithms consist of deterministic equations
of motion which evolve structures from a random set of initial conditions.
In this way these algorithms have a non-deterministic component — the
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choice of initial conditions. This randomness can be seen as a complication,
requiring more effort to solve the set of equations, but can also be of some
value in providing a distribution of low energy structures.

An important question concerns the relative importance of new poten-
tials for proteins and optimization algorithms.!> Clearly, the development
of coarse grained or minimal models of proteins is an important direction
of research. These model potentials have the benefit of being consider-
ably simplified when compared to all atom models. At the same time, the
optimization problem remains, even when using model potentials. Devel-
opments in each area will represent important contributions to the effort
to identify effective algorithms to explore protein folding.
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