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ABSTRACT: The generalized replica exchange method (gREM) is applied to simulate a solid−
liquid phase change in an adapted Dzugutov model system. The idea of gREM is to incorporate the
merit of sampling from a generalized ensemble into the replica exchange paradigm. The generalized
ensemble weights are determined from effective temperatures tailored for this system, through an
inverse mapping strategy. The ordered and disordered phases are smoothly joined together through
a succession of unimodal energy distributions, providing a continuous transformation from an
isotropic liquid into an amorphous solid phase under the given condition. The phase change
temperature is determined by evaluation of various thermodynamic and structural order parameters.
The increasing tendency for icosahedral local order under cooling is quantified using bond order
parameters. The ergodic measure is used to demonstrate the advantage of gREM over the traditional
temperature-based REM in sampling the phase change region.

■ INTRODUCTION
The replica exchange method (REM) (or parallel tempering)1,2

has been widely used in the computer simulation of diverse
complex systems such as proteins,3−8 glasses,9−11 and atomic
clusters,12,13 where methods based on sampling the conven-
tional canonical ensemble struggle to attain ergodic sampling
over a rugged energy landscape characterized by multiple
minima separated by high barriers.14−16 In the standard
temperature REM (tREM), a set of statistically independent
canonical molecular dynamics (MD) or Monte Carlo (MC)
simulations run in parallel at specified temperatures. The
coupling of low- and high-temperature replicas via exchanges of
configurations allows the low-temperature replicas to escape
from trapped regions more easily, facilitating ergodic
sampling.13 While tREM has proven to be highly effective in
equilibrium sampling of stable phase states, the standard tREM
struggles to attain its maximum power in the vicinity of a first-
order phase transition.17 In moving across a strong phase
change, canonical energy distributions are effectively disjointed
and characterized by an energy gap corresponding to a latent
heat. Since the acceptance probability of replica exchanges is
determined by the energy overlap of neighboring replicas, an
energy gap between PT<Tc(E) and PT>Tc(E) around the critical
temperature Tc , PT(E) being the canonical probability density
function (PDF) at the temperature T, significantly impairs
replica exchanges. The acceptance of replica exchanges for a
pair of inverse temperatures, β and β′, close to βc = 1/Tc ,
becomes exponentially suppressed as A(βE;β′E′) = min-
[1,eΔβ(E′−E)] ≈ e−|ΔβΔE|, where Δβ = β′ − β and ΔE is the
energy gap. The generalized REM (gREM)18 has been
developed to restore the full power of replica exchange by
incorporating noncanonical ensembles into the replica
exchange paradigm. The generalized ensemble sampling
weights are determined from tailored effective temperatures

through an inverse mapping strategy. Illustrative simulations on
a Potts spin system with varying system size and simulation
conditions demonstrated a comprehensive sampling for phase-
coexistent states with a dramatic acceleration of tunneling
transitions.18

We apply gREM to explore the phase change properties of an
adapted Dzutugov model system. The MD simulation of this
simple monatomic system was reported by Elenius and
Dzugutov.19 Their results demonstrated that upon constant-
density cooling toward a critical point, the isotropic liquid is
continuously transformed into a low-density phase with a
mesoscopic order similar to that of a smectic liquid crystal. In
this work, we test the effectiveness of gREM for achieving
enhanced sampling while exploring thermodynamic changes
and structural transformations associated with the phase
change.

■ METHODS
gREM in the Isothermal−Isobaric Ensemble. gREM18

combines generalized ensembles with replica exchanges in
order to restore the full power of replica exchange in the
vicinity of a strong phase transition. To handle volume
fluctuations in solid−liquid phase change here we extend
gREM to the isothermal−isobaric ensemble. In contrast to the
NVT ensemble where the internal energy, E, of the system is a
natural dynamic variable at the fixed volume V, the enthalpy H
= E + PV, which describes the thermal energy change when a
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process occurs at constant pressure, P, becomes the key
dynamical variable in the NPT ensemble.
Around the phase change region, the enthalpy distribution,

Pα(H), becomes bimodal due to a large energy or volume gap
separating two phases, where α denotes a replica index.
Sampling unstable or metastable, phase-mixed configurations
becomes a rare event due to a large free energy barrier. The
fundamental idea of an isothermal−isobaric gREM is to
systematically design a set of generalized ensembles, Wα(H),
so that unstable or metastable enthalpy states corresponding to
the phase change region are transformed into stable ones,
resulting in a unimodal Pα(H). In the most general case, the
enthalpy distribution associated with Wα is determined as

= Ωα αP H H W H( ) ( ) ( ) (1)

where Ω(H) is the density of states in enthalpy defined by
∫ δ[H(E(r),V) − H]dr dV. By defining an isobaric entropy,
S(H) = ln Ω(H) (kB = 1), analogous to the entropy in the
microcanonical ensemble, eq 1 further transforms into
exp{S(H) − wα(H)} = exp{−β α(H)}, α(H) being the
generalized free enthalpy density and wα being the generalized
effective potential. The generalized partition function is
obtained as Zα(β) = ∫ dHe−βFα(H).
The key quantity in the isothermal−isobaric gREM is the

effective temperature, Tα(H;λα) = [∂wα/∂H]
−1, which com-

pletely determines the generalized sampling weight up to a
constant through the inverse mapping relation

∫= − ̃ ′ λ
′α

α α
W H

T H
H( ) ln

1
( ; )

d
(2)

where λα is a set of parameters characterizing the effective
temperature. It is possible to identify conditions for the
effective temperature ensuring that the underlying unstable
state will be transformed into the stable enthalpy state with a
unimodal PDF, Pα(H).
A necessary and sufficient condition on Tα(H;λα) is derived

by identifying an extremum, Hα*, of a generalized free enthalpy
density, β α(H) = S(H) − wα(H),

* λ = * = *α α α α αT H T H T( ; ) ( )S (3)

where TS(H) = [∂S/∂H]−1 is the statistical temperature in
enthalpy analogous to the statistical temperature in the
microcanonical ensemble, and Hα* is the crossing point
between Tα(H) and TS(H). By identifying a stability condition

β ″ * = γ − γ *α α α αH T( ) ( )/S
2

(4)

where γs = TS′(Hα*), γα = Tα′(Hα*), and the prime denotes
differentiation with respect to H, we find that a unimodal PDF
can arise about the unique crossing point, Hα*, between TS(H)
and Tα(H;λα), subject to the condition that γα(Hα*) < γS(Hα*).
In the isothermal−isobaric gREM, exchange between

neighboring replicas is performed where replicas represent
noncanonical ensembles characterized by the effective temper-
ature Tα(H;λα)(α = 1, 2, ..., M). As the parameter λα varies,
Tα(H;λα) covers a range of temperature between T1 and TM,
the lowest and highest temperature, respectively. On the basis
of the one-to-one correspondence, the sampling weight
Wα(H,λα) is completely determined by the inverse mapping
in eq 2.
The simplest parametrization scheme for forming stable

crossing points between Tα(H;λα) and TS(H) is to align linear
effective temperatures in parallel with the constant slope, γ, as

λ = λ + γ −α α αT H H H( ; ) ( )0 (5)

the control parameter λα being the T-intercept at an arbitrarily
chosen H0. To form the unique stable crossing point Hα* in
each replica, γ must be less than the minimum slope γS

min, γS
min =

min{TS′(H)} being the minimum slope of TS(H) for the
sampled enthalpy region. Since TS(H) monotonically increases
except for the phase change region, in most cases a proper γ is
easily guessed from the approximate TS(H) by connecting a few
points of [H̃(T),T], H̃(T) being an average enthalpy of a short
canonical run at T. For example, γ can be simply chosen as γ =
(TM − T1)/ (H̃1 − H̃M), T1 and TM being the lowest and
highest temperature, and H̃α = H̃(Tα).
Once γ is fixed, the dynamic range of λα is determined to

cover the interesting temperature range between T1 and TM as
λ1 = T1 and λM = TM − γ(H̃M − H̃1), with H0 = H̃1. The first
and Mth effective temperatures are chosen to cross [H̃1,T1] and
[H̃M, TM], respectively. The intermediate values of λα (1 < α <
M) are determined by equally dividing the parameter space as

λ = λ + α − Δλα ( 1)1 (6)

and Δλ = (λM − λ1)/(M − 1).
Interestingly, the linear effective temperature of eq 5

produces a generic form of the Tsallis weight20−22

λ ∼ λ + γ −α α α
− γW H H H( ; ) [ ( )]0

1/
(7)

Identifying γ and λα by (q − 1) and βα
−1, respectively, q being

the nonextensivity parameter, recovers the original form of the
Tsallis weight proposed in nonextensive statistical mechanics.20

The gREM with a linear effective temperature of eq 5 is
equivalent to the Tsallis-weight-based REM, which has been
exploited previously in the form of the generalized parallel
tempering (GPT),23 q-REM,24 and Tsallis-REM algorithms.25

Detailed simulation protocols of the gREM are defined by
the following three steps:
(i) Perform short canonical runs at several temperatures

between T1 and TM to determine the data set, [H̃α, Tα]. Select a
proper γ to be less than γS

min, and determine λα by employing eq
6 between λ1 = T1 and λM = TM − γ(H̃M − H̃1), with H0 = H̃1.
(ii) Run the gREM simulation in each replica by making trial

moves in configuration space with the acceptance probability

→ ′ = ′−α αA x x( ) min[1, e ]w H w H
intra

( ) ( )
(8)

Every fixed time step, attempt a replica exchange between
neighboring replicas with the acceptance

α ′ = ΔαA xx( ; ) min[1, exp( )]inter (9)

Δα = wα+1(H′) − wα+1(H) + wα(H) − wα(H′).
(iii) Once a sufficiently long production run has been

performed, calculate the entropy estimate S ̃(H) by joining
multiple generalized ensemble runs via the weighted histogram
analysis method (WHAM)26 or the recently developed
statistical temperature weighted histogram analysis method
(ST-WHAM).27

In the canonical MC runs, the temperatures of the replicas
are uniformly distributed between the lowest and highest
temperature T1 and TM. The initial configurations for each
replica are prepared by first equilibrating the system at high
temperature, and then gradually cooling the system until it
reaches the temperature of that replica. In other words, instead
of one initial structure for all replicas, a set of initial structures is
used according to the temperature of each replica.
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Simple Monatomic Dzugutov Model. We apply gREM
to study the solid−liquid phase change properties of a single-
component system with an adapted Dzugutov potential
(donoted as Z2).19,28 The Z2 potential has the form

= + σ +
α

⎜ ⎟⎛
⎝

⎞
⎠V r a

r
k r b

r
V( )

e
cos(2 )

r n

3 F 0 (10)

for r < rc and 0 otherwise. We use the position of the third
minimum in the function as our cutoff distance, rc , and V0 is
defined through the equation V(rc) = 0. V0 acts to shift the
potential so that it vanishes at the third minimum, thus making
the function and its first derivative continuous at the cutoff. The
potential is plotted in Figure 1 together with the Lennard-Jones

potential, and the values of the parameters for the potential28,29

are given in Table 1. We use a system of 500 identical particles
and set the pressure to be P = 0.40 for all replicas in order to
simulate the NPT ensemble rather than NVT ensemble
explored previously for this model system.19 Using constant
pressure simulation in the vicinity of a phase change, the system
is free to transform completely into the state of lowest free
energy, which may not be achieved in constant volume
simulation. All simulation results are expressed in reduced units
of length and energy, which are defined by Lennard-Jones, with
the particle mass assumed to be unity. Considering the
Lennard-Jones potential as a model potential of argon, and
the mass of the argon atom as the unit of mass, the reduced
units of length and energy can be estimated as 0.34 nm and
0.238 kcal/mol.29

The Z2 potential was designed to imitate effective interionic
interactions in liquid metals with characteristic Friedel
oscillations.30,31 The first term in the potential has a form
similar to that expected for the effective interaction between
metal ions screened by electrons. Friedel oscillations are
present with wave vector 2kF, where kF corresponds to the wave
vector at the Fermi level. The second term adds a repulsive
interaction that suppresses the oscillations at small r. The
potential has been found to induce a pronounced local

icosahedral ordering of the nearest neighbors due to the design
of its short-range attraction, while the repulsion incorporated in
the longer-range interaction inhibits bulk packing of icosahedra.

Measuring the Sampling Convergence Using the
Ergodic Measure. The energy metric is a convenient quantity
to assess the time intervals needed for effective ergodicity to be
established by following the dynamics of a system using two
distinct initial conditions.32 The energy metric d(t) is defined in
terms of time averages of energies of individual particles. The
time-averaged potential energy of particle j over a trajectory is
computed as

∫=e t
t

E s s( )
1

( ) dj

t

j
0 (11)

where Ej(s) is the energy of particle j at time s on the trajectory.
Because the potential energy in this study is pairwise additive,
Ej(s) is one-half of the sum of all potential-energy terms
involving particle j. Two independent initial states of the system
are chosen, and these are labeled a and b. The energy metric,
d(t), is given by the square of the energy difference between the
energy averages of the particles over the two trajectories,
namely,

∑= −
=

d t
N

e t e t( )
1

[ ( ) ( )]
j

N

ja jb
1

2

(12)

where the sum runs over all N particles of the system. For an
ergodic system, we expect that limt→τ[eja(t) − ejb(t)] → 0 for
each particle j. This is because the time averages for the system
reach their equilibrium values in a time τ independent of any
initial condition. In practice, an acceptable estimate for τ is
obtained by determining when d(τ)/d(0) = 0.01 is satisfied.32

The behavior of d(t) for times greater than a transient time tI
is characterized by a single parameter, DE, the “diffusion
constant” associated with the rate of exploration of phase space.
The decay of d(t) for t > tI has been shown to obey the
dynamical scaling form

=d t d f tD( ) (0) ( )E (13)

where

=
→
≫

⎧⎨⎩f x
x

x x
( )

1 0
1/ 1

The reciprocal of DE is roughly the time required for effective
ergodicity to be obtained.
To apply the ergodic measure in the REM, one must

compute the measure for each replica separately, because the
replicas are at different temperatures and the sampling speeds
will, in general, depend on temperature or underlying
generalized ensemble. Two independent initial states are
given to each replica α = 1, ..., M, and the two trajectories
(a,α) and (b,α) are generated. The energy metric for replica α
is computed as

∑= −α

=

α αd t
N

e t e t( )
1

[ ( ) ( )]
j

N

ja jb
1

2

(14)

Figure 1. The Z2 potential (refs 22 and 23) used in this study (solid
line) compared to the Lennard-Jones potential (dashed line). Plotted
after Figure 1 in ref 23.

Table 1. Values of the Parameters for the Z2 Potential

a α kF b σ n rc V0

1.04 0.33 4.139 4.2 × 106 0.348 14.5 2.64488 0.13391543
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where eja
α is the time averaged energy of particle j, computed

using eq 11, and the superscript α indicates replica α.
Probing Structure Change Using Pair Distribution

Functions. The radial distribution function is computed from
the simulation trajectories as

∑ ∑=
ρ

δ −
= ≠

g r
N

r r( )
1

( )
i j i

ij
0 1 (15)

where ρ0 is the bulk density, rij is the distance between atom i
and j, and ⟨···⟩ denotes an ensemble average.
Let us denote the first minimum of g(r) as r1. The

coordination number, which is the average number of
neighbors, CN, up to a distance r1, can be computed as33

∫= πρCN r g r r4 ( ) d
r

0 0

2c

(16)

since the area under the first peak of g(r) is proportional to the
number of particles in the first coordination shell.
The static structure factor S(Q) is the Fourier transform of

the radial distribution function g(r)34,35 according to

∫= + πρ −
⎛
⎝⎜

⎞
⎠⎟S Q r

Qr
Qr

g r r( ) 1 4
sin( )

[ ( ) 1] d
L

0 0

2

(17)

The wave vector Q is defined as Q = 2πk/L, where k is an
integer that ranges from 1 to N, N is the total number of
particles, and L is the length of the periodic boundary box.
S(Q) provides a measure of the correlation length of the
density fluctuations.
Identifying Structural Symmetry through Bond

Orientational Order Parameters. Bond orientational order
parameters36−38 based on spherical harmonics, also known as
Steinhardt order parameters, are often used to determine
crystal structures in molecular simulations. In computational
studies of crystallization from an undercooled liquid, one must
distinguish particles that are part of the crystal from those that
belong to the liquid. Ideally, such an assignment is based on the
local environment of the particles only. One method, which is
independent of the specific crystal structure and does not
require the definition of a reference frame, is provided by the
following algorithm based on spherical harmonics.
The complex vector qlm(i) of particle i is defined as qlm(i) =

1/(Nb(i))∑j=1
Nb(i)Ylm(rij), where, Nb(i) is the number of nearest

neighbors of particle i, the functions Ylm(rij) are the spherical
harmonics, and rij is the vector from particle i to particle j. To
make the order parameters invariant with respect to rotations of
the reference frame, the third-order invariants are defined as

∑=
+ + =

⎛
⎝⎜

⎞
⎠⎟w i

l l l
m m m q i q i q i( ) ( ) ( ) ( )l

m m m
lm lm lm

0 1 2 3
1 2 3

1 2 3

(18)

where the coefficients (···) are the Wigner 3j symbols. We refer
to the normalized quantity

̂ ≡
∑ | |

w
w
q( )l

l

m lm
2 3/2

(19)

Using this approach, one can determine the type of crystalline
structure occurring around each individual particle.
Determining Thermodynamic Quantities Using ST-

WHAM Analysis. We employ a recently developed iteration-
free approach to solve the WHAM equations in terms of

intensive variables. This numerical approach, the ST-WHAM,27

yields the inverse temperature βS = ∂S/∂H directly from a novel
form of the WHAM equations. The statistical temperature is
then computed as TS = 1/βS. Thermodynamic quantities
including the entropy can be evaluated upon numerical
integration of this statistical temperature. Once the entropy is
determined, all other canonical thermodynamic properties can
be computed, including the specific heat Cp, which can be
computed as Cp = T(∂S/∂T)p.

■ RESULTS AND DISCUSSION
Effective Temperatures and Generalized Ensemble

Distributions. To determine the dynamic range of λα and the
optimal value of γ, we first performed short canonical MC
simulations for 2 × 104 MC sweeps (MCS), at T1 = 0.3 and TM
= 0.6, which determine H̃1 = −0.7157 and H̃M = 2.0128. One
MCS includes N trial moves, N is also the same as the number
of particles, and M is the total number of replicas (M = 31).
The value of γ is computed as γ = (TM − T1)/(H̃1 − H̃M) ≈
−0.11. Setting H0 = H̃1 in eq 5, the dynamic range of λα,
between λ1 = T1 and λM = TM − γ(H̃M − H̃1), depends on γ.
For γ = −0.11, λ1 ≈ 0.30 and λM ≈ 0.72.
The generalized sampling weights can be determined by eq 7

once the parameters γ and λα are known. Replica exchanges
were attempted after every replica completed one MCS.
Resulting effective temperatures (solid lines) in Figure 2a were
chosen to fully span the phase change region. For comparison,
we also plot the exact TS(H), which was determined by the ST-
WHAM.27 All relevant parameters in the gREM have been
chosen based on short canonical runs at T1 and TM, and full
knowledge of TS(H) is not necessary.

Figure 2. (a) Most probable energy set [Hα*, Tα*] (red squares)
determined by gREM for 107 MCS, and statistical temperature TS(H)
(black solid line). Here Hα* is the average enthalpy of replica α, and
Tα* is the effective temperature. The parallel dashed lines represent
T(H;λα) linear effective temperatures of replica α. (b) PDFs Pα(H)
and superimposed energy distribution function PT(H) (black line). In
both (a) and (b), α = 1,6,11,16,21,27,31 from left to right. Same colors
are applied for the same simulations in both panels.
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Since Tα(H;λα) was designed to form a unique, stable
crossing point, Hα*, with TS(H), the resulting PDFs in Figure
2b are rapidly localized around a given Hα* with a Gaussian
shape, and naturally bridge between ordered and disordered
phases with unimodal energy distributions across the change
region. Since Pα(H) is sharply peaked at Hα*, T(Hα*, λα) =
TS(Hα*), the set of most probable energies, [Hα*, Tα*],
asymptotically converges toward a locus of TS(H). Indeed, the
profile of [Hα*, Tα*] shows a perfect coincidence with TS(H)
determined by ST-WHAM, and exactly corresponds to crossing
points between TS(H) and Tα(H;λα) in Figure 2a. For
convenience, the most probable energy Hα* was approximated
by the average energy summed over the αth replica.
For each individual replica, the enthalpy distribution function

Pα(H) has a single peak around Hα* with a Gaussian shape.
However, the superimposed enthalpy distribution, PT(H) = (1/
M)∑αPα(H), shown in Figure 2b as a black curve, displays a
bimodal distribution. The locations of the two peaks
correspond to the solid state and liquid state, respectively.
Despite the existence of the two peaks, PT(H) is flattened in the
entire enthalpy range, which ensures a comprehensive sampling
for phase change region.
Sampling Speed Evaluated Using the Ergodic Meas-

ure. We have demonstrated the effectiveness of gREM to
achieve comprehensive sampling. In this section we examine
the sampling efficiency of gREM compared with traditional
tREM using ergodic measure to quantify the sampling speed
and rate of convergence of thermodynamic averages.
The energy metric and reciprocal metric are computed using

eqs 11 and 12 by following two sets of energy trajectories with
two independent initial conditions. As stated earlier, the energy
metric for an ergodic system is expected to behave as d(t)/d(0)
= 1/DEt so that the reciprocal metric scales as d(0)/d(t) = DEt.
The diffusion constant, DE, measures the sampling speed in
phase space. Our results in Figure 3 confirm that the reciprocal

metric is a linear function of time for both tREM and gREM,
and the slope of the reciprocal metric of gREM, which gives the
diffusion constant DE, is nearly 2 times greater than that of
tREM.
We computed the diffusion constants DE(α) of all replicas (α

= 1, ..., M) for tREM and gREM. In tREM, the temperature of

αth replica is Tα = T1 + (α − 1)ΔT, where ΔT = (TM − T1)/
(M − 1), T1 and TM being the lowest and highest temperature.
In gREM, the most probable effective temperature Tα* was
computed by eq 5 as Tα(H; λα) = λα + γ(Hα* − H0), where the
most probable enthalpy Hα* was approximated by the average
enthalpy summed over the αth replica. As DE and temperature
of each replica are known, we can plot DE against the
temperature at that replica. Figure 4 presents DE of tREM and

gREM as a function of temperature within T = [0.3,0.55].
Similar results were observed for gREM and tREM. At low
temperatures T = [0.3,0.45], DE stays at a low value when
temperature increases. Once temperature goes beyond T =
0.47, DE begins to increase dramatically. There is a 3 orders of
magnitude difference between the diffusion constant, DE, of the
lowest and highest temperature. This indicates that the system
undergoes a phase change from liquid to amorphous solid upon
cooling from T = 0.6 to 0.3. Note that the reciprocal of DE in
Figure 4 also provides an estimated time scale for each replica
to reach effective ergodicity.

Investigation of Liquid−Solid Phase Change. The
thermodynamic phase change and phase change temperature
were investigated, structurally by calculating the radial
distribution function, and thermodynamically by computing
the temperature variation of the specific heat.
The radial distribution function g(r) is an appropriate tool to

describe the short-range order in a monatomic liquid, providing
the probability of finding two atoms in the liquid at a separation
r. The computed g(r) of the liquid displays a prominent first
peak centered at the nearest-neighbor spacing in the crystalline
solid indicating the existence of substantial short-range order.
The short-range ordering decreases at high temperature due to
thermal fluctuation and increases at low temperature. As shown
in Figure 5a from the bottom to the top curve, the first peak of
g(r) grows taller as temperature decreases. The second and
third peaks also become more visible as temperature drops.
Meanwhile, the location of each peak remains the same
regardless of the temperature. It is worthwhile to point out that
even at the lowest temperature T = 0.3, g(r) shows
characteristics of the liquid state. In the crystalline state, g(r)
has an infinite number of sharp peaks whose separations and
heights are characteristic of the lattice structure. In the liquid

Figure 3. Energy metric d(t)/d(0) and reciprocal metric d(0)/d(t) of
tREM (black dash line) and gREM (red solid line) are shown for the
17th replica. The simulatio time t is scaled by τ, the equilibrium time
step, which equals 3 × 104 MCS.

Figure 4. The temperature variation of diffusion constant DE for both
gREM (red) and tREM (black) result. The vertical arrow indicates the
melting temperature.
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state, the second peak is less prominent and the third peak is
hardly visible in g(r), indicating a lack of long-range order.
Correlations in particle positions rapidly die out in a liquid, and
g(r) approaches unity over a distance of a few particle
diameters.
The static structure factor S(Q) can be computed through

the Fourier transform of the radial distribution function g(r) by
eq 17. Figure 5b presents the results of S(Q) showing that at all
temperatures S(Q) has a nearest neighbor peak located around
Q ≈ 2π. Below the location of the nearest neighbor peak, there
is an additional low-Q prepeak, indicating the formation of the
clustering and the resulting residual repulsive interaction
between clusters. The presence of the low-Q prepeak in S(Q)
at a finite wavevector highlights the presence of an additional
characteristic length scale in this system.39 Under cooling, the
height of the prepeak increases, and the width becomes
narrower. However, the similarity of the two curves indicates
that we observe a phase change between two similarly
structured phases.
The coordination number (CN) measures the average

number of nearest neighbors, and reflects the degree of
short-range order in a system. Figure 6 shows the temperature
variation of the coordination number, which shows a gradual
decrease as the temperature increases. At low temperature T =
0.3, CN ≈ 10, indicating that on average each particle has 10
nearest neighbors. The short-range ordering is characteristic of
the solid state, but as discussed earlier, the steady decay of g(r)
indicates the lack of long-range ordering. The nature of the low
temperature state is determined to be an amorphous solid state.
As temperature increases, CN drops dramatically, reflecting that

the system is melting around a characteristic temperature
around T = 0.47.
The temperature variation of the specific heat at constant

pressure, Cp, is also shown in Figure 6, and displays a
pronounced maximum at T = 0.47. The appearance of excess
specific heat under cooling is an indication of the development
of bonded structure, and a common precursor of percola-
tion.30,31 The maximum of Cp, as well as the low-Q prepeak of
S(Q), is commonly observed in the context of gelation in
colloidal systems.39,40 The maximum temperature Tm = 0.47 is
in agreement with the phase change temperature derived from
the coordination number.

Assessing Icosahedral Cluster Formation Using Bond
Order Parameters. Bond-orientational order parameters were
computed to determine the nature of the local symmetry
underlying the local order observed at low temperatures. The
four bond order parameters q4, q6, ŵ4, and ŵ6 are generally
sufficient to identify crystal structures reflecting face-centered
cubic (fcc), body-centered cubic (bcc), haxagonal close-packed
(hcp), and icosahedra (Ih) structure. We focus on icosahedral
local ordering, which is a pronounced feature of this adpated
Dzugutov model system. Local icosahedral ordering is
characterized by large negative values of ŵ6, up to ŵ6 =
−0.1675 for a perfect icosahedron.36

The value of ŵ6 for each individual particle is computed using
eq 18. If ŵ6 ≤ −0.165, the particle is counted as icosahedrally
ordered, and its nearest neighbors within a cutoff radius of 1.5
are also included in the icosahedral cluster. In Figure 7 we
present the computed temperature variation in the number of
icosahedrally coordinated particles, NIh, scaled by system size N.
The value of NIh/N remains almost temperature independent
for T > 0.5, and grows rapidly with cooling below T = 0.47,
which is also the location of the maximum in the specific heat,
Cp. This phase change temperature is coincident with the bond
percolation threshold, where the bonds are defined between
pairs of atoms that are nearest neighbors in icosahedral clusters.
At low temperature T = 0.3, nearly 50% of the particles belong
to icosahedral clusters.
Figure 8 shows the distributions of ŵ6 at four temperatures

across the phase change range. The reference value for ideal
icosehedral ordering is plotted as a red dashed line. At T1 = 0.3,
ŵ6 has a sharp and narrow peak located close to the reference
value, indicating that a large percentage of particles have
icosahedral local ordering. At T2 = 0.4, the peak of the ŵ6

Figure 5. (a) Radial distribution function g(r) and (b) structure factor
S(Q)at four different temperatures as noted in (a), where r is the
distance and Q is the wavevector. The same color scheme is used for
the same temperature in both (a) and (b).

Figure 6. Temperature variation of coordination number (CN) and
specific heat (Cp) near the phase change temperature in black and red
lines, respectively.
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distribution remains close to the reference value, but the
distribution becomes wider. Increasing the temperature further
to T3 = 0.5 and T4 = 0.6, the icosahedral symmetry is mostly
absent.
Insight into the structral transformation from solid to liquid

is provided by direct inspection of the atomic configurations.
Figure 9 depicts four configurations at T1 = 0.3 to T4 = 0.6. At
T1 the connected icosahedral clusters occupy a large percentage
of the volume. At T2 = 0.4, the number of icosahedral clusters is
diminished, and the icosahedra are scattered and disjoint. When
T3 = 0.5, the number of icosahedral cluster is further
diminished. As temperature increases to T4 = 0.5, the
icosahedral ordering is found to be absent in the high
temperature liquid state. These results are consistent with
earlier observations regarding the evolution of icosahedral order
in this system under cooling (see Figure 7).

■ CONCLUSION
The applicability of the gREM has been demonstrated in an
adapted Dzugutov model system. By combining optimally
parametrized generalized ensemble sampling with the replica

exchange protocol, the gREM provides effective sampling
across the phase change region through successive unimodal
energy distributions. The ergodic measure comparison between
gREM and tREM reveals the advantage of gREM in achieving
effective conformational sampling across the phase change
region. The diffusion constant computed by the ergodic
measure shows a 3 orders of magnitude difference between
the highest and lowest temperature state, indicating that the
system goes from a liquid to amorphous solid upon cooling.
The temperature evolution of the radial distribution function
and structure factor demonstrates that the low temperature
state is not a crystalline solid, but rather an amorphous solid
possessing short-range icosahedral order. The phase change
temperature was determined to be T = 0.47 through evaluation
of the temperature variation of the coordination number and
specific heat through the solid−liquid phase change. The
growth of icosahedral clustering under cooling is observed and
quantified with the aid of bond order parameters.
Our results indicate that the solid states of lowest free energy

for the range of pressures studied have an amorphous character
and lack long-range translational symmetry characteristic of an
ordered solid. The adapted Dzugatov potential imposes
characteristic length-scales that will be reflected in a structured
liquid or solid, including the core particle size (dictated by the
repulsive potential), the position of the first minimum, and the
distance between the first and second potential minimum (or
intervening maxima) resulting from the potential oscillations.
The solid state is characterized by the formation of icosahedral
clusters, the size of which is largely determined by the core
particle size and position of the first potential minima. These
“superparticles” are then found to arrange themselves on a
lattice geometry, where the distance between lattice sites will be
determined by the interactions between superparticles.
Depending on the relation between the positions of second
and third minima and maxima and the overall icosahedral
superparticle size, the interactions may be stabilized or result in
frustration. With the parametrization of the adapted Dzugatov
model studied in this work, which was tailored to prevent
crystallization,28 these competing length scales lead to
frustration that disrupts long-range order. Optimization of

Figure 7. The number of particles of local icosahedra structure NIh
scaled by the total number of particle in the system N as a function of
temperature between T = [0.3,0.6]. The error bars are defined as
standard deviation from 9 sets of independent results.

Figure 8. The distribution of bond order parameter ŵ6 at four
temperatures T = 0.3, 0.4, 0.5, 0.6, (a, b, c, d, respectively). The red
dashed line is the reference value of ŵ6 for the ideal icosahedral
symmetry.

Figure 9. Four respresentative configurations at four temperatures T =
0.3, 0.4, 0.5, 0.6, (a, b, c, d, respectively). The icosehedral clusters are
marked in red, and the nonicosahedral particles are marked in gray.
The cutoff distance for a bond is 1.5. Note that the size of each plot
does not represent the real volume at that temperature.
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these interactions and parameters could potentially lead to a
thermodynamically stable solid state exhibiting long-range
translational order, as well as a stronger and more cooperative
transition between the liquid and solid states.
The absence of a substantial difference in the measured rate

of conformational sampling for gREM as opposed to tREM
results from the modest nature of the solid−liquid phase
change in this system and the absence of a substantial energy
gap. As a result, the distribution of states in energy or enthalpy
is relatively continuous for temperature replicas as well as for
the generalized energy distributions. The gradual nature of this
phase change is in part due to the amorphous nature of the
observed solid state, which lacks long-range translational order.
More dramatic enhancements in sampling using the gREM
protocol can be expected for systems demonstrating stronger
phase transitions with a more substantial energy gap and a
range of unstable states in the canonical ensemble.
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