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ABSTRACT: The replica exchange statistical temperature
molecular dynamics (RESTMD) algorithm is presented,
designed to alleviate an extensive increase of the number of
replicas required as system size increases in the conventional
temperature replica exchange method (tREM), and to obtain
improved sampling in individual replicas. RESTMD optimally
integrates multiple STMD (Phys. Rev. Lett. 2006, 97, 050601)
runs with replica exchanges, giving rise to a flat energy
sampling in each replica with a self-adjusting weight
determination. The expanded flat energy dynamic sampling
range allows the use of significantly fewer STMD replicas while
maintaining the desired acceptance probability for replica
exchanges. The computational advantages of RESTMD over conventional REM and single-replica STMD are explicitly
demonstrated with an application to a coarse-grained protein model. The effect of two different kinetic temperature control
schemes on the sampling efficiency is explored for diverse simulation conditions.

I. INTRODUCTION
The temperature replica exchange method (tREM),1,2 or
parallel tempering (PT),3 has been gaining popularity in
computer simulation of diverse complex systems with rugged
energy landscapes.4−15 Performing multiple, independent runs
for a sequence of temperatures, and occasionally swapping
configurations among replicas, enables a significant acceleration
of configurational sampling, overcoming an ergodicity breaking
problem at low temperatures.16,17

To maintain an appreciable acceptance probability for replica
exchanges, neighboring replicas must overlap in energy. In the
tREM, this means that the average energy separation, ΔU,
between neighboring replicas should be comparable to the
typical energy fluctuation, δU. Since ΔU = CvΔT and δU =
T(Cv)

1/2 in the canonical ensemble, Cv and ΔT being the heat
capacity and the temperature separation of adjacent replicas,
respectively, we have ΔU/δU = (ΔT/T)(Cv)

1/2 ∼ 1. The
number of replicas is proportional to 1/ΔT, which is seen to
increase as ∼(N)1/2 with increasing system size.
In order to circumvent the extensive increase of replicas

required for tREM, several sophisticated REM variants have
been proposed.18−35 One approach is to combine the
generalized ensemble method (GEM)36−38 with REM, in
which each replica utilizes a non-Boltzmann sampling weight,
yielding a delocalized energy distribution and allowing sufficient
energy overlap with fewer replicas. The multicanonical replica
exchange method (MUCAREM)39−42 has been shown to
produce comparable performance to tREM using half the
number of replicas. However, a necessary prior weight
determination is a limiting obstacle to its widespread use.
Recently, we proposed the replica exchange statistical

temperature Monte Carlo (RESTMC) algorithm43 by combin-

ing the ingredients of statistical temperature MC (STMC)44

and REM. In RESTMC, each individual replica samples a range
of temperatures with a self-adjusting weight determination and
attains a flat energy distribution, leading to a significant
decrease of the number of replicas with no deterioration in
sampling efficiency, as demonstrated in Lennard-Jones clusters
with N = 31, possessing a challenging double-funneled energy
landscape. However, in many condensed phase simulations of
complex fluids and biomolecules, molecular dynamics (MD) is
preferable to MC, due to the difficulty of designing effective
Monte Carlo moves in low-energy, compact states.
In this paper, we present the replica exchange statistical

temperature molecular dynamics (RESTMD) algorithm, and
evaluate the performance gain with respect to both conven-
tional replica exchange MD (REMD) and single-replica STMD.
In contrast to RESTMC, requiring the replica exchange of
coordinates only, RESTMD must also exchange momenta. This
requirement poses the challenge of selecting an optimal kinetic
temperature control scheme for each replica, and here we
explore two possibilities. With applications to the Honeycutt−
Thirumalai coarse-grained BLN protein model,45 the perform-
ance gain of RESTMD is explicitly demonstrated in terms of
tunneling events, exchange acceptance rates, and inherent
structures.

Special Issue: Macromolecular Systems Understood through Multi-
scale and Enhanced Sampling Techniques

Received: January 11, 2012
Revised: April 13, 2012
Published: April 27, 2012

Article

pubs.acs.org/JPCB

© 2012 American Chemical Society 8646 dx.doi.org/10.1021/jp300366j | J. Phys. Chem. B 2012, 116, 8646−8653

pubs.acs.org/JPCB


The paper is organized as follows: In section II, the basic
formulation and the simulation protocols of RESTMD are
presented. In section III, the performance of RESTMD over
tREM or single-replica STMD is examined for the BLN-46-mer
and 69-mer.46 The conclusion and a brief summary are
presented in section IV.

II. METHODS
A. Replica Exchange Statistical Temperature Molec-

ular Dynamics. The ideal sampling weight in the combination
of the generalized ensemble method (GEM) and REM is the
reciprocal of the partial density of states, Ωα[U(x)], with U(x)
being the potential energy at configuration x and α being the
replica index, as

= Ωα αW U U( ) 1/ ( )id
(1)

giving rise to a flat energy distribution and maximizing energy
overlap between neighboring replicas. The main challenge is
that Ωα is not known a priori, and the corresponding estimate,
Ω̃α, must be determined before a production run.42

RESTMD is a hybrid sampling method merging multiple
statistical temperature molecular dynamics (STMD) runs with
replica exchanges (see refs 43 and 44 for details). Since a single
STMD simulation performs a random walk in energy with a
self-adjusting weight determination, seeking a flat energy
distribution, joining multiple STMD runs via replica exchanges,
provides a unique way to alleviate the system size dependence
of conventional tREM while avoiding both the unknown weight
dependence and the difficulty of choosing MC moves.
RESTMD replicas are characterized by the generalized

ensemble weights in configurational space

= Ω̃ = − ̃α α αW U S U1/ ( ) exp{ ( )} (2)

with Sα̃ = ln Ω̃α (kB = 1) being the estimate for the exact
configurational entropy and Sα = ln Ωα, in the microcanonical
ensemble.
The key quantity in RESTMD is the replica-dependent

statistical temperature, Tα(U) = [∂Sα/∂U]
−1. Instead of directly

refining the extensive Ω̃α as in Wang−Landau sampling,47

RESTMD refines the statistical temperature estimate, T̃α(U) =
[∂S ̃α/∂U]−1, via the dynamic modification scheme

δ
̃′ =

̃

∓ ̃α
α

α
±

±

±
T

T

fT1i
i

i
, 1

, 1

, 1 (3)

upon a visit to discretized energy Ui, where i = G(U/Δ), Δ is
the bin size, and G(x) returns the nearest integer to x. The
prime denotes the updated value.
As the modification factor, δf = ln f/(2Δ), gradually

decreases to zero via the repeated Wang−Landau operation, f
→ ( f)1/2, every specified number of MD steps, T̃α(U),
systematically converges to the true Tα(U) = [∂S/∂U]−1 and
a flat energy distribution is realized in each replica.
B. Molecular Dynamics Implementation. By considering

the generalized ensemble in eq 2 as a canonical ensemble
associated with an effective potential, wα(U) = Tα

kinS ̃α(U), at the
fixed kinetic temperature, Tα

kin = 1/βα
kin, the flat energy sampling

weight is achieved

β= − = − ̃α α α αW w U S Uexp{ ( )} exp( ( ))kin
(4)

RESTMD equations of motion, coupled to the Nose−́Hoover
thermostat,48 are obtained as

ξ γ ξ
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̇ = −∇ − = −

̇ = −
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(5)

where K(pi) = ∑ipi
2/2, γα(U) = Tα

kin/T̃α(U), and qi, pi, and fi
correspond to the coordinate, the momentum, and the force of
the ith particle, respectively. Here, ξ and Q represent the
conjugate momentum and fictional mass of the Nose−́Hoover
thermostat, determining the strength of the thermal coupling to
a system having Nf degrees of freedom.
Equation 5 corresponds to an ordinary molecular dynamics

simulation combined with an instaneous force scaling with an
energy-dependent factor, γα(U) = Tα

kin/T̃α(U), and the average
kinetic energy is maintained at the fixed kinetic temperature
Tα
kin. In contrast to RESTMC, requiring an explicit form of the

extensive S̃α, eq 5 needs only the intensive T̃α(U).
To restrict the dynamic sampling range of each replica, the

instantaneous value of T̃α(U) is always maintained between
Tα
min and Tα

max, corresponding to low and high temperature
bounds, respectively, by enforcing

̃ =
̃ ≤

̃ ≥
α

α α α

α α α
⎪

⎪⎧⎨
⎩

T U
T T U T

T T U T
( )

for ( )

for ( )

min min

max max
(6)

The advantage of RESTMD over conventional REMD and a
single STMD is straightforward. Flat energy replicas maintain a
sufficient overlap between neighbors with far fewer replicas
than in conventional REMD, and the division of temperature
space into smaller windows enables a significant acceleration of
the weight determination process compared to single-replica
STMD.

C. Kinetic Temperature Control for Replicas. While
RESTMC swaps only coordinates, x, replica exchanges in
RESTMD must also consider the momenta, p. The full
sampling weight in phase space (x, p) in RESTMD is obtained
as

β∼ −α α αW x pexp{ ( , )}kin
(7)

where α(x, p), the Hamiltonian in the α-th replica, is equal to
the sum of the kinetic energy, Kα(p), and the effective potential,
wα[U(x)].
To preserve a detailed balance, the coordinates and momenta

exchange between replicas α and α′, characterized by (x, p) and
(x′, p′), should be accepted with the probability

= Δ + Δαα′A min[1, exp( )]x p (8)

where Δx = S ̃α(x) + S̃α′(x′)−Sα̃(x′)−S ̃α′(x) and the momentum-
dependent Δp is

β β− ̃ + ′ − ̃′α α α α α α′ ′ ′K K K Kp p p p{ ( ) ( )} { ( ) ( )}kin kin

with p̃ and p̃′ being the new momenta in α and α′ replica after
the exchange. It should be noted that Δp varies with the choice
of p̃ and p̃′ (see below).
Depending on the temperature control scheme of the

replicas, i.e., Tα
kin, the force scaling in eq 5 and the acceptance

rule for replica exchanges in eq 8 should be handled differently.
Here we explore two kinetic temperature control schemes as
follows:
(i) Inhomogeneous Kinetic Temperature Control (IK): Each

replica has a predetermined, different, kinetic temperature, Tα
kin,
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as usual in conventional REMD, resulting in γα(U) = Tα
kin/

T̃α(U). Following the original convention in replica exchange
MD,5 the exchanged momenta are scaled to assign new
momenta

̃ = ′ ̃′ =α α α α′ ′T T T Tp p p p/ and / (9)

resulting in Δp = 0 in eq 8.
(ii) Homogeneous Kinetic Temperature Control (HK): All

replicas have the same kinetic temperature Tα
kin = T0, with

γα(U) = T0/T̃α(U). Since βα
k = Tα′

kin, the direct exchange of
momenta p and p′, i.e., p̃ = p′ and p̃′ = p, leads to Δp = 0, not
requiring any scaling. Even though the kinetic temperature is
maintained at the same T0, each replica samples a different
energy region according to eq 5. Interestingly, the acceptance
probability for replica exchanges in HK also reduces to min[1,
exp(Δx)].
D. Statistical-Temperature Weighted Histogram Anal-

ysis Method. After a production run, RESTMD replicas are
combined to determine the inverse statistical temperature
βS(U) = 1/TS(U). Here we exploit the iteration-free, statistical-
temperature weighted histogram analysis method (ST-
WHAM),49 a recently developed alternative to the widely
used WHAM.50

ST-WHAM provides a unique way to determine an optimal
estimate, βS*, for a set of simulations associated with the
sampling weights, Wα(U), and resulting histograms, Hα(U), as
(see ref 49 for details)

∑

∑

β β β

β

* = * + ̃

= * *
α

α α α

α
α α

U f U U U

f U U

( ) ( )[ ( ) ( )]

( ) ( )

S
H

(10)

where β̃α(U) = 1/T̃α(U), βα
H(U) = ∂ lnHα/∂U, and fα* = Hα/

∑αHα. Denoting β̃α(U) = −∂ lnWα/∂U, we identify βα* = ∂

ln(Hα/Wα)/∂U = ∂ lnΩα*/∂U = ∂Sα*/∂U, with Ωα* and Sα* being
the reweighted partial density of states and entropy estimate for
each replica α, respectively. Note that ST-WHAM directly
determines the optimal βα*(U) as a weighted superposition of
the replica-dependent βα*(U) with no iterative evaluations for
partition functions intrinsic to conventional WHAM.
In an actual implementation, βα

H(U) at Uj in eq 10 is
approximated by its finite difference form, ln{Hα(Uj+1)/
Hα(Uj−1)}/2Δ, and βS*(U) is defined on discrete energy grids
Uj. The corresponding entropy estimates, S*(U) and Sα*(U),
are obtained by substituting the corresponding TS*(U) and
Tα*(U) into

∑* = +
=

+S U L U L U( ) ( ) ( )
j L

i

j j i1

max

max
(11)

where Lj = 1/ηj ln[1 + ηj(U − Uj)/Tj*, ηj = (Tj+1* − Tj*)/Δ .
Here imax = i − 1 for U ∈ [Ui − Δ/2, Ui] and imax = i for U ∈
[Ui, Ui + Δ/2].
Once S*(U) is determined, any canonical thermodynamic

property at an arbitrary temperature β is obtained by
reweighting as

∑β = βA A U P U( ) ( ) ( )
U (12)

where Pβ(U) = e−β(U−S*)/∑U e
−β(U−S*).

E. Simulation Protocols. In our studies so far, STMD uses
the velocity-Verlet integrator and the Nose−́Hoover thermo-
stat, although other choices could be implemented equally well.
Since T̃α(U) is being dynamically updated in the weight
refining stage of RESTMD, trajectories are initially not in full
equilibrium. Data are not taken until δf approaches zero, and
detailed balance is recovered with a correct estimation of
T̃α(U). Practical simulation protocols of RESTMD are outlined
as follows:

(i) Divide the temperature range of interest, between Tmin
and Tmax, into M overlapping windows, each covering the
range [Tα

min, Tα
max]. The overlap between neighboring

windows is adjusted by the overlap parameter κ as Tα
min =

Tα − κ(Tα+1 − Tα) and Tα
max = Tα + κ(Tα+1 − Tα). A set

of discrete temperatures, Tα (α = 1, ..., M + 1), is
sequentially distributed as Tmin(Tmax/Tmin)

(α−1)/(M−1) in a
geometric allocation, and Tmin + [(α − 1)/(M −
1)](Tmax − Tmin) in an equidistant allocation. Select the
simulation parameters, Δ and f, and the kinetic
temperature control scheme. Initialize T̃α(U) = (Tα

min +
Tα
max)/2 and set Tα

kin = Tα for the case of inhomogeneous
temperature control.

(ii) Run preliminary STMD simulations to obtain a rough
estimate for T̃α(U) with no replica exchanges and with
the modification factor fixed at the initial value, until the
minimum and maximum values of the estimate, T̃α(U),
reach Tα

min and Tα
max, respectively.

(iii) Propagate multiple STMD runs with replica exchange
attempts at specified intervals, using the acceptance rule
of eq 8. Depending on the kinetic temperature control
scheme, the assignment of new momenta after the replica
exchange should be done differently as described in
section 2C. Reduce the modification factor as f → ( f)1/2

every fixed (M × Nr) MD steps. In contrast to the single
STMD, where the reduction of f occurs only when the
energy histogram satisfies a strict flatness condition,44

RESTMD exploits a periodic reduction scheme, since the
dynamic sampling range of each replica is significantly
reduced and replica exchanges assist the system in
avoiding trapping and reaching ergodicity.

(iv) Move to a production run with the frozen T̃α(U) once δf
≤ 10−8. Simulation results from all replicas are joined to
estimate TS*(U) and S*(U) via ST-WHAM.49

III. SIMULATION RESULTS AND DISCUSSIONS
We have chosen the 46-residue, off-lattice Honeycutt−
Thirumalai BLN protein model,45 denoted BLN-46mer, as a
benchmark for RESTMD. This model has been studied
extensively,51−58 with methods including single-replica
STMD,44 and provides a good example of a rugged energy
landscape. We used the same potential form and parameter set
as a reference.55

We first performed several RESTMD simulations subject to
the inhomogeneous kinetic (IK) temperature control scheme
with varying numbers of replicas, M = 5, 10, 20, and 30.
Selecting Tmin = 0.05 and Tmax = 1.3, the temperature range
spanned by each replica was determined via the equidistant
allocation scheme, with a varying overlap parameter, κ. The
energy bin size is chosen as Δ = 1. The modification factor f
was reduced to ( f)1/2, starting from 1.0001, every Nr = (2.5 ×
106)/M MD steps in each replica. After 10 reductions of f,
reaching δf ≈ 5 × 10−8, the T̃α are effectively converged, and
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the production data were collected for 2 × 108 additional MD
steps. Note that the weight determination time is effectively
fixed at 2.5 × 107 MD steps regardless of M.
For comparison, we also performed conventional REMD

simulation using 30 replicas for the same temperature range.
Due to the vanishing acceptance of replica exchanges at low
temperatures, the geometric allocation scheme was applied to
generate Tα, and replica temperatures are assigned as (Tα +
Tα+1)/2 (α = 1, ..., M), corresponding to the kinetic
temperatures in RESTMD conjugated with the inhomogeneous
temperature control (RESTMD-IK). The global minimum
configuration was used as an initial configuration for all replicas,
and replica exchanges were attempted every 102 MD steps in
each replica in both RESTMD and REMD simulations.
The converged statistical temperature estimates, T̃α(U), with

M = 5 and κ = 0.2 in Figure 1a, illustrate the characteristic

features of RESTMD. Replica-dependent T̃α(U) associated
with different temperature windows smoothly join together
across the overlapping regions. The superimposed statistical
temperatures shows a monotonous increase with increasing U
and a characteristic slope variation, indicating the collapse
transition region (Tθ ≈ 0.65), and are in good agreement with
TS*(U) determined by ST-WHAM.
The replica-dependent, reweighted entropy estimates, Sα*(U),

in Figure 1b, determined from T̃α and Hα via eq 11, almost
coincide with the optimal S* for the nonvanishing fα*(U). The
flat energy distribution found in Pα(U) for Tα

min ≤ T̃α(U) ≤
Tα
max in Figure 1c indicates that the difference between the

estimated T̃α(U) and TS(U) is negligible. In the low and high
energy region of each replica, RESMTD samples the canonical
ensembles at Tα

min and Tα
max, respectively, giving rise to the

Gaussian decay in Pα(U) and the linear Sα*(U) for T̃α(U) < Tα
min

and T̃α(U) > Tα
max.

Due to the restricted sampling range in each replica, the
weight determination process in RESTMD is significantly
shortened in comparison to the single STMD, in which the
modification factor f decreases only when the histogram
satisfies a flatness criterion for the whole energy region.
Additionally, of course, the stochastic process of replica
exchange assists the system in avoiding trapping and reaching
ergodicity. As illustrated in Figure 2a, T̃α(U) associated with f =

1.00005 at 1.25 × 106 MD steps shows a minimal deviation at
mid temperatures, and already becomes indistinguishable from
the converged function at f = 1.000025. In comparison to the
single STMD (≈5 × 107 MD steps),44 the weight
determination time has been shortened to one-half (≈2.5 ×
107 MD steps) in RESTMD.
We also performed RESTMD simulations using the

homogeneous temperature control (RESTMD-HK), with
different kinetic temperatures, T0 = 0.1, 0.68, and 1.3, for M
= 10 and κ = 0.2. The resulting T̃α(U) are (Figure 2b) in good
agreement with each other (except for T = 0.1, which exhibits a
small deviation with a rugged behavior in the high energy
region), and collapse on that of RESTD-IK, implying that our
algorithm provides the same thermodynamic properties, mostly
encoded by T̃α, irrespective of the temperature control scheme
(see also Figure 7b).
The advantage of the RESTMD algorithm over REMD is

explicitly demonstrated in energy and replica trajectories of two
arbitrary chosen replicas in Figure 3a and b. Even with only five
replicas (M = 5), RESTMD shows very frequent round-trips in
both energy and replica space. With increasing M, Figure 3c
and d, tunneling (round-trip) transitions become less frequent.
This slowing down is mainly attributed to the increase of
required replica exchanges for a tunneling event. On the other
hand, conventional REMD shows a transient trapping at low
energy regions even with the geometric temperature allocation,
and round trips are much less frequent. The advantage of
RESTMD over REMD is particularly pronounced at low

Figure 1. BLN-46mer: (a) T̃α(U) and TS*(U), (b) Sα*(U) and S*(U),
and (c) Pα(U) and Ptot(U) for the RESTMD-IK run with M = 5 and κ
= 0.2. Bottom to top, α = 1, 2, 3, 4, and 5 at U = 100 in (a) and the
same color scheme is applied for all figures. Both TS* and S* are
determined by ST-WHAM for the production run for 2 × 108 MD
steps.

Figure 2. BLN-46mer: (a) T̃α(U) at different f values in the RESTMD-
IK run withM = 5 and κ = 0.2 and (b) converged T̃α(U) in RESTMD-
HK with T0 = 0.1, 0.68, and 1.3 and RESTMD-IK for M = 10 and κ =
0.2.
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temperatures, where REMD requires a dense distribution of
replicas with closely spaced temperatures to counteract the
vanishing acceptance of exchanges.
The success of RESTMD stems from its capacity to retain

(or enhance) the acceptance of replica exchanges with fewer
(or the same) number of replicas. The average acceptance
probabilities, A̅α = ⟨Aα,α+1⟩, with ⟨...⟩α being the ensemble
average, are plotted as a function of α in RESTMD-IK runs
with varying κ from −0.2 to 0.4 at fixed M = 10 in Figure 4a.

The enlarged energy overlap with increasing κ enables a
systematic enhancement of A̅α especially at low temperatures,
while A̅α in conventional REMD with the same M rapidly
diminishes at low temperatures.
We also compared A̅α of RESTMD with homogeneous

temperature control (RESTMD-HK) and various T0 in Figure

4b. Except for some intermediate replicas, α = 4−5 near the
transition region Tθ ≈ 0.65, the average acceptances collapse on
those of RESTMD-IK. Since the average acceptance is directly
determined by an overlap integral between adjacent replicas,34 a
slight elevation of A̅5 with increasing T0 implies that the
sampling dynamics around the transition region could be
affected by the choice of T0. Consistently, RESTMD-HK with
T0 ≈ Tθ shows a profile of A̅α most similar to that of RESTMD-
IK across the replicas.
To examine the performance gain more quantitatively, we

compared the accumulated tunneling transitions,14,36,59 NU,
measured between U = −42 and −95, in Figure 5a. In

RESTMD-IK simulations with varying M and fixed κ = 0.2,
fewer replicas, maintaining sufficient overlaps with flat energy
distributions, enable far more frequent tunneling transitions
than conventional REMD with M = 30. A similar trend in NU is
also observed with increasing κ for fixed M, but its effect is less
dramatic. The best result in RESTMD-IK runs shows about a 3-
fold enhancement of NU over conventional REMD.
The interesting observation is that the rate of tunneling

transitions monotonically increases in proportion to the
reference kinetic temperature, T0, in RESTMD-HK. As
demonstrated in Figure 5b, NU shows a significant impairment
at the low T0 = 0.1, but it begins to rise with increasing T0,
attaining its highest value at T0 = 1.3. RESTMD-HK with T0 =
0.68 ≈ Tθ exhibits the NU profile most similar to that of
RESTM-IK, just as with A̅α in Figure 4b. The systematic
enhancement of NU with increasing T0 arises from enhanced
diffusion in energy space with an elevated kinetic temperature.
To investigate the effect of T0 on NU in RESTMD-HK more

clearly, we compute a bias in acceptance probabilities, defined
as Bα

± = Nα
±/(Nα

+ + Nα
−), with Nα

+ and Nα
− being the number of

transitions from α to (α + 1) and from α to (α − 1),
respectively. Bα

± measures a bias of each walker in replica space
and reduces to 0.5 for a perfect random walker.

Figure 3. BLN-46mer: (a) Energy and (b) replica trajectories of two
representative replicas in RESTMD-IK with M = 5 and κ = 0.2, (c)
energy and (d) replica trajectories in RESTMD-IK with M = 30 and κ
= 0.2, and (e) energy and (f) replica trajectories in REMD with M =
30.

Figure 4. BLN-46mer: Average acceptance probabilities in (a)
RESTMD-IK simulations with varying κ at fixed M = 10 and REMD
with M = 10 and (b) RESTM-HK simulations with M = 10 and κ =
0.2.

Figure 5. BLN-46mer: Accumulated tunneling transitions, NU, in
energy space (a) for RESTMD-IK runs with varying M and κ and
REMD with M = 30 and (b) for RESTMD-HK runs at different T0 for
M = 10 and κ = 0.2. For comparison, NU of RESTMD-IK is also
plotted in (b).
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As demonstrated in Figure 6a and b, Bα
± in the RESTMD-HK

with T0 = 0.1 is almost 0.5 across all replicas except for both

ends, implying that the dynamics in replicas is almost random.
On the other hand, a significant bias is observed for the
RESTMD-HK with T0 = 1.3 at α = 5 and 6. Both the increase
of B5

+ and decrease of B6
− from 0.5 reveal that the dynamics of

the fifth and sixth replicas is tuned to facilitate tunneling
transitions with increasing T0. Indeed, the temperature ranges
of these two replicas are directly associated with the protein
collapse region around Tθ ≈ 0.65 as (T5

min, T5
max) = (0.525, 0.7)

and (T6
min, T6

max) = (0.65, 0.825), implying that the enhanced
configurational sampling by the elevated kinetic temperature is
the main booster for the enhanced tunneling transitions.
For diverse simulation conditions such as varying M and κ,

heat capacities, Cv, of all RESTMD-IK runs for 2 × 108 MD
steps collapse on the same curve in Figure 7a, and are in good
agreement with those of REMD. Except for T0 = 0.1, associated
with the poorest NU, the same thermodynamic consistency is
also observed between RESTMD-IK and RESTMD-HK with
varying T0 in Figure 7b.
In addition to the applications to equilibrium sampling,

RESTMD is also useful in finding a global minimum in
complex energy landscapes. To explore this possibility, we
applied REMSTD to the BLN-69mer46 characterized by the
deeply, multifunneled energy landscape,44,58 arising from the
conformal diversity generated by hydrophobic mismatches
between six β strands. We performed several RESTMD-IK runs
with varying M and κ = 0.5 and conventional REMD simulation
between Tmin = 0.05 and Tmax = 1.3. Instead of the ground state
configuration with U = −99.189, an arbitrary chosen extended
configuration was used for the initial configuration in all
replicas. The initial modification factor was set to f = 1.0005 to
speed the search for low energy states, and the explored energy
landscape is characterized by inherent structures (IS)60

determined by a conjugate-gradient minimization algorithm.
The IS plot of the lowest replica as a function of the total

simulation time in Figure 8 clearly illustrates a superior power
of RESTMD in finding the global minimum. For a smaller

number of replicas, M = 10, RESTMD finds the known global
minimum at ∼1.91 × 107 and ∼3.02 × 107 MD steps for κ = 0.5
and 0.2, respectively, and RESTMD with M = 30 and κ = 0.5
reaches the ground state at ∼6.81 × 107 MD steps, while
conventional REMD takes ∼8.57 × 107 MD steps. Fewer steps
are required in all cases if all replicas are considered, but
RESTMD retains its advantage. In addition to the accelerated
search for the global minimum, RESTMD shows broadly
scattered IS energies in Figure 8, implying that several low-lying
IS states are sampled even in the single replica, and transitions
among those IS states are very frequent through replica
exchanges, while the IS energy profiles of REMD are narrow
and transitions among IS states are very rare.

IV. CONCLUSION
The replica exchange statistical temperature molecular
dynamics (RESTMD) algorithm has been developed to
mitigate the extensive increase of the number of replicas with
increasing system size in conventional REMD. RESTMD

Figure 6. BLN-46mer: Bias in acceptance probabilities: (a) Bα
+ and (b)

Bα
− for RESTMD-HK runs with varying T0 and the RESTMD-IK run

for M = 10 and κ = 0.2. The horizontal line corresponding to a perfect
random walk in both (a) and (b) is plotted for visualization.

Figure 7. BLN-46mer: Heat capacities Cv determined by (a)
RESTMD-IK runs with varying M and κ and (b) RESTMD-HK
runs at different T0 values.

Figure 8. BLN-69mer: Inherent structure energies of the lowest replica
in RESTMD and REMD simulations. Circles, RESTMD with M = 10
and κ = 0.2; crosses, RESTMD with M = 10 and κ = 0.5; squares,
RESTMD with M = 30 and κ = 0.5; triangles, REMD with M = 30.
The horizontal line near the bottom indicates the ground state energy,
−99.189.
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combines several STMD runs with replica exchanges, in which
each replica samples a range of temperatures and achieves a flat
energy sampling with a self-adjusting sampling weight
characteristic to the replica-dependent statistical temperature.
In contrast to conventional REMD, the systematic enhance-
ment of energy overlaps between neighboring RESTMD
replicas allows a significant reduction of the number of replicas
while maintaing effective configurational sampling.
The quantitative performance comparison between

RESTMD, conventional REMD, and single-replica STMD for
the coarse-grained protein model, BLN-46mer, subject to a
significant degree of energetic frustration, reveals that
RESTMD provides a considerable enhancement in the rate of
convergence of simulations accompanied with accelerated
tunneling transitions. It is also shown that the narrowed
temperature window of each replica enables a significant
reduction of the weight determination time in RESTMD with
the periodic reduction scheme of f, contrary to the histogram-
flatness reduction scheme in single STMD.
We also explored two different kinetic temperature control

schemes in RESTMD associated with a different assignment
rule for the momenta after the replica exchange. It is found that
RESTMD-HK yields more frequent tunneling transitions than
RESTMD-IK with increasing reference kinetic temperature, but
both implementations provide the same thermodynamic
properties at a moderate reference kinetic temperature. The
superior performance of RESTMD over REMD in finding a
global minimum is also demonstrated in the BLN-69mer
possessing a deep, multifunneled energy landscape.
The extensive increase of the number of replicas and a

deterioration of sampling efficiency with increasing system size
in conventional REMD is a significant challenge for the
conformational sampling of many complex systems. This is
particularly pressing in simulations of biomolecules in explicit
water or in lipid bilayers, where a vast dynamic energy range,
mostly contributed from solvent−solvent interactions, signifi-
cantly hampers the weight determination in the generalized
ensemble method. We hope that the accelerated, self-adjusting
weight determination in the RESTMD algorithm, combined
with the periodic reduction of f, will contribute to overcoming
this difficulty.
An essential step toward our broad goal of exploiting STMD

in realistic applications is merging it with a biosimulation
package. We have created STMD-CHARMM and are currently
developing STMD-NAMD. We are also testing versions which
seek a flat energy distribution in the biomolecular energy only,
mitigating the problem of solvent−solvent energy dominance.
These single-replica applications, running on machines any-
where on a network or in the cloud, will be organized into an
extremely powerful RE simulation with a master script,
targeting the most challenging biophysical problems.
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