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We present a method for finding the global energy minimum of a multidimensional potential energy surface
through an approximate solution of the Schrédinger equation in imaginary time. The wave function of each
particle is represented as a single Gaussian wave packet, while that for the n-body system is expressed as a
Hartree product of single particle wave functions. Equations of motion are derived for each Gaussian wave
packet’s center and width. While evolving in time the wave packet tunnels through barriers seeking out the
global minimum of the potential energy surface. The classical minimum is then found by setting Planck’s
constant equal to zero. We apply our method first to the pedagogically interesting case of an asymmetric
double-well potential and then use it to find the correct global energy minima for a series of Lennard-Jones

n-mer clusters ranging from n = 2 to 19.

I. Imtroduction

In recent years a picture of disordered systems has emerged
which describes structure and dynamics in terms of a multidi-
mensional potential hypersurface. The potential hypersurface
consists of many attractive basins or minima with a distribution
of relative energies. Each basin is characterized by a volume and
theenergy of its minimum. This model has been applied to liquids
and glasses as the “inherent structure model” of Stillinger and
Weber! and to proteins as the “conformational substates model”
of Frauenfelder and co-workers.? Formally, the configurational
integral of the system can be expressed in terms of separate
integrals over the various attractive basins. To determine the
equilibrium properties of the system, a good approximation may
be to enumerate these minima, weight them by their relative
energies (and entropies), and average over them.> Additionally,
with a knowledge of the connectivity of the attractive basins and
the distribution of barrier heights which must be crossed to move
from one basin to another, dynamical properties may also be
accessed.*

In problems such as protein folding, one expects only one or
a fewimportant energy minima (or classes of minima) todominate
the thermodynamics because the specificity of protein function
depends on the uniqueness of its natural structure. In such a
picture, a protein’s folded structure can be determined by finding
the compact state of lowest free energy for the protein—solvent
system. That is, the protein folding problem can be reduced to
finding the global minimum of the many-dimensional free energy
hypersurface. This is essentially a static approach to the protein
folding problem as opposed to the kinetic approach of letting the
protein fold through straightforward molecular dynamics. A
problem with the dynamic approach is that at the moment the
time scale for kinetic protein folding for most proteins is well
beyond that attainable on the fastest computers.

A wide variety of energy minimization methods have been
proposed with an eye on solving the static problem. Many of
them have been developed by Scheraga and co-workers.* Ina
recent advance, Piela, Kostrowicki, and Scheraga have proposed
the “diffusion equation method”® which has been fairly successful
on a series of demanding problems.” The diffusion equation
method relies on the treatment of the potential energy hypersurface
as an initial concentration gradient. The concentration is
propagated forward in time, smoothing the potential surface until
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there remains only one minimum. The minimum of the smoothed
concentration is located and tracked as the diffusion is reversed,
running backward in time, to recover the initial, undistorted
potential surface. The hope is that the last surviving minimum
on the smoothed surface maps back to the global minimum of the
potential energy surface. This strategy has worked on a number
of n-mers of Lennard-Jones clusters.’

Another powerful optimization method is simulated annealing 8
In the annealing procedure the system is initially equilibrated at
a very high temperature at which barriers of the energy
hypersurface are easily crossed on the simulation time scale. The
temperature is then lowered stepwise at a slow rate with an
equilibration period at each new temperature. When the rate of
cooling is optimal the annealing procedure is guaranteed to locate
the global minimum of the surface. However, as an approach to
the protein folding problem, simulated annealing shares the same
ailment with the kinetic approach—the required simulation time
is far too great. Faster cooling schedules or quenches may be
used, but with the cost that there is no guarantee that the minimum
found is the optimal one. Another difficulty lies in using the
“real” (ab initio quantum mechanical) energy function of the
protein which, at the high initial temperatures required, allows
unwanted changes in conformation (the conversion of L- to
D-amino acids, the inversion of chiral centers, and bond breaking
and reformation).

There are a number of other global optimization schemes, all
of which must deal with two serious problems that are charac-
teristic of protein folding. The first is that the bare potential
energy surface as viewed by a classical point particle contains
more information than we would like. Many of the potential
minima have high energies and are not thermodynamically
important. Methods such as the diffusion equation method,$ as
well as the “shift method” of Pillardy, Olszewski, and Piela® and
the “ant-Lion strategy” of Stillinger and Stillinger,!0 seek to
smooth out or “coarse-grain” the potential surface, thus removing
the uninteresting minima. In a sense, this is also what is done
when distance constraints derived from experimental information
such as NMR or X-ray crystallography are imposed, thereby
limiting the conformational space accessible to the protein.

A second difficulty afflicting many minimization schemes is
their dependence on local information derived from the potential
energy surface (the energy and its first and sometimes second
derivatives at a single point). Methods proposed recently which
address this limitation are the “quasi-quantal method” of
Somorjai!! and the “mean field theory” of Olszewski, Piela, and
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Scheraga.!? In both procedures, an estimate of the ground-state
wave function for the time-independent Schrddinger equation is
sought. Once obtained, the ground-state wave function may be
interpreted as a probability distribution, informing us of the lowest
energy regions of the potential surface. An appealing aspect of
this class of methods is that favorable minima are sought out by
tunneling rather than by the thermally activated barrier crossing
required by all classical algorithms.

In this paper we present an optimization algorithm based on
the approximate solution of the imaginary time Schrédinger
equation via a mobile basis set. The compromises we draw are
that our basis for each particle is constrained to have a Gaussian
shape and the n-body wave function is constructed as a Hartree
product of single-particle wave functions. However, we retain
the desirable feature of using nonlocal information about the
potential surface to make our moves on the surface, and we can
also search out favorable minima through tunneling rather than
thermal activation over barriers. That is, whereas methods like
quenching and simulated annealing explore only one phase point
ata time, theimaginary time algorithm explores extended volumes
of configuration space at once, feeling the contour of whole regions
of the terrain before flowing to a more favorable region, tunneling
through unfavorable regions if need be.

Below, we delineate the central features of the imaginary time
algorithm through application to an asymmetric double-well
potential. We then find the correct global energy minimum for
a series of Lennard-Jones clusters of up to 19 atoms.

II. General Formalism

The imaginary (Euclidean) time form of the time-dependent
Schrodinger equation is

9 =
5-0(,7) = ~Ho(r,7) )
where the Hamiltonian operator H is defined by
Ay V(r) )
2m

Here 4 is Planck’s constant, V(r) is the potential energy, and m
is the mass. Note that “time™ has units of inverse energy (7 =
it/h).

The formal solution of the imaginary time Schrodinger equation
is o(r,r) = exp(—Hr)¢(r,0). Recalling that the equilibrium
distribution function is exp(—H/ kg T), where kg is the Boltzmann
constant and T is the temperature, we see that time plays the role
of aninversetemperature. Increasingimaginary time is equivalent
to lowering the temperature.

The formal solution for the time evolution of the expectation
value (A) of an operator 4 is

_ ((r0)le ™" 4e"|6(r,0))

(#(r,0)e>"|o(r,0))

The general equation for the time dependence of the expectation
value of A is found by differentiating eq 3 with respect to 7

d—f:—)=—(HA+AH)+2(A)(H) @)

Suppose we knew all the eigenstates of the Hamiltonian H,

i.e., all the functions u,(r) that satisfy the eigenvalue equation

Hu,(r) = E,u,(r), where the eigenvalue E, is the energy of the

nth eigenstate u,. Then the general solution of the imaginary
time Schrodinger equation is

8(r,7) = Y_a,u,(r) exp(-E,r) (5)

(4 3

Here the sum is over all the eigenstates u,(r), of which there are
typically an infinite number. The only time dependence comes
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in the exponential factor, from which we see that the contribution
to ¢(r,7) from the nth eigenstate decays exponentially, relative
to the ground (or lowest energy) eigenstate. Thus, after a
sufficiently long “time”, the only contribution left to ¢(r,7) is
that from the ground state, provided the initial wave function had
a nonzero contribution from the ground state.

The ground state is by definition the optimal configuration. In
the limit A — 0 and 7 — «, this configuration lies at the bottom
of the single deepest potential well, if there is a unique minimum.
For nonzero A, the relative importance of each minimum is given
by the wave density |¢(r,r — «)]? in that minimum. For
computational purposes, one may start with an artificially large
value for h, which fixes a lower bound on the resolution of
conformation space achievable. To achieve greater resolution of
the ground-state structure, one simply decreases the value of 4.13
A nonzero A may also be considered in terms of setting a nonzero
zero-point energy for the system. A large enough zero-point
energy will connect all potential minima with each other. This
is the lakes-to-oceans transition discussed in other contexts by
Simon, Dobrosavljevic, and Stratt.!4

The use of the imaginary time Schrédinger equation for ground-
state searches is not a new idea.!>!” However, a problem has
been the task of choosing a basis set intelligently. Where should
we place the elements of the basis set to do the most good? This
task is formidable in many-body systems, when the final
configuration can be very different from the initial one and when
an unintelligent basis set may be enormous. Our contribution to
the use of the imaginary time Schrédinger equation for global
minimum searches is the use of mobile Gaussian wave packets,
first popularized for the real time Schrddinger equation by
Heller.!$1 We derive in the next section equations of motion in
imaginary time for the wave packets, which move and adjust
themselves to optimize the total energy within the Gaussian
constraint.

III. Imaginary Time Equations for Gaussian Wave Packets

We consider first a single particle in d-dimensional space.
Extension to the many-body problem is discussed at the end of
this section. We take the wave function of each particle to be
Gaussian

8(r,7) = (2" exp[—(';,'°)2] ©)

Weneglect the explicit time dependences of roand o for notational
simplicity. .

The equations of motion for the wave packet of each particle
are determined by specifying the equations of motion for the
packet center, ro = (r), and its width or second moment M, =
((r — ro)?) = do®. Direct substitution of r and (r — ry)? into eq
4leads to the equations of motion for the wave packet in imaginary
time

o =-2((r=rgV(r)) )]

. _dh’ 2 2
Mz"'ﬁ"zl«’—’o) V(r) = ((r—re) X{V(r)] (8)

These equations are identical to those that would result from a
Dirac—Frenkel variational approach,®adapted to imaginary times.
Note that the imaginary time equations depend explicitly on A.

For a Gaussian wave packet, the imaginary time equations of
motion may be simplified to

, 2
¥y =—2M2V’0<V> )
_dh’ 2. .

2= m _EEMZ vro {4

We make five observations concerning the properties of these
equations.
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(1) The equation of motion for the packet center has the form
of a steepest descent equation

Fo = =V, (V) (10)

The packet center moves according to the negative gradient of
the effective potential ( ¥)—that is, the negative gradient of the
potential energy averaged over the extent of the wave packet.
However, the effective potential depends on time through both
roand M,. Weshall see in the application to the double well that
the dependence on M, brings in a dependence on the kinetic
energy, so that the wave packet center appears to move on an
effective total energy surface, rather than an effective potential
energy surface.

(2) The positive term dh2/2m acts to expand the wave packet.
It plays the role of a diffusion constant in the classical diffusion
equation. For the case of a free particle, the imaginary time
Schrédinger equation reduces to the diffusion equation, with the
solution that the center of the wave packet is fixed while the wave
packet squared-width increases linearly in time as

2
My(r) = %1 + M,(0) an

(3) For the case of the harmonic oscillator, ¥(r) = mw?(r —
rm)?/2 with effective potential

2
(V) =Z{da® + (ry - 1,,)’] (12)
the equations of motion are
, 2
Fo=-— }Mzmwz(ro -r,) (13)
g =4’ 2,0 o
and, using the fact that M, is independent of ry, we find
_ dh :
M,(r) = e tanh(hwr + a) (14)
b
=r +— 15
7o) = T cosh(hwr) 15

where a and b are constants determined by the initial values of
ro(0) and M(0). Note that the width approaches its optimal
value independently of the wave packet center and at a rate that
is twice as fast (hw for roand 2hw for the width). Also note that
both rates are slower for small 4.

(4) When the wave packet is sitting in a minimum of the
effective potential (V,2(V) > 0), the effective potential acts to
decrease the rate at which the wave packet expands. When the
wave packet is sitting on a maximum of the effective potential
(V.,2(V) <0), the effective potential acts to increase the rate at
which the wave packet expands.

(5) In many-body systems, the total wave function may be
approximated as a Hartree product of the wave functions of the
N individual particles

N
Y = 1‘[¢k(rk,f) (16)
=1

Similarly, the potential energy can be written as a sum over the
individual pair interaction energies

N
(V= Z fd’ifdrj p(r) Pj(’j)V(I’i‘ ’,D (17)
>y=1
where pi(r;) = ¢*(r;)¢:«(r;) and V(r) is averaged over the positions
of all the other particles—a mean field potential.2! Equations 9,
16, and 17 define the equations of motion for the center and
width of the wave function for a many-body system.
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Figure 1. Effective energy for the quartic double-well potential for four
values of . For & = 0.75 there are two minima (see Figure 3). The
effective energy is determined as the sum of the kinetic energy, dh2/
8mM;, and the effective potential, { ¥(ro,M2%9) ), using the adiabatic value
of M at each value of o,

IV. Applications

In this section we present two applications of the imaginary
time algorithm for global minimum searches, the one-dimensional
asymmetric quartic double well and Lennard-Jones clusters of
up to 19 atoms. We find in both cases that a sufficiently large
value of A allows the system to overcome any barrier to the
topologically correct global minimum. Reducing # to zero then
causes the system to settle into this global minimum.

One might suspect that the value of % is related to a quantum
contribution to the kinetic energy that allows the wave packet to
surmount barriers. However, in the application to the double
well, we find that even a small value of & may allow the system
to tunnel through the barrier.

In our usage, a wave packet is tunneling when its total energy
is less than the value of the bare potential at the wave packet
center. For example, it is possible for a wave packet whose total
energy is less than the energy of a barrier to cross that barrier,
under our imaginary time dynamics, provided the wave packet
is sufficiently spatially delocalized. This result is true even for
zero h. However, we find that even a small value of A significantly
enhances the propensity of a wave packet to tunnel.

A. Quartic Double-Well Potential. Consider in one dimension
the asymmetric quartic double-well potential

=14 T2 1
V(r) =¢r* - 4r2 g 18)
With Gaussian wave packets, the effective potential is
T 4 2 2 T 2 1
(V) = §[r° + 6M,ry" + 3M,°) —-4-[)'0 + M,] —§r0 (19)

The deeper well is the right well. The barrier is at 7, = 0 (see
Figure 1).

To simplify the analysis of the imaginary time dynamics, we
also consider the following scheme. For any value of ry, we can
imagine integrating to convergence the imaginary time equation
of motion for M,, keeping ro fixed. Thus we are finding the
optimal value of M), for given ro. We refer to this scheme as the
adiabatic version of the imaginary time equations. For general
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Figure 2. Optimization trajectories for the quartic double-well potential for six values of 4 representing the four regions of & for which there exist
one (regions I and III) or two (regions II and IV) stationary minima.
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potentials, this scheme is not practical, but for the quartic potential,
the adiabatic M- can be found analytically by setting eq 8 equal
to zero and solving a cubic equation for the roots. For & = 0,
there is only one real root, which we label M,??. For A =0, there
is only one nonzero root.

The full imaginary time and the adiabatic equations of motion
were integrated using the Bulirsch—Stoer algorithm?2 with a time
step of 5 X 10-3 and an internal relative error tolerance of 108,
For any choice of initial conditions (ro,M>) and A > 0.3, we find
that the full imaginary time scheme value for M>converges quickly
to the adiabatic value M,%, tracking it thereafter as the center
attempts to cross the barrier into the deeper well (see Figure 2).

Note that for small #, there are two possible values to which
ro converges, corresponding to trapping of the Gaussian wave
packet in either of the two potential wells. Note also that for
small values of i, the Gaussian wave packet is not likely to tunnel
through the barrier unless either the initial 7, is sufficiently close
to the barrier, or the initial M, is very large. As A increases, the
range of possible initial values of 7, and M, that finds the right
potential well increases rapidly. In Figure 3 we show the values
to which ro converges as a function of 2. For & larger than about
0.6, all initial wave packets find the correct potential well. (The
correct potential well is found if, after converging a trajectory
with nonzero A, that wave packet sinks to the bottom of the right
potential well when # is next set to zero.)

As h further increases, double-valued solutions of r, reappear
(see region Il in Figure 3). Because of the incompleteness of the
basis set, two optimal solutions are possible in this region. Inone
case, the wave packet is resting farther down the potential well,
thus minimizing the potential energy at the expense of a higher
kinetic energy (narrower wave packet). Intheother case,a fatter
wave packet (lower kinetic energy) sits higher up in the well.
However, either solution is equally good for our purpose since
both settle to the bottom of the correct potential well once 4 is
set to zero.

Region II can also be analyzed in terms of the motion of the
Gaussian center on an energy surface. The form of the roequation
of motion, eq 7, suggests a steepest descent approach on an effective
potential surface to the minimum of that potential energy surface.
However, ry is nonlinearly coupled to M>, with the result that r,
appears to move on an effective adiabatic total energy surface
Ead(’o) = <H(r0,M2ad))’ or

dh’®
8mM,*

E“ry) = + (V(re,M,*)) (20)

We have plotted the effective adiabatic energy E4(r,) for a series
of hin Figure 1. Notice that for A =0.75, the effective adiabatic
energy surface exhibits two shallow wells. In fact, we find that
for & > 0.3 the dynamics of wave packet relaxation closely follow
the full imaginary time algorithm trajectory if we perform a
steepest descent calculation on the effective adiabatic total energy
surface.

We also point out that increasing A greatly smooths the ef-
fective adiabatic energy surface, raising the minima and lower-
ing the barrier. Both effects enhance the ability of the wave
packet to tunnel through the barrier. Note that the effective
adiabatic energy is lower than the barrier height of the bare
potential for % in the range 0.6-1.0, and yet the wave packet is
able to cross over to the correct side of the barrier regardless of
initial conditions.

B. Lennard-Jones n-mer Clusters (n = 2-19). For a general
potential, (V) is conveniently evaluated by fitting the potential
to a sum of Gaussian functions. A three-term sum of Gaussians
is known to give a very accurate representation of the Lennard-
Jones potential for neon.!? For the case of Gaussian wave packets
we need evaluate only the first and second derivatives of the
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Figure 3. Position of all global minima over a range of possible & & [0,
1]. Four regions of # are indicated for which there exists one (regions
I and III) or two (regions II and IV) stationary minima.

effective potential (V). For the Gaussian potential, V(r) = exp-
(=A\(r — rm)?/2), one finds

~

A\d/2
" = (X) exp[—%i(ro—rm)’] @n
V, (V) = Ao -, )(V)
V,2V) = A[A(rp = r,)* —dI(V)

where A =\/(1+ AM,/d). The parameters for the four Gaussian
fit to the Lennard-Jones potential used in this work are given in
Table 1.

Each initial cluster configuration was chosen randomly from
an equilibrium liquid configuration of 512 Lennard-Jones atoms.
The shortest distance between two particles was 3 Lennard-Jones
units, and the largest distance was 12 Lennard-Jones units.
Initially, A was chosen in a range from £ = 0 (n = 2 and 3 atoms)
to & = 2 (larger clusters). The initial value of M, was fixed to
be 1.0 (see Table II). The equations were first integrated until
convergence E/E? < 105 with nonzero A (see Table II); next the
configuration was quenched using the imaginary time equations
of motion with & = 0 and a convergence criterion £/E? < 10-25,
Finally, a conjugate gradient algorithm with the exact Lennard-
Jones potential was used to refine the energy of the minimum
found with the imaginary time algorithm. This refinement never
exceeded 0.2 Lennard-Jones energy units. The 4th order Runge—
Kutta integrator?? was chosen for its accuracy. All CPU timings
were less than 2000 s for all clusters. No special steps were taken
to optimize the computer code. For example, tabling the force
could lead to a significant saving in computer time.

For large values of %, atoms were repelled from one another
initially. Therefore, we introduced a harmonic pair potential
that prevented the particles from dissociating from the cluster.
The confining potential was of the form

Veonsie = 9_7,[2 (22)
i>j

where x was taken from 0.1 (small clusters) t0 0.03 (larger clusters)
and r;; is the distance between the packet centers for the ith and

Jjth particles (see Table II).
Near convergence to the ground state, the energy should decay
exponentially, with a rate given by the energy difference between
the first excited state and the ground state (see section II).
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TABLE I: Parameters for the Gaussian Decomposition of
the Lennard-Jones Potential of the Form V(r) = ) ,a,e5*/2
Given in Lennard-Jones Reduced Units

ax bk ax bk
846 706.7 30.928 81 —0.7154420 1.279 242
2713.651 14.693 75 -9.699 172 3.700 745

TABLE II: Summary of Results for the Global Energy
Optimization for Lennard-Jones Atomic Clusters. The Initial
Value of M;(0) = 1.0. Energies Are Given in Lennard-Jones
Reduced Units

no. of no. of global imaginary
atoms minima’  minimum? time h K DEM’
2 1 —-1.000 -1.000 0.0 0.0 global
3 1 -3.000 -3.000 0.0 0.0 global
4 1 -6.000 -6.000 0.0 0.1 global
5 2 -9.104 -9.104 00 0.1 global
6 2 -12.712 -12.712 04 0.1 global
7 4 -16.505 -16.505 04 0.1 global
8 8 -19.822 -19.821 0.5 0.05 local
9 18 -24.113 -24.113 0.5 0.1 local
10 57 -28.420 -28.422 05 0.1 local
11 145 -32.765 -32.7659 1.5 0.05 global
12 366 -37.967 -37.9676 1.5 0.05 local
13 988 —44.327 —44.327 1.5 0.05 global
14 ~3258 —47.845 —47.845 1.5 0.04 global
15 ~10700 -52.322 -52.3226 2.0 0.04 global
19 ~2 X 106 -72.659 ~72.6598 2.0 0.03 local

Assuming that this is true for the imaginary time algorithm, at
every third time step we analytically fit the energies from the two
previous time steps to an exponential decay, E(7) « 4 + B exp-
(—y7). An estimate of the new time step was determined by
setting the relative change in the energy equal to a constant:

E(r+ 87) —2E(1) + E(7 - ‘57); =\ (23)
E(r+ 67) - E(7 - 07)

E
yor = 51’,ETJ = 2]

where A is a constant. We use A = 1.6. At the end of each
trajectory, with the imaginary time equations nearly converged,
the time step which satisfies the above criterion became as large
as 1030, Apparently, a too rapid increase in the time step can
lead to inaccuracy in the integration of the equations of motion.
For the n = 15 cluster we found it necessary to determine a new
time step with A = 0.35.

For Lennard-Jones clusters as large as 19 atoms, we were
consistently able to find the global minimum of the cluster. The
results are presented in Table II and compared with the results
of the diffusion equation method.” In Figure 4 we display the
global minimum geometries for the 13-atom cluster where both
the diffusion equation method and our imaginary time algorithm
find the correct global minimum. We also present the global
minimum structure for the 12- and 19-atom clusters where the
imaginary time algorithm converges to the correct minima (the
Mackay icosahedron with a surface atom removed and the double
icosahedron, respectively). For a 12-atom cluster, the diffusion
equation method converges to a low lying local minimum of an
icosahedron with the central atom removed.’

In Figure 5 we plot the displacement of each atom from its
position in the global minimum configuration as a function of
imaginarytime. For boththe 7-and 13-atom clusters, it is possible
to identify single and multiple particle rearrangements as the
cluster relaxes to its minimum energy configuration. For the
case of the 13-atom cluster, there is rapid convergence to an
expanded icosahedron where one atom has moved to the center
of the cluster and all other atoms are approximately 1.6 ¢ from
the minimum energy configuration. This large value reflects the
enlarged steady-state width of the wave packet at higher . When
h is reduced to zero, the expanded icosahedron contracts to the
correct scale for wave packets of zero width.

Amara et al.

Figure 4. Global minimum configurations for Lennard-Jones n-mer
clusters (a, top) n = 13 (Mackay icosahedron), (b, middle) n = 12
(icosahedron with one surface atom removed), and (c, bottom) n = 19
(double icosahedron).

V. Conclusion

We have presented a deterministic algorithm for energy
minimization of classical many-body systems based on an
approximate solution of the imaginary time Schrédinger equation
using Gaussian wave packets. We have discussed the similarity
of our method to the “diffusion equation method” of Piela,
Kostrowicki,and Scheraga.6 Theimaginary time algorithm found
with a modest effort the global minimum of Lennard-Jones clusters
containing as manyas 19 atoms. Thisis a somewhat better record
than that of the diffusion equation method for clusters with 19
atoms or less. However, we note that the diffusion equation
method has been tested for a 55-atom cluster where it located the
global energy minimum. In closing we discuss at greater length
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Figure 5. Displacement of each atom from its position in the global
minimum configuration Ar = |r — 7, is shown as a function of imaginary
time for two clusters (a, top) # = 7 and (b, bottom) n = 13 (Mackay
icosahedron).

the similarity of the imaginary time method to the diffusion
equation method (hereafter DEM).

The deformed interaction potential employed in DEM (see eq
10 in ref 7) is identical to the effective potential defined in eq 21,
if the mean squared-width of the Gaussian wave packet M, is
identified with the diffusion “time” of DEM. In DEM, this “time”
is the same for all the particles, which in the imaginary time
method corresponds to having the same Gaussian width for each
particle. In DEM, the initial conditions are chosen to correspond
to an optimal diffusion time where there are few or, as is the case
for Lennard-Jones clusters, one surviving minimum. Thediffusion
time is then gradually reduced toward zero; in the imaginary
time method, this corresponds to decreasing the width of each
Gaussian wave packet. In DEM, at each new time or value of
M), the energy minimum is found by steepest descent before
taking another time step.?

Similarly, in the imaginary time algorithm we initially choose
large M, values. However, in the imaginary time algorithm, the
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value of M, is not constrained to be the same for every particle.
Moreover, M is not constrained to decrease monotonically. The
entire dynamics of all the individual Gaussian centers ry and
widths M) varies for each particle such as to optimize the total
energy.

Thus DEM may be viewed as a special case of the imaginary
time algorithm where (1) & = 0, (2) the wave packets all have
the same squared-width M5, and (3) the magnitude of M, is
initially set to something large and then monotonically decreased
to zero. The greater flexibility of the imaginary time algorithm
and the fact that the equations of motion are variationally based
may help to explain the greater success of the imaginary time
algorithm for the clusters examined in this work.
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