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The kinetics and thermodynamics of the coil-to-helix transition is studied using a one-dimensional “Zimm-
Bragg” Ising model. The mean first-passage time for the coil-to-helix transition is estimated within the “mean
sequence” approximation. A generalized mean first-passage time equation is derived where the transition
rates may depend on the state of the system. The analytic expression for the mean first-passage time is evaluated,
and the results are discussed as a function of energetic parameters, nucleation and propagation constants,
peptide length, and the initial fraction of coil. The equilibrium thermodynamic properties of the model are
shown to agree well with the Zimm-Bragg model, validating the mean sequence approximation. The time
scales for helix formation are computed for a range of energetic parameters that determine the nucleation and
propagation constants for the model. It is shown that, for a range of thermodynamically realistic parameters,
the kinetic first-passage times are on the order of those measured experimentally. The mean first-passage
time approach implicitly allows for the possibility of multiple helix nucleation sites and multiple helical
domains and makes no assumptions regarding the unidirectionality of helix propagation. Comparison is made
with the predictions of the “sequential kinetics” model of Brooks and the “kinetic zipper” model of Thompson
et al. Extension of the model to the more general case of structure formation in proteins is discussed.

1. Introduction

It is hard to overestimate the importance of the helix-coil
transition in the development of the theoretical models con-
cerned with the protein folding problem. The commonality of
the helical fold and its physical properties made it one of the
first candidates for studying secondary structure formation in
polypeptides. The helix-coil transition justly became one of
the central topics in many classical biophysics textbooks.1,2

Over the last forty years, many successful models were
developed for theequilibrium properties of the helix-coil
transition. The early thermodynamic treatment of Schellman3

was probably the first successful theoretical model that explained
with some accuracy the equilibrium properties of the helix-
coil transition. Many experiments employing infrared spectros-
copy, optical rotation, or viscosity measurements were used to
investigate the transition. Most relied on the theoretical proce-
dure set forth by Schellman to interpret their results by
estimating the equilibrium constants for thenucleation and
propagationsteps of the transition. This type of theoretical
treatment was widely used to develop the very popularzipper
model which assumes that the helical residues of a given
polypeptide chain are contiguous.3 The zipper model is espe-
cially useful in analyzing the thermodynamic properties of short
peptides as no prior assumption regarding the length of the chain
of residues is made.

The more accurate models of Zimm-Bragg (ZB)4 and
Lifson-Roig5, appropriate for long peptides, are based on
calculations in which no prior assumption is made as to the
length or number of helical segments in the polypeptide. In such
models, all possible statistical states with the correct combina-

torial weights are taken into consideration in computing the
peptide’s energetics. In particular, the ZB model has become
the standard minimal description of the helix-coil equilibrium
in terms of “nucleation” (σs) and “propagation” (s) constants.
The model is isomorphic with the one-dimensional Ising model
for arbitrary spin-spin coupling (J) and external field (H)

whereJ andH are expressed in units ofkT. A helical residue
is taken to be “spin up” (with spin unity) and a coil residue
“spin down” (with spin zero). The relation between the two
sets of parameters, as shown in ref 6 is essentially

These relations are introduced as a standard notation in the
helix-coil transition literature. The exact values ofσs and s
depend on the specific model that is considered. We will show
that these relations are a good approximation for the model that
we are developing for calculating the time scale of the coil-to-
helix transition, but we are going to use a more accurate
numerical method for estimating the dependency ofσs and s
on J andH.

The pioneering work of Scheraga and co-workers demon-
strated how “host-guest” methods on substituted homopoly-
meric polypeptides could be used to determine theσ and s
parameters for a variety of amino acids.1,7 That and similar work
demonstrated that the ZB model and its variants could be used
to successfully organize and interpret data on equilibrium
properties of the helix-coil transition in polypeptides. The ZB
model captures the general features of the helix-coil equilib-
rium, including the dependence of the helicityθ on temperature,
helix length (N), and nucleation and propagation constants.
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The above-mentioned models were developed for the calcula-
tion of equilibrium thermo-statistical averages. They do not
address aspects of the dynamics and the time scale of the
transition including the exact dependence of the transition time
on the nucleation and propagation equilibrium constants.
Although there is general agreement on the features of the
equilibrium properties of the coil-to-helix transition, there is
no current consensus on the time scale for helix propagation or
folding. A variety of experimental studies have provided widely
varying estimates. Early experimental estimates of the time scale
of helix propagation were taken to be on the order of 1 ns with
helix folding occurring on the 1µs time scale.8 Early molecular
dynamics simulations of Daggett and Levitt led to an estimate
of the time scale for helix propagation on the order of 100 ps.9

Brooks developed a kinetic model parametrized using detailed
energetics derived from computer simulations of an alanine
polypeptide10. On the basis of the results, he argued that helix
folding could occur on a nanosecond time scale. More recently,
laser temperature-jump experiments by Thompson et al. found
the helix propagation rate to occur on the time scale of 10 ns.11

Coarse grained molecular dynamics simulations of helix forma-
tion found that the helix folding time could vary from 6 ns to
1 µs; at the folding transition temperature, the time scale was
found to be roughly 20 ns.12 These estimates indicate that the
helix propagation occurs on a time scale of 10 ns to 1µs.
Nevertheless, in a recent study Clarke and co-workers have
argued that the time scale for helix folding of a polyalanine
based polypeptide occurs on a 1 mstime scale.13 Despite decades
of intense theoretical and experimental analysis, a number of
questions regarding the time scale and mechanism for this
fundamental biomolecular process remain open.

A number of theoretical models have been developed to
estimate the rate of helix formation as a function ofs andσs
(or H andJ) for the ZB model. In an early and seminal paper,
Schwartz14 estimated that, at the midpoint in the coil-to-helix
transition, the mean time for helix formation reaches a maximum
given by

wherekF is the rate of adding an additional helical residue at
the helix end. Interpreting a body of experimental studies, Zana8

estimated thatkF, the rate of addition of a single residue to a
growing helix, was roughly 108 s-1. That early work provided
a simple initial relationship between the equilibrium energetic
parameterσ and the rate of helix propagationkF. More detailed
calculations based on Schwartz’s model were presented by Craig
and Crothers15 and others. Subsequently, more detailed kinetic
theories based on master equation approaches employing
parameters derived from equilibrium analysis using the ZB
model were developed. An example is the work of Goj who
employed a master equation with transition elements based on
a ZB model energetics.16 Properties of the relaxation near the
equilibrium state were derived, and it was observed that the
kinetic rate constant was a maximum when the ZB propagation
constants was unity. More elaborate explorations in a similar
spirit are possible through a direct application of the kinetic
Ising model.17

Brooks proposed a kinetic model based on a sequential
formation of helical residues at a rate

On the basis of the results of extensive simulation studies of

terminally blocked polyalanine peptides, the equilibrium con-
stant for nucleation of helix from coil was taken to beσs )
exp(-â∆Gn) with ∆Gn ranging from 3.1 to 3.7 kcal/mol; the
equilibrium constant for propagation of a helical residue was
takens) exp(-â∆Gp) with ∆Gp ranging from-0.24 to-0.06
kcal/mol near room temperature; the barrier to addition of a
single residue to an existing helix was estimated to be∆G‡ )
2.8 kcal/mol. Brooks demonstrated that the mean time for the
kinetic process of helix folding/unfolding scaled as

for peptides forming up to 15R-helical bonds, in agreement
with the theory of Schwartz14,18,19. Moreover, fits of the
proportionality constant showed thatkF ∼ 6 × 109 s-1 in close
agreement withk+ ) 8 × 109 s-1 at 298 K. The analysis of
Brooks agrees with the scaling law of Schwartz and, employing
results from energetics derived from simulation, provides
microscopic estimates of theσ and kF parameters. Moreover,
the analysis led to the important conclusion that the time scale
for the process of helix folding and unfolding could occur on
the nanosecond time scale. In a recent extension of that work,
Weaver has demonstrated that for a slightly modified version
of the sequential kinetic model of Brooks it is possible to
evaluate the helix-to-coil probability distribution as a function
of time and temperature for a diffusive dynamics.20,21

Thompson et al. subsequently put forward a “kinetic zipper”
model of the helix folding and unfolding kinetics. Their model
sought to relax key assumptions inherent to the models of
Schwartz, that estimated the mean time for formation of an
aVeragehelical residue ignoring end effects, and Brooks, that
assumes nucleation can occur at a single site with propagation
following sequentially from that site. Like the equilibrium zipper
model, their kinetic zipper model assumed the existence of a
single helical region in the peptide which is expected to be
reasonable for short peptides. Using their model to fit experi-
mental data for laser-induced temperature jump experiments on
an alanine based polypeptide, they put forward several important
conclusions. The helix growth rate was found to be on the order
of 108 s-1, an order of magnitude slower than the estimate of
Brooks. The analysis justified their assumption that the rate of
addition of a helical residue has an activation enthalpy of zero.
Moreover, the values ofσ resulting from their fits were on the
order of 0.01, significantly larger than “standard” values ranging
from 0.005 to 0.001.2

The recent temperature-jump transient infrared absorption
experiments of Woodruff and co-workers22-24 on apomyoglobin
(a 153 residue globular protein with eight strands of mostly
R-helical segments) showed that the helix folding/unfolding
relaxation rates are in the range of 10-160 ns. Those results
agree with predictions of the kinetic model of Brooks10 showing
that even simple and well parametrized statistical models can
account for realistic estimations of the helix formation rates.

Inherent to each of the existing models of the kinetics of the
coil-to-helix transition is one or a number of simplifying
assumptions. For example, the kinetic zipper model assumes
that helix propagates from a single nucleation site; the sequential
kinetics model assumes that helix nucleation occurs at a single
site in the peptide and propagates unidirectionally. As such, it
is desirable to develop an alternative theory that would allow
one to relax one or more of those assumptions. A particularly
attractive approach is one based on the solution of a mean first-
passage time equation25-27 that would implicitly allow for helix
formation from multiple nucleation sites (important for longer

τ ) 1
4σkF

(3)

k+ ∼ e-â∆G‡
1012 s-1 (4)

τ =
1
σ

(5)
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peptides and extension to largerσ values) and make no
assumption regarding the number of helical regions or direction
of helix propagation.

In a note on the kinetics of protein folding,28 Zwanzig, Szabo,
and Bagchi (ZSB) evaluated the mean first-passage time for
the special case of a ZB-like model with no spin-spin coupling
(J ) 0). In the ZSB model, the mean first-passage time for the
transition of theN independent two level systems of “native”
and “coil” residues to an all native configuration was computed
as a function of the energetic bias in favor of the native state
(determined by the external fieldH). This can be considered to
be an “ideal protein” model for a set of noninteracting amino
acid residues. They found that a local bias of the native state
configuration on the order of 1 kcal/mol could lead to “folding
times” on the order of seconds for a chain of one hundred
residues.

If we extend the ZSB model to the context of the coil-to-
helix transition, we have lost something essential that was
captured by the ZB model: the role of “cooperativity” in helix
formation. When spin-spin coupling is ignored, the nucleation
and propagation constants become equalσs ) s ) exp(H). The
model is that of an “ideal peptide” composed ofN noninteracting
residues. How can the site-site coupling be included in such a
MFP time approach? It is well-known that a mean field
approximation provides a simple means of deriving an ap-
proximate solution for the partition function of an Ising model
(which can also, in one dimension, be computed exactly). The
mean field approximation results in an effective single residue
energy function where each spin interacts with an “average spin”
representing the average spin state of the system. A set of self-
consistent equations are solved by iteration to determine the
partition function for the system. The mean field approximation
captures the general features of the cooperative nature of helix
formation through an energetics that is intermediate to that of
the “ideal peptide” model of ZSB and the exact ZB model (see
Table 1).

In this paper, we employ a mean field approximation to derive
mean first-passage times for helix formation from the ZB model
(the one-dimensional Ising model) as a function of the nucle-
ation,σs, and propagation,s, parameters (J andH). Unlike the
standard mean field approximation described above, the “mean
sequence” approximation underlying our “active helix” (AH)
model leads to a generalized mean first-passage time equation
where the transition rates depend on the state of the system, a
fundamental difference between the AH model and standard
kinetic models based on a master equation with fixed state-to-
state transition rates. The solution of a set of self-consistent
kineticequations leads to a complete description of the kinetic
and equilibrium properties of the model including the depen-
dence of the MFP time for helix formation and equilibrium
helicity in terms ofσ, s, andN. Theequilibrium properties of
the AH model are compared with those of the ZB model and
the “zipper” model. Thekinetic properties of the AH model
are compared with those of the kinetic models of ZSB, the
kinetic zipper model, and the sequential kinetics of Brooks. The
results show that our model leads to realistic estimates for the

equilibrium and kinetic properties of helix formation in peptides.
This AH model provides a new understanding of the detailed
chain dynamics and the relation between microscopic interaction
parameters and macroscopic equilibrium properties.

2. Mean First-Passage Times for Unimolecular Reactions

Many processes can be modeled as unimolecular reactions.
Let us consider a simple model for the helix-coil transition
whereN is the total number of residues in a peptide,c is the
number of residues in a coil state, andN - c is the number of
residues in a helical state. We consider the “reaction”

wherek0 andk1 are the transition rates for the individual residues
that are changing from a coil to a helical state. In the ZSB model,
the individual ratesk0 andk1 were assumed to be independent
of the conformational state of the surrounding peptide. In the
general case, the actual values of the transition rates depend on
the state of theentirepeptide. To capture that essential character,
we consider mean transition ratesk0(c) and k1(c) that are
functions of the numberc of coil residues of a peptide that is
N residues long.

For such a model, one can write the backward master equation

The corresponding equation for the first-passage times is

Equation 8 can be derived by considering a simple jump
process.27 Suppose that the system ofN residues hasc residues
in the coil state andN - c residues in the helical state. In the
time interval ∆t that corresponds to the next jump, the
probability that the system will move toward a numberc + 1
of coil states is (N - c)k0(c)∆t. The probability that the system
will move toward a numberc - 1 of coil states isck1(c)∆t.
Therefore, the probability that the system will remain in the
same state is 1- (N - c)k0(c)∆t - ck1(c)∆t. Using these
results, the mean first-passage time for the system to move from
the initial state, withc coil residues, to a final state with more
helical residues can be written as

This result can be rewritten as the mean first-passage time
eq 8 and does not depend on the size of the jump time step∆t.

Equation 8 can be solved as shown in the Appendix, and the
general solution is

where(nk) ) n!/k!(n - k)!, K(l) ) k0(l)/k1(l), a and b are the
positions of the boundaries (see the Appendix), andN is the
total number of residues. This result is a generalization of the
more common case that is found when the ratio of the mean

TABLE 1: Schematic Representation of the Relationship
between Theories and Models for the Coil-to-Helix
Transition Including the ZB (ZB) Model, the Ideal Two
Level System (TLS) Model, the Theory of Zwanzig, Szabo
and Bagchi (ZSB), and the AH Model from This Work

equilibrium dynamics

J ) 0 TLS ZSB
J > 0 ZB AH

c y\z
k1

k0
h (6)

∂tP(c, t) ) (N - c + 1)k0(c - 1)P(c - 1, t) +
(c + 1)k1(c + 1)P(c + 1, t) - (N - c)k0(c)P(c, t) -

ck1(c)P(c, t) (7)

(N - c)k0(c)[τ(c + 1) - τ(c)] +
c k1(c)[τ(c - 1) - τ(c)] ) - 1 (8)

τ(c) ) ∆t + (N - c)k0(c)∆tτ(c + 1) + c k1(c)∆tτ(c - 1) +
[1 - (N - c)k0(c)∆t - c k1(c)∆t]τ(c) (9)

τ(c) )
1

N
∑
n)a

c-1(N - 1
n )-1

∑
m)n+1

b (Nm) 1

k0(m)
∏

l)n+1

m

K(l) (10)
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transition rates is constant and independent ofc. In that special
case, with the conditionsa ) 0 andb ) N, the above expression
reduces to

which is the result obtained for the special case of the ZSB
model.28 Our result provides a closed form solution for the MFP
time in the case of a cooperative transition where the local rates
of transition are dependent on the state of the system. That is
the case in many cooperative phenomena including the coil-
to-helix transition in polypeptides and many examples of protein
folding.

3. Calculation of the Mean Transition Rates

The most important feature of our approach is that the
transition rates are dependent on the state of the peptide and
the fraction of helical residues (N - c)/N. For a given peptide,
a local transition from coil-to-helix is more probable when there
are existing helical regions than when they are absent. In general,
the local transition rates cannot be considered to be constants
independent of the local peptide structure or coil contentc. The
case of transition rateconstantsis singular and can be considered
only as an approximation for relaxation of the nonequilibrium
system. In the general case, we can expect the ratio of the mean
transition ratesk0(c) andk1(c) to depend onc asK(c) ) k0(c)/
k1(c). In this work, we will always consider that the transition
rates and their ratio depend onc. For notational compactness,
we do not always note that dependence explicitly.

In calculating the mean first-passage time using eq 10, we
must evaluate mean transition rates and their ratioK. In this
work, we invoke a mean-field or “mean-sequence” approxima-
tion. The mean transition ratesk0 and k1 are defined by the
probabilistic relations

for sites at the peptide’s N- and C-terminal ends (with one
nearest neighbor residue) and

for sites that are interior (with two nearest neighbor residues),
where the indicesR,â∈{c, h}.

Theuniresidueconformational transition rates (khhfch, kcccfchc,
and so on) and the microscopic neighbor-dependent configu-
rational probabilities (Phh, Phhh, and so on) can be calculated
by proposing a specific model for the interresidue interactions
in the polypeptide. As mentioned in the Introduction, in this
work we employ the energetic model of Zimm and Bragg.

3.1. The Active Helix Ising Model.We consider the Ising
model Hamiltonian, but with spins 0 (coil) and 1 (helix). Only
the helical residues are “active” in the sense that the coil residues
are not responsible for interactions with an external field or with
any other residues. This is equivalent to transforming the original

(1 spin values as

The energies of the available states are

for the N- and C-terminal sites and

for interior sites. Note that an important feature of our model,
hereafter the AH Ising model, is that the energies of theccc
andhhhconfigurations are extreme values ifH < 0 (as is needed
to obtain physically relevant values forσ ands for the coil-to-
helix transition) andJ > -3H/2. In such a case, the coil-to-
helix transition is modeled as a simple deexcitation to the
bounded ground state of the systemhhh. In general, however,
the kinetics of the system will be dictated by the relative values
of the energetic parameters that enter the energetics of the ZB
Ising Hamiltonian (eq 1).

Within this model, the transition rates are given by the general
expression

whereΘ(x) is the Heaviside function which is unity forx g 0
and zero otherwise. As a result, we always havekafb ) ν if
∆Eab e 0, where ν is the standard transition frequency of
unimolecular rate theory. We use a value ofν ) 109 as was
suggested by Zana8 and used by ZSB in another context.28 To
simplify the calculations, we have introduced the notationθ ≡
(N - c)/N ) 1 - θc for the helical fraction (withθc being the
fraction of coil residues), e-âJ ≡ eJ and e-âH ≡ eH. The
uniresidue conformational transition rates are

for transitions by the terminal residues and

for transitions at interior residues.
These rates can be used in eqs 12 and 13, together with the

configurational probabilities that are derived in the next section,
to calculate themean transition rates for conformational
transitions.

3.2. The Neighbor-Dependent Configurational Probabili-
ties.A realistic model for the conditional probabilities must take
into account the fact that, once the neighbors of the residue of
interest are fixed, the residue can access only a finite number
of energetic states. As a result, the probability of that residue
being coil or helix should be calculated differently than the
probabilities for its neighbors. For example, the probabilities

τ(c) )
1

Nk0

∑
n)0

c-1 (N - 1
n )-1

∑
m)n+1

N (Nm)Km-n (11)

k0
T )

∑
R

khRfcRPhR

∑
R

PhR

k1
T )

∑
R

kcRfhRPcR

∑
R

PcR

(12)

k0
I )

∑
Râ

kRhâfRcâPRhâ

∑
Râ

PRhâ

k1
I )

∑
Râ

kRcâfRhâPRcâ

∑
Râ

PRcâ

(13)

si f
si + 1

2
(14)

Ecc ) 0 Ech ) Ehc ) - H Ehh ) - J - 2H (15)

Eccc ) 0 Echc ) Ecch ) Ehcc ) - H Ehch ) - 2H

Echh ) Ehhc ) - J - 2H Ehhh ) - 2J - 3H (16)

kafb ) kT
h

e∆S/ke- â∆EabΘ(∆Eab) ) νe- â∆EabΘ(∆Eab) (17)

khcfcc ) νeH
Θ(H) khhfch ) ν(eJeH)Θ(J+H)

kccfhc ) νeH
-Θ(-H) kchfhh ) ν(eJeH)-Θ(-(J+H)) (18)

kchcfccc ) νeH
Θ(H) kchhfcch ) khhcfhcc ) ν(eJeH)Θ(J+H)

khhhfhch ) ν(eJ
2eH)Θ(2J+H) kcccfchc ) νeH

-Θ(-H)

kcchfchh ) khccfhhc ) ν(eJeH)-Θ(-(J+H))

khchfhhh ) ν(eJ
2eH)-Θ(-(2J+H)) (19)

Mean First-Passage Time Calculations J. Phys. Chem. B, Vol. 105, No. 28, 20016687



Phhh andPhh are taken to be

For the neighbors

but for the internal or for the N- and C-terminal residues

where we assign the “all helix” energy configurations (Ehhh and
Ehh) to be the reference levels. Therefore

Other probabilities can be calculated in the same manner leading
to the conditional probabilities

for the N- and C-terminal residues and

for the interior sites, where the notation for eJ and eH is the
same as in the previous section.These probabilities are normal-
ized as

where the indicesR,â,γ∈{c, h}.
3.3. The Mean Transition Rates.Using the conditional

probabilities, defined in the previous section, and the relations
e-xΘ(x) ) 1 + (e-x - 1)Θ(x) and exΘ(-x) ) exe-xΘ(x), which
hold for both negative and positive values ofx, we obtain the
mean configurational transition rates for the helix-to-coil (k0)
and coil-to-helix (k1) for N- and C-terminal residues as

with the termsf1, f2, andf3 given by

and

with

For interior residues the helix to coil (k0
I ) mean transition rate

is given by

with

A similar relation can be derived fork1
I . Note that ifH < 0 and

J < - H/2 thenΘ(H) ) Θ(J + H) ) Θ(2J + H) ) 0 andk0
T

) k0
I ) ν. In this case, the rate of transformation from helix to

coil is downhill and barrierless in our model, being a constant
independent ofθ. A similar assumption was introduced and
tested by Thompson et al. in their kinetic zipper model. By
design,k0 andk1 depend onθ.

We can calculate the global mean transition ratek0, for the
entire peptide, by averaging over the “end effects'′ and assuming
that

and

The ratio of the transition rates is then

and is dependent on the interaction energiesJ andH and the
helical fractionθ. For dipeptides (N ) 2), K is dependent only
on the dynamics of theterminal sites, whereas for long peptides
(N f ∞), K is dictated mainly by the dynamics of theinterior
sites.

The presence of the Heaviside functionsΘ(2J + H), Θ(J +
H), and Θ(H) in the transition rate formulas emphasizes the
crucial role of the relative values of the interaction energiesJ
and H in determining the specific kinetic properties of our
system. The analytic expression for the mean transition rates
that are derived here are exact (in the limits of our theoretical
model) and can be easily evaluated computationally.

4. Mean First-Passage Time for the Active-Helix Ising
Model

By using the mean transition rates derived in section 3.3, we
can calculate numerically the mean first-passage times as a
function of the energetic parametersJ andH (or laterσ ands).

f1(J,H,θ) ) (1 + eH)(eJeH - 1)θ

f2(J,H,θ) ) (eH - 1)(1 + eJeH)(1 - θ)

f3(J,H,θ) ) 1 + eJeH + eH(1 - eJ)θ

f4(J,H,θ) ) eH[1 + eJeH + (eJ - 1)θ] (30)

k0
I ) ν

f4
(f1Θ(2J + H) + f2Θ(J + H) + f3Θ(H) + f4) (31)

f1(J,H,θ) ) (1 + eH)(1 + eJeH)(eJ
2eH - 1)θ2

f2(J,H,θ) ) 2(1 + eH)(1 + eJ
2eH)(eJeH - 1)θ(1 - θ)

f3(J,H,θ) ) (1 + eJeH)(1 + eJ
2eH)(eH - 1)(1 - θ)2

f4(J,H,θ) ) (1 + eJeH)(1 + eJ
2eH) +

2eH(1 - eJ)(1 + eJ
2eH)θ + eH(1 - eJ)

2(eJeH - 1)θ2 (32)

k0 ) 2
N

k0
T + (1 - 2

N)k0
I (33)

k1 ) 2
N

k1
T + (1 - 2

N)k1
I (34)

K(eH,eJ,N,θ) ) k0/k1 (35)

Phhh ) Ph
n Ph

I Ph
n Phh ) Ph

T Ph
n (20)

Ph
n ) N - c

N
) θ (21)

Ph
I ) 1

1 + e-â(2J+H)
Ph

T ) 1

1 + e-â(J+H)
(22)

Phhh ) θ2

1 + e-â(2J+H)
Phh ) θ

1 + e-â(J+H)
(23)

Phc ) (1 - θ)/(1 + eH) Pcc ) (1 - θ)eH/(1 + eH)

Phh ) θ/(1 + eHeJ) Pch ) θeHeJ/(1 + eHeJ) (24)

Phhh ) θ2/(1 + eJ
2eH) Phch ) θ2eJ

2eH/(1 + eJ
2eH)

Pchc ) (1 - θ)2/(1 + eH) Pccc ) (1 - θ)2eH/(1 + eH)

Pchh ) Phhc ) θ(1 - θ)/(1 + eJeH)

Pcch ) Phcc ) θ(1 - θ)eJeH/(1 + eJeH) (25)

∑
Râγ

PRâγ ) ∑
Râ

PRâ ) 1 (26)

k0
T ) ν

f3
(f1Θ(J + H) + f2Θ(H) + f3) (27)

f1(J, H,θ) ) (1 + eH)(eJeH - 1)θ

f2(J, H,θ) ) (eH - 1)(1 + eJeH)(1 - θ)

f3(J, H,θ) ) 1 + eJeH + eH(1 - eJ)θ (28)

k1
T ) ν

f4
(f1Θ(J + H) + f2Θ(H) + f3) (29)
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Figure 1 shows the 2D surfaces representing the mean first-
passage times calculated for peptides that areN ) 20, 60, and

100 residues long. In this figure, as well as in Figures 2-8, we
considered the transition to the “all helix” final states. It is
possible, however, to calculate the MFP time using the general
result of eq 10 with various values of the boundary conditions
a andb that correspond to situations of interest for theoretical
calculations or for actual experiments.

The general features of the MFP time depend on bothJ and
H. As expected, theH dependence of the MFP time is similar
to that obtained by ZSB28 in that there is a decrease in the MFP
time for increasing values of the relative stabilization of the
helical state relative to the coil state. However, there is an
important difference. In our AH model, the MFP time depends
on both theJ andH interaction energies. To obtain physically
reasonable helix folding times we considerH < 0 meaning that
for an isolatedresidue (in the absence of interresidue hydrogen
bonding) the coil state is more stable than the helix configu-
ration, as expected. We find that biologically relevant MFP
times, on the time scale of nanoseconds to microseconds, can
be obtained by increasingJ as well as by increasingH. Even in
the total absence of an external field bias (H ) 0), the presence

Figure 1. “All coil” to “all helix” MFPT calculated as a function of
the interaction energiesJ andH for peptides of lengthN ) 20, 60, and
100 and the initial fraction of coil residuesθc ) 1. Note that the time
units are seconds (unless specifically stated otherwise, for convenience)
and 1 year≈ 107.5 s.

Figure 2. (a) MFPT (“all coil” to “all helix”) as a function of the interaction energiesJ andH for N ) 60 and the initial fraction of coil residues
θc ) 1. Note that the time units are seconds (unless specifically stated otherwise, for convenience), 1 year≈ 107.5 s. (b) The solid lines are the
corresponding contours of constant values of the MFPT.

Figure 3. MFPT (transition to “all helix”) as a function of the interaction energiesJ andH (N ) 100 andθc ) 0.34). Note the strong dependence
of the MFPT on both interaction energiesJ andH. For a strong external fieldH, equally strong residue-residue interactionsJ of opposite sign are
necessary to reach coil-to-helix transitions faster than 1 s. Because of the exponential dependence ofτ onJ andH, small variations of the interaction
energies can account for dramatic changes in the MFPT.
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of a small interresidueJ interaction on the order ofkTcan lower
the MFP time for the coil-to-helix transition well below one
second.

Figure 2 focuses on theN ) 60 surface. The solid lines in
Figure 2b are the equitemporal contours of the data presented
in Figure 2a corresponding to constant values of the MFP time.
The results presented in this plot demonstrate that physically

reasonable time scales for helix folding can be found for a range
of values of the energetic parameters H and J (or correspond-
ingly sandσ). The result of ZSB demonstrated that time scales
for protein folding on the order of seconds or less could be
achieved through a small local bias in the uniresidue energetics
toward the native configuration state (corresponding to positive
values of H). As a generalization of that observation, we find
that physically reasonable time scales for helix folding can be
achieved through an increase in the favorable interresidue
hydrogen bonding stabilization interaction (through positive
values of J) which overcomes a local uniresidue energetic bias
in favor of the coil configuration (through negative values of
H).

Cross sections of the data presented in Figure 2 are shown
in Figure 3 for anN ) 100 polypeptide. We find that for a
strong external fieldH equally strong residue-residue interac-
tions J of opposite sign are necessary to reach coil-to-helix
transitions in a mean time less than 1 s through stabilization of
interresidue interactions. Note that even relatively small varia-
tions of the interaction energies can account for very dramatic
changes in the MFP time.

In Figure 4, we show the dependence of the MFPT of anN
) 21 polypeptide as a function ofJ andH. Consistent with the
early observations of Brooks,10 but dependent on our choice of
the reaction “frequency factor”, for small polypeptides the MFPT
can occur in the nanosecond time scale. Figure 4 demonstrates
the dependence ofτ on the initial state of the peptide. The upper
surface corresponds to an initial state with 20 coil residues. The

Figure 4. Transition to “all helix”, MFPT forN ) 21. The upper
surface corresponds to an initial state with 20 coil residues, and the
calculated MFPT values are therefore larger than for the casecinitial )
2 represented by the lower surface.

Figure 5. MFPT (transition to “all helix”) as a function of the fraction of coil,θc ) 1 - θ, for various values ofJ, H, andN. (a) J is varied with
N ) 21 andH ) - 6.6kT; (b) H is varied withN ) 21 andJ ) 8.4kT; (c) N is varied withH ) - 7.2kT andJ ) 7.2kT. As the number of residues
in the coil state increases (θc close to 1) so does the MFPT. The MFP time increases exponentially with the length of the peptideN.
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calculated MFPT values are therefore larger than those for the
case of two initial coil residues represented by the lower surface.

Another important aspect of our AH model is that it permits
quantitative estimates of the dependence of the MFP time on
all parameters important in describing the peptide folding
including J, H, θ, and N. For example, Figure 5 shows the
dependence of the MFP time on the fraction of coilsθc as a
function of the length of the chain (N) for various values of the
interaction energiesJ and H. Note that physically reasonable
MFP times, similar to the ones recently reported by Thompson
and Eaton,11,29,30are estimated from our calculations. In Figure
5a, we varyJ for N ) 21 andH ) - 6.6kT; in b, we varyH
for N ) 21 andJ ) 8.4kT; in c, we varyN for H ) - 7.2kT
andJ ) 7.2kT. Note that longer MFP times are obtained in all
of the cases when the number of residues in the coil state is
increased (θc close to 1).

In Figure 6 is shown the dependence of the MFP time on the
length of the polypeptideN. Shown for comparison is the data
of the “sequential” kinetics model taken from Figure 3 of
Brooks10 (σ ) 0.002 ands ) 1.5). The dashed curve numbered
1 is the result of Brooks, whereas the curves numbered 2 (solid)
and 3 (dash-dot) are calculated for the sameσ andsparameters
using our AH model. TheJ andH values that are necessary for
the MFP time calculation were estimated using eq 2. The solid
curve 2 was calculated for the “all coil” to “all helix” transition,
corresponding to the boundary conditionsa ) 0 andb ) N in
eq 10. Curve 3 was obtained for the case when the transition is
considered to take place between the “all coil” and equilibrium
states, corresponding toa ) (1 - θeq)N andb ) N; in the next
section is explained how we obtained the equilibrium fraction
of helical residuesθeq (eq 42). We note that both types of
calculations show similar characteristics of the MFP time
dependence onN. The times for transition to the equilibrium
fraction of helix, curve 3, correspond to lower values than the
times for transition to all helix, curve 2, as expected. Our results
show the qualitative features of a two-phase kinetic behavior,
consisting of an initial rapid rise and subsequent slower increase
in the MFP timeτ with increasingN. Note thatτ continues to
increase withN for largeN (see the inset) as would be expected
on physical grounds and shows no plateau at largeN. When
compared with the data of Brooks, the dependence ofτ on N in
the AH model shows a more diffuse, less sigmoidal or
cooperative transition with increasingN.

In Figure 7 we investigate the MFPT dependence forN )
15, 21,and40 on 1/σ for s ) 1.5 and 1.1. The mean relaxation
time τM* predicted by Schwartz and Seeling is found to scale
asτM* ∼ (4σkF)-1. Note that, for large values ofσ, there is a
strongly nonlinear dependence on 1/σ. This results from the
inclusion in our AH model of the possibility of helix formation
through a mechanism involving multiple nucleation sites. As
expected, the effect is increasingly important as the length of
the peptideN increases. For smaller values ofσ, we find a fairly
weak but distinct sensitivity of the MFP time to variations in
σ. Moreover, the multiple nucleation mechanism is seen to be
increasingly important for longer polypeptides and smaller
values of the propagation constants.

The dependence of the rate of helix formation on the
propagation constants has been explored by Goj and others.
For the kinetic rate constant (a sum of folding and unfolding

Figure 6. Comparison between our calculated values for the MFP time
(τ), using the AH model, and the values for the helix folding times
calculated by Brooks.10 The dashed curve numbered 1 is the result of
Brooks, whereas the curves numbered 2 (solid) and 3 (dash-dot) are
calculated for the sameσ and s parameters using our AH model. In
the AH model,N is the length of the peptide (the final number of
residues in a helical state for the coil-to-helix transition). We have
accounted for the fact that in Figure 3 of Brooks10 N corresponds to
the number of helical hydrogen bonds.

Figure 7. Predictions of the AH model for the MFPT, for the all coil to all helix transition, plotted as a function of 1/σ for (a) s ) 1.5 and (b)s
) 1.1, for varying lengths of the polypeptide. Note that in the more coorperative case,s ) 1.5, theN dependence is least pronounced. As has been
noted by others, and as is explicit in the scaling law of Schwartz, the MFP time increases monotonically with decreasing values of the nucleation
parameterσ. Note that for large values ofσ there is a strong nonlinear behavior because of the increasing importance of multinucleation pathway
in the coil-to-helix transition.
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rates), the relaxation time for the approach to equilibrium was
found to be a maximum nears ) 1. For our study, we have
focused on the forward coil-to-helix transition process. In Figure
8, we show the dependence of the MFP time for that process
as a function of the helical propagation parameters. As expected,
the MFP time decreases monotonically ass is increased and
the forward propagation of helix is enhanced. If we were to
consider the reverse process (that of the MFP time of the helix
to coil transition), we expect to find the opposite behavior
manifest in a monotonically increasingτ with increasings. As
such, the overall kinetic rate constant, which can be ap-
proximated by the sum of the inverse MFP times for these two
processes, is expected to show a maximum nears) 1 consistent
with the results of Goj16.

5. Equilibrium Properties. Validation of the Active-Helix
Ising Model.

To compare our AH model to the ZB model, we derive the
equivalent equilibrium fraction of helix as a function of the
nucleation (σs) and propagation (s) parameters. For the
propagationstep, the mean sequence uniresidue transition rates
are given by

where the restricted sum∑Râ
/ PRcâ ) γ excludes the termsR )

â ) c. For thenucleationstep, the mean transition rates are
given by

By using the conditional probabilities derived in 3.2 and the

above mean transition rates for the propagation step, we can
build thepropagationequilibrium fraction “s”, defined as

In a similar way, we can build thenucleation equilibrium
fraction “σs” for internal and terminal sites

Averaging over end effects, we write

At equilibrium,K ) c/(N - c) ) (1 - θ)/θ. Using eq 35 forK
derived in our model by averaging over the uniresidue transition
rates, we expect that at equilibrium

where the solution is writtenθeq ) θeq(eH,eJ,N) ) θeq(J,H,N).
To compare the behavior of the AH model with the ZB results,
eqs 35 and 40 can be used to find the numerical relation

In Figure 9 is shown a comparison between our calculated values
for σ ands, using the AH model, and the approximation used
by Bryngelson and Billings and shown in eq 2. In this case, for
N ) 21, we find that very good correlations are observed
facilitating our equilibrium calculations. However, for larger
peptides, important differences may be obtained when using
the approximate eq 2 as opposed to eq 40.

In Figure 10 are shown theθ vs s diagrams calculated for
our AH model for (a)N ) 20, (b)N ) 100, and (c)N ) 1000.
To obtain the equilibrium values of the fraction of helical
residues we devised an iterative procedure that starts from initial
σ and s values and an initial guess for the number of coil
residues at equilibrium (saycini ) 2). Because of the good
correlations depicted in Figure 9, eq 2 can be used to estimate
the corresponding values ofJ andH. These values are than used
in eq 35 to calculateK exactly which provides a new estimate
for the equilibrium fraction of coilθ ) 1/(1 + K) and a new
number of coil residuesc ) (1 - θ)N. The modified values are
then reintroduced. This iterative algorithm converges to the
equilibrium fraction of helixθ that is shown in the diagrams of
Figure 10. These diagrams are in very good agreement with
the predictions of the ZB model, suggesting that our choice of
configurational probabilities based on the mean sequence
approximation leads to realistic equilibrium properties of the
AH model. TheN ) 100 diagram is essentially identical to the
results of the ZB theory.

The iterative procedure was used to obtain the equilibrium
fraction of helical residues. We used the values ofJ andH that
correspond to the values ofσ ands used by Brooks. For each
value ofN, we used eq 41 to estimate the equilibrium fraction
of coil. Given the equilibrium fraction of coil, we defined the
position of the absorbing boundary conditiona ) (1 - θeq)N
and calculated the MFP time using eq 10 (as explained in the
previous section).

Figure 8. Predictions of the AH model for the MFPT, for the all coil
to all helix transition, as a function ofs for polypeptides forσ ) 0.002
andN ) 21. As expected for the coil-to-helix transition, the mean first-
passage time is a monotonically decreasing function ofs.

k1
T ) kchfhh k0

T ) khhfch
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∑
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∑
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/
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k1
T ) kccfhc k0
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θ

(41)

θeq ) θeq(s,σ) (42)
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Figure 11 shows theN vs s diagram calculated for our AH
model and for the “zipper” model. For the results of the AH
model, we used again the self-consistent iterative procedure
described above, holdingσ constant for peptides of variousN.
In the casesθ ) 0.1, 0.3, 0.5, 0.7, and 0.9 we explored theN
- s plane with an accuracy ofdθ ) (0.02. The averages were

plotted as solid lines. For the results corresponding to the
“zipper” model, we used the well-known result to estimate the
equilibrium values forθ2. The values of the nucleation parameter
were for the AH model (a)σ ) 10-4 and for the zipper model
(b) σ ) 10-1 and (c)σ ) 10-4. Good qualitative agreement
with the predictions of the “zipper” model is observed. All

Figure 9. Comparison between our calculated values forσ ands, using the AH model, and the approximation used by Bryngelson and Billings
σ ) e-J ands ) eJ+H. In this case ofN ) 21, very good correlations are observed that facilitate our equilibrium calculations (see text for details).

Figure 10. θ vs s diagram calculated for our AH model for (a)N ) 20, (b) N ) 100, and (c)N ) 1000. These diagrams are in very good
agreement with the predictions of the ZB model. The results show that our choice of configurational probabilities leads to realistic equilibrium
properties of the AH model. TheN ) 100 diagram (b) is essentially identical to the result of the ZB theory.
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evidence suggests that the mean sequence approximation
underlying our MFP time calculations and the AH model lead
to realistic equilibrium properties of the polypeptides.

6. Conclusions

The general features of theequilibrium statistical and
thermodynamical aspects of the helix-coil transition are largely
understood. However, there is great disparity in the variety of
current experimental and theoretical estimates of the rate of helix
propagation and folding.

In this work, we have presented the AH model that provides
a detailed description of the dynamic and equilibrium aspects
of the helix-coil transition. Built in the tradition of the classic
“Ising” models of ZB and Lifson-Roig, the AH model permits

the evaluation of kinetic aspects of the coil-to-helix transition
such as the mean transition time for the formation of any fraction
of helix from any initial fraction of coil. This was accomplished
through the calculation of mean first-passage times from the
backward master equation.

Our study has led to the following conclusions. (1) The use
of the “mean sequence” approximation leads to a set of self-
consistent equations for the closed form solution of the kinetic
and equilibrium properties of the coil-to-helix transition. (2) The
“mean sequence” approximation was validated by an analysis
of the equilibrium properties that were found to compare well
with the classical ZB model. (3) We have generalized the
standard mean first-passage time equation to the case of
transition rates that depend implicitly on the state of the system.

Figure 11. N vs s diagram calculated for (a) our AH model withσ ) 10-4 and for the “zipper” model with (b)σ ) 10-1 and (c)σ ) 10-4. In all
the cases,θ ) 0.1, 0.3, 0.5, 0.7, and 0.9 points were searched in theN - s plane with an accuracy ofdθ ) (0.02. The averages were plotted as
solid lines. For the “zipper” model case, we used eqs 20-37 of Cantor and Schimmel v.III to estimate the equilibrium values forθ. A good
qualitative agreement with the predictions of the “zipper” model is observed, suggesting that our choice of configurational probabilities leads to
realistic equilibrium properties of the AH model.
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(4) As an extension of previous theories for the MFP time of
transition in Ising-like systems, the solution allows for the
examination of the role of cooperativity (interresidue coupling)
as well as local bias (intraresidue energetics). (5) By examining
the coil-to-helix transition through the solution of the MFP time
equation, assumptions regarding (sequential) propagation from
single nucleation sites, single coil/helix (zipper) interfaces, and
unidirectional (zipper or sequential) helix propagation are
avoided. (6) General features of the coil-to-helix transition that
have been previously observed, including the dependence of
the MFP time on the ZB parametersσ, with inverse scaling as
in the theory of Schwartz, ands, where a maximum is seen
about s equal to unity as in the work of Goj, are recovered in
this work.

In this paper, we used our AH model to estimate the
dependence of the rates of helix formation on peptide length.
We obtained results consistent with those derived from the
sequential model of Brooks. However, our model is built on
more detailed estimates of uniresidue transition rates and
neighbor-dependent configurational probabilities that describe
the kinetic, nonequilibrium aspects of the transition. We include
the possibility of multiple nucleation sites and bidirectional
propagation of helical segments. As such, our study provides a
more detailed understanding of the physical processes that
governs the coil-to-helix transition.

Our model provides a framework that can be used to
understand the nanosecond time scale helix propagation rates
observed in the latest laser temperature-jump experiments for
relatively small peptides.11,22-24,30We have shown that relation
2 between the ZB model parametersσ andsand the microscopic
interaction energiesJ andH is an approximation that holds well
for relatively small peptides. We also provided a numerical
method for estimating theσ ands parameters as functions ofJ
andH which is exact in the frame of our AH model and takes
into consideration peptide end effects. Future experiments on
homopolymers with the same length, and in the same solvent
but with different residue-residue interactions, can test the
validity of these relationships. Because our model provides the
analytic relationship between mean folding times, helix nucle-
ation, and propagation rates and the most basic parameters that
describe the peptide system (J, H, andN), future experiments
such as the one suggested above can be easily designed to test
it.

A strength of the AH model is that it allows for the calculation
of first-passage times between particular states of the model
polypeptide over a wide range of energy scales and peptide
length scales. We want to emphasize that the general form of
the analytic expression for the MFP time, eq 10, permits the
estimation of mean folding times for realistic experimental cases
in which the initial and final states are not necessary “all coil”
or “all helix”. A weakness of the AH model is that it is based
on a simplified energetic model of the peptide that is limited,
by its nature, in the detail that it can provide regarding the time
scale and mechanism for the coil-to-helix transition in polypep-
tides.

It would be a pleasure to attack the coil-to-helix transition
using more sophisticated rate theoretical methods and simulation
techniques of the sort that Bruce Berne has been central to the
development and application of.31 Such methods have provided
great insight into the reaction dynamics of molecules in liquids.32

Applications to problems of biomolecular importance have also
been made.33,34 An example of such a theoretical approach is
de Gennes’s effort to extend Kramers theory to the coil-to-helix
transition in heteropolymers including polypeptides and DNA.35

Examples of detailed numerical simulations and rate theoretical
analysis include studies of ion transport through a membrane
channel.36,37However, for large scale conformational transitions
involving multiple pathways, such methods appear to be limited.

Alternatively, one might apply an optimization principle
derived from a variational rate theory to identify likely transition
pathways between fixed reactant (coil) and product (helical)
states.34,38-41 One such approach, the MaxFlux algorithm,42 has
been used to isolate variationally optimized reaction pathways
for an eleven residue polyalanine peptide.43 A strength of such
an approach is that it maintains a detailed, all atom level of
description of the peptide energetics. For an all atom peptide
model combined with an implicit solvent potential, a variety of
pathways were isolated and characterized in terms of the general
features of the mechanism for the coil-to-helix transition. It was
determined that the helix nucleation can occur at multiple sites;
for a significant fraction of the trajectories, the peptide
underwent a collapse transition to a compact state from which
it would reopen before helix propagation could occur; there was
no strong evidence for extended regions of 310-helical structure
observed in reaction intermediates. Such details can only be
found when more detailed models than the one presented in
this AH model, kinetic master equations,16,10 or ingenious
automata models44 are employed.

An intermediate approach between these simplified models
and all atom dynamical calculations rests in the sort of
computation pioneered by Czerminski and Elber.45 A set of
minimum energy configurations are taken as the states of the
peptide. Reaction path methods are used to define the energetics
of the transition between pairs of connected minima. Transition
matrix elements are built using those energetic parameters and
a reaction rate model such as transition state theory. The
resulting master equation is then solved to explore the peptide’s
conformational relaxation dynamics. Such an approach, while
computationally intensive, holds the promise of providing
detailed kinetic data, of the kind derived from simplified models
such as the AH model considered here, for a realistic model of
the peptide, its sequence, and solvent energetics.

Given the central importance of the coil-to-helix transition
in polypeptides, we can expect a continuing theoretical,
computational, and experimental effort devoted to addressing
a variety of open questions regarding the role of peptide
sequence, length, temperature, pressure, and solvation in
determining the time scales and pathways for this fundamental
biomolecular process.
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Appendix: Solving the Mean First-Passage Time
Equation

In obtaining a solution for the mean first-passage time eq 8,
we use the notation
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where the transition rates depend on the “reaction coordinate”,
the helical composition of the polypeptide. We also define as
in ref 26

andU(c) ) τ(c + 1) - τ(c) andS(c) ) U(c)/φ(c). Using these
definitions, eq 8 can be rewritten

or

We takec to be bounded asa e c e b where the boundary
conditions are defined using an absorbing boundary atc ) a
and a reflective boundary atc ) b. Therefore,τ(a) ) 0, as one
is already there, andτ(b + 1) ) τ(b). We find that

where we use the fact thatS(b) ) U(b)/φ(b) ) 0 asU(b) ) τ(b
+ 1) - τ(b) ) 0. Therefore

and

On the other hand, if we sum allU(c), we find that

becauseτ(a) ) 0. Therefore, by using eq 49 in eq 50, the MFP
time can be estimated as

In our case, from eqs 43 and 44

where K(l) is the ratio of the backward and forward mean
transition rates that describe the system in the statel, defined
K(l)) k0(l)/k1(l).

Considering eqs 43, 51, and 52, we obtain the mean first-
passage time expression

Equation 53 is a central result of this paper. It represents the
complete analytic expression of the MFP time calculated for a
one-dimensional jump process of a system of lengthN that has
an absorbing boundary atc ) a and a reflective boundary atc
) b.

We choose the symbolc for the variable that describes the
state of the system because in our specific case, for the helix-
coil transition, it represents the number of residues in acoil
state. In this case (the coil-to-helix transition), if we choosea
) 0 andb ) N such thatτ(0) ) 0 andτ(N + 1) ) τ(N), we
obtain

It is important to note that besides the configurational parameters
that describe the system (a, b, c, andN) the MFP time depends
on the energetic parameters of the system (the Hamiltonian)
through the transition rates contained in eqs 53 and 54. For the
case whenK is independent ofc, this expression reduces to the
result of ZSB.28
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