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Continuous anisotropic representation of coarse-grained potentials
for proteins by spherical harmonics synthesis
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Abstract

A new method is presented for extracting statistical potentials dependent on the relative side chain and backbone orientations in
proteins. Coarse-grained, anisotropic potentials are constructed for short-, medium-, and long-range interactions using the Boltzmann
method and a database of non-homologous protein structures. The new orientation-dependent potentials are analyzed using a spherical
harmonics decomposition method with real eigenfunctions. This method permits a more realistic, continuous angular representation of
the coarse-grained potentials. Results of tests for discriminating the native protein conformations from large sets of decoy proteins,
show that the new continuous distance- and orientation-dependent potentials present significantly improved performance. Novel graphical
representations are developed and used to depict the orientational dependence of the interaction potentials. These new continuous anisotropic
statistical potentials could be instrumental in developing new computational methods for structure prediction, threading and coarse-grained
simulations.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The ability to predict protein structures, even at a low
resolution level, has become important in the field of
structure-based molecular biology. Despite advances in
all-atom molecular simulation methods, it is still difficult
to predict in detail protein folding dynamics and thermo-
dynamics. To gain insight into the dynamics of folding
and protein–protein interactions, it is desirable to develop a
series of spatially coarse-grained models. A key ingredient
needed for these models is an effective set of interaction
potentials. Following the seminal work of Tanaka and
Scheraga[1], there is a growing interest in obtaining rea-
sonably accurate force fields. The wealth of structural data
on a number of proteins in the Protein Data Bank (PDB)[2]
has been a source for obtaining interaction potentials[3–7].
Tanaka and Scheraga[1] proposed that the frequencies of
amino acid pairing could be used to determine potential
interaction parameters. Subsequently, with the exception of
a few studies[8], most of the “knowledge-based” poten-
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tials have been obtained solely in terms of residue–residue
contacts[6,9–11].

An explicit distance dependence of the statistical mean
force potentials was introduced by Sippl[8,12] using the
Boltzmann formula. This method, known as the “Boltzmann
device,” assumes that the known protein structures from the
PDB correspond to classical equilibrium states. From this
assumption, it follows that the distribution of the distance,
r, between two side chains (SC), should correspond to the
equilibrium Boltzmann distribution. Other structural param-
eters including internal coordinates, such as dihedral angles,
can also be used in this treatment. However, most statistical
potentials developed using this approach and other methods
[11,13,14]have only focused on distance-dependent proba-
bility density functions.

It is known that the relative orientation of side chains
is an important determinant of the local (secondary struc-
ture) geometry as well as three-dimensional (3-D) (ter-
tiary structure) topology[5,15,16]. By analyzing various
families of structures, we observed that certain orienta-
tional order parameters are prominent[17]. In this paper,
we present a method for building a set of continuous
orientation-dependent coarse-grained statistical potentials
for proteins, from the statistics of orientational distributions
extracted from PDB structures. The method is implemented
for extracting potentials on three distance intervals by
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considering short- (2.0–5.6 Å), medium- (5.6–9.2 Å) and
long-range (9.2–12.8 Å) side chain–side chain (SC–SC) in-
teractions. The near globularity of protein structures implies
that backbone (BB) contacts should also play an important
role. The explicit consideration of the backbone interactions
is also supported by the results of previous statistical deriva-
tions of backbone potentials that used virtual bond and tor-
sion angles[18] and secondary structure information[19].
To capture the effect of the number of side chain–backbone
(SC–BB) contacts, we include an extra anisotropic back-
bone interaction center located at the peptide bond. A spher-
ical harmonic analysis (SHA) and synthesis (SHS) of these
new potentials is used to express the orientation-dependent
potentials in a more realistic, smoothed representation. The
effectiveness of these potentials in recognizing the native
states is assessed using decoy tests[20] and compared to
their raw, non-smoothed version. The results show that the
new continuous orientation-dependent potentials present a
significantly improved performance.

These new coarse-grained anisotropic potentials could be
useful in structure prediction studies when being used in con-
junction with a either a simplified SC–BB energy function
[21] or with statistical information on SC–BB orientations
from a detailed backbone-dependent rotamer library[22].

2. Methods

2.1. Coarse-grained model

As shown schematically inFig. 1, in order to get param-
eters for the orientational dependence of the coarse-grained
potentials, it is useful to define local reference frames (LRFs)
for each side chain[17] For any SC, a LRF can be con-
structed by considering at least three non-collinear points
(P1, P2 and P3) that uniquely define the orientation of the
LRF. A fourth point, usually denoted by Si for the ith side
chain, specifies the location of the LRF origin. The Si in-
teraction centers are typically located at the center of mass
of the heavy atoms in each side chain, with the excep-
tion of Gly, where it coincides with the position of the C�

atom.
The backbone sites Ci� are used to describe the backbone

structure, but only the Si interaction centers are considered
to interact with each other. In this coarse-grained model for
peptides and proteins, we include an additional interaction
center located on the backbone[23,24] at the geometric
center of each peptide bond (seeFig. 2). In this description,
we assume that the local conformation of a given residue
i is sufficiently well described by the corresponding Ci

�, Si

and Pepi interaction centers.
The method for building the LRF for each side chain is

summarized below, based on the notation used inFig. 1b.
Let �rP1, �rP2, �rP3 and�rSi be the position vectors of the points
P1, P2, P3, and Si, respectively. TheÔz axis vector and a
second direction̂O∗

y (pointing towards theOy axis) can be

Fig. 1. Coarse-grained model for the quantitative study of the relative
side chain–side chain and side chain–backbone in proteins: (a) schematic
representation of the relative SC–SC 3-D coordination geometry; (b) local
reference frames (LRFs) for two interaction sitesi and j (P1, P2 and P3

are needed to define the orientation of LRFi, which is centered in Si).

constructed as

Ôz = �rP2 − �rP1

|�rP2 − �rP1|
and Ô∗

y = �rP3 − �rP2

|�rP3 − �rP2|
. (1)

In the second step, thêOx andÔy axis vectors are defined
using the cross productŝOx = Ô∗

y ⊗Ôz andÔy = Ôz ⊗Ôx.
The positions of the three reference points P1, P2 and

P3 are identified for side chains with the positions of the
C�, C� and C� atoms[17]. The positions of the interaction
centers Si are identified with the geometric centers (GC) of
the heavy atoms in the side chains. Exceptions to these rules
are made for the following special cases. (1) For Gly there
is no C� so we used the position of the midpoint between

Fig. 2. Coarse-grained model: three types of particles (C�, S, and Pep)
are needed to study the SC–SC, SC–BB and BB–BB interactions.
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the neighboring Ni and Ci atoms on the backbone as P1
and Ci

� is taken to be P2. In this way, the localOz axis is
defined by the bisector of the angle defined by Ni , Ci

� and
Ci . (2) Because Gly and Ala do not have C� atoms, we
used the position of the backbone atom Ci as P3. In this
way, the localOy axis is pointing in the direction defined
by the backbone atoms Ci

� and Ci . (3) For Cys and Ser
the corresponding coordinates of the S and O atoms are
substituted for the coordinates of the missing C� and are
used, therefore, for defining P3. (4) For Ile and Val, the
coordinates of the midpoint between the two C� atoms are
used for P3.

These definitions have the advantage that, while being
side chain dependent, the positiveOz axis is always oriented
away from the local backbone while the positiveOy axis
points towards more “remote” C� atoms in the SC. For small
side chains,Oy points towards the next SC on the backbone
sequence.

For Pep, the positions of the three reference points P1,
P2 and P3 are identified with the positions of the carbonyl
C atom, its O atom, and the peptide bond N atom. The
interaction center Si for Pep is placed in the middle of its
C–N peptide link.

These definitions of the LRFs permit the investigation of
relative coordination probabilities (e.g. for hydrogen bond-
ing) as well as of hydropathic effects in side chain packing.

2.2. Orientational probability maps

To extract and build orientation-dependent potentials
from PDB structures we need to obtain the relative SC–SC,
SC–BB and BB–BB orientational distributions from protein
structures[17]. This data can be expressed as normalized
relative orientational probability maps that are specific for
each pair of interaction sites. For the set of non-homologous
proteins used by Scheraga and co-workers[24–26], the ori-
entational histograms were collected usingN = 12 bins for
the range of theθ angle and 2N bins forφ in the correspond-
ing LRFs. Since all the protein structures analyzed have a
resolution of 2 Å or better, the choice of bin sizes ensures
a high confidence level of correct angular bin assignment
(80% at a distance of at least 4.5 Å)[17].

The extracted SC–SC pair frequencies are transformed
to SC–SC distance- and orientation-dependent interaction
probabilitiesPij (r, φ, θ) by normalization. In the case of
3-D orientation-dependent data, the measured frequencies
must also be divided by sin(θk) to correct for the smaller
volume elements near the poles whenk equiangular inter-
vals are used for theθ angle in the corresponding LRF. Be-
cause the amount of data available is relatively small for
conventional statistical procedures, we employed the “sparse
data correction” formula of Sippl[8,12] that builds the cor-
rect probability densities as linear combinations between the
measured data and the reference, total probability densities
obtained by averaging over all 20 SC types. As in previous
studies[8,27,28], we used the value 1/50 for the constantσ,

which corresponds to how many actual measurements must
be observed such that both the actual probabilities and the
reference would have equal weights.

2.3. The orientation-dependent potentials: the Boltzmann
device

We used the Boltzmann device[8,12] to construct statis-
tical orientational potentials from the orientational proba-
bility maps. This approach is based on the assumption that
the known protein structures from protein databases (such
as PDB[2]) correspond to classical equilibrium states. The
SC–SC potentials can be, therefore, related to position pair
distribution functionsg(r) by the relation

U
ij
D(r) = −kTln

[
gij (r)

gref(r)

]
(2)

for the distributions depending only on distances. We define
a more general distance- and orientation-dependent potential

U
ij
DO(r, φ, θ) = −kT

[
P ij (r, φ, θ)

Pref(r, φ, θ)

]
(3)

Here, we useUDO for the statistical potentials that are both
distance- and orientation-dependent, andUD for potentials
that depend solely on inter-residue distances. To be consis-
tent with previous studies, we consider the reference pair
distribution functionsgref to be the corresponding radial or
angular pair distributions that are obtained through an anal-
ysis of all 20 residue types. Databases of non-homologous
proteins are necessary for estimating the pair distributions
and for extracting amino acid specific interaction potentials
that are consistent with various protein architectures.

The total potential for the residue pairij is

U
ij
DO(rij , φij , θij , φji , θji )

= U
ij
DO(rij , φij , θij ) + U

ji
DO(rij , φji , θji ) (4)

where pairwise additivity is assumed.Eq. (4)is based on the
major assumption of pairwise additivity of the inter-residue
potentials in proteins. For Boltzmann equilibrium, this sepa-
rability is consistent with the probabilistic relation between
the individual probabilities Pij (rij, φij, θij) and Pji (rji, φji,
θji) (estimated from the observed frequencies of interaction),
and the total interaction probability Pij (rij, φij, θij, φji, θji)

[17]. The dependence of theU ij
DO potentials on the torsional

angle aroundrij (seeFig. 3 in [17]) is averaged out. The
results suggest that there is no effect of the assumption that
the interaction terms can be truncated as inEq. (4) on the
accuracy of theUDO potentials.

2.4. Spherical harmonic analysis (SHA) and synthesis
(SHS) of discrete potentials defined on spherical domains

The orientational dependence of the new inter-residue
coarse-grained potentials can be expressed in terms of func-
tions defined on spherical domains. For each interaction
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Fig. 3. Examples of orientation-dependent probability maps constructed for short-range interactions on a 12×24 angular grid. These graphical representations
provide a global view of the interaction probabilities.

range, the angular dependentUDO potentials are functions
of the θ and φ polar angles defined in the corresponding
LRFs of the amino acids[17]. These potential functions can
be decomposed using

U(θ, φ) =
∑
m,n

cmnYnm(θ, φ) (5)

whereYnm are complex spherical harmonics[29] andcmn

are the expansion coefficients. This formula is valid only for
functionsU(θ,φ) that have “well-behaved” continuity prop-
erties over the entire angular range. In practice, it is conve-
nient to use a series with real even and odd eigenfunctions,
namely,

U(θ, φ) =
∑
m,n

[amnY
o
nm(θ, φ)] + bmnY

e
nm(θ, φ). (6)

This approach was successfully used for the accurate de-
scription of the geomagnetic field of the Earth[29].

We employed the technique developed by Adams and
Swarztrauber and implemented in the FORTRAN package,
Spherepack[30,31] which addresses problems associated
with orthogonality at grid points and the non-uniform dis-
tribution of discrete data points. Though they were initially
developed for geophysical processes, the Spherepack rou-
tines are general and can be successfully used to analyze
the data extracted from protein structures, as follows. Let
N be the number of grid points corresponding to sampling
the data along theθ angle. We use 2(N − 1) grid points for
φ [31]. These sampling points are placed on the following

equiangular grid

θi = i�θ − π

2
, i = 0, 1, . . . , N − 1,

�θ = π

N − 1
; φj = j�φ,

j = 0, 1, . . . , 2N − 1, �φ = �θ (7)

Assuming that the angular dependent potential function is
sufficiently smooth, one can perform its spherical harmonic
analysis (SHA) and find the corresponding coefficients

amn = αmn

∫ 2π

0

∫ π/2

−π/2
U(θ, φ)Pm

n (cosθ)(cosmφ)cosθ dφ dθ

(8)

bmn = αmn

∫ 2π

0

∫ π/2

−π/2
U(θ, φ)Pm

n (cosθ)sin(mφ)cosθ dφ dθ

(9)

wherePm
n are the associated Legendre functions andαnm =

[(2n + 1) × (n − m)!]/[2π(n + m)] [29,30]. If the coeffi-
cientsanm and bnm are known, the corresponding smooth
potential functionU(θ,φ) can be reconstructed using spher-
ical harmonics synthesis (SHS)

U(θ, φ) =
N∑

n=0

n′∑
m=0

Pm
n (cosθ)[amncos(mφ)] + bmnsin(mφ)]

(10)

The prime notation[30] on the sum indicates that the first
term corresponding tom = 0 must be multiplied by 0.5.
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This method of spherical harmonic analysis provides a real-
istic representation, through spherical harmonic synthesis, of
the orientation-dependent statistical potentials as smoothed,
continuous functions.

3. Results

3.1. Orientational probability density maps

Orientational probability density maps were constructed
by dividing the interaction range into three regions, and us-
ing a 12× 24 equiangular grid (θ × φ) as described above,
following the method introduced in[17]. Fig. 3shows prob-
ability density maps in the short range (2.0–5.6 Å) of inter-
actions. The color mapping is directly proportional to the
probability of finding another side chain at a given orienta-
tion, as shown in the color bars. High interaction probabil-
ity values appear as red while small probabilities are repre-
sented as blue.

The representations inFig. 3use pseudo-cylindrical ortho-
phanic projections (a.k.a. Robinson projections) of the data
values over the entire spherical (θ, φ) domain. These projec-
tions are commonly employed to represent mapping data for
spherical geoids. The probability map inFig. 3awas used
as reference, constructed by averaging over interaction fre-
quencies counted for all the 20 amino acid types. It is notice-
able that there are relatively higher interaction probabilities
toward the “north pole” (i.e. the positiveOz axis, pointing
away from the local backbone) for this reference state. This
is a manifestation of the finite size and compact packing of
the protein structures. The probability maps constructed for
Cys–Cys, Asp–Lys and Pep–Pep interactions are shown in
Fig. 3b–d. The specific locations of statistically preferred in-
teraction loci are observable. In particular, the Asp–Lys rep-
resentation presents a few preferred directions for this type
of SC–SC interaction. Orientations preferred for hydrogen
bonding are clearly visible in the Pep–Pep probability maps.
Propensity for disulfide bond formation manifests itself in
the high probability in the polar region of the Cys–Cys prob-
ability map. For BB–BB interactions, we observe high in-
teraction probabilities along theOz direction, as expected.
These features become more pronounced in the representa-
tions of the corresponding statistical potentials constructed
from these probability maps.

3.2. Continuous representations of orientation-dependent
potentials

The orientation-dependent statistical potentials derived
using the Boltzmann device were further analyzed using
spherical harmonic analysis. Spherepack routines[30,31]
were adapted and employed for the numerical analysis of
the potential data, which was first constructed on a 12× 24
equiangular grid on spherical domains corresponding to the
three (i.e. short, middle and long) interaction ranges.amn

andbmn expansion coefficients were computed up to order
n = 13 (m ≤ n). The analysis of all 21×21 types of orienta-
tional potentials was performed and theamn andbmn coeffi-
cients were stored. Calculation of the expansion coefficients
(amn and bmn, seeEq. (6)) is vital because it permits the
rapid calculation of each specific orientational potential by
spherical harmonic synthesis for any value of the LRF ori-
entational parametersθ andφ. Importantly, not manya and
b coefficients have large amplitudes suggesting that further
filtering methods can be applied, and that efficient computa-
tional methods employing the new smooth potentials result-
ing from SHS can be developed. InFig. 4are shown poten-
tial projection maps. For Cys–Cys interactions to investigate
the orientational preferences expected for disulfide bonds.
The images in each row correspond to the same radial in-
teraction range (e.g. the first row is for short-range, second
row for middle-range, and third row for long-range interac-
tions). The first column (i.e.Fig. 4a,d and g) represents the
“raw” values (UDO21 for Cys–Cys) of the statistical poten-
tials constructed directly from the corresponding probability
maps using the Boltzmann device. The second column (i.e.
Fig. 4b,e and h) represents the values of the statistical poten-
tials reconstructed by using the SHA/SHS method (UDO21s).
Finally, in the third column (i.e.Fig. 4c,f and i) are shown
the values of the statistical potentials reconstructed by using
the same spherical harmonic analysis and synthesis method
(on a much more detailed 96× 192 equiangular grid)

For comparison, inFig. 5 are shown the corresponding
potential projection maps constructed for Gly–Gly interac-
tions. The arrangement in columns and rows has the same
significance as inFig. 4. It is noticeable that due to the very
small size of Gly, Gly–Gly interactions are described by a
weak orientational preference when compared with Cys–Cys
interactions. The magnitudes of the interaction ranges are
shown in the horizontal color bar under each figure. Note
that the magnitudes of the Gly–Gly interactions are generally
much smaller, and present a different distance-dependence
than in the case of Cys–Cys interactions, as expected.

We also show inFig. 6 the corresponding potential pro-
jection maps constructed for Asp–Lys interactions. It is
noticeable that the salt bridges that are likely to be formed
between Asp and Lys, confer to the Asp–Lys potentials
strong orientational statistical preferences in this interac-
tion range. The strength of the attractive (blue) regions, as
shown in the color bars, is also significantly larger than for
Gly–Gly potentials shown inFig. 5.

In Fig. 7are shown 3-D representations of the orientation-
dependent potentials for Pep–Pep (Fig. 7a) and for
Gly–Gly (Fig. 7b) interactions. As above, the attractive
regions are blue and the repulsive regions are red. The
orientation-dependent potential values for short-range in-
teractions are projected on the surface of a spherical geoid
centered in the middle of the peptide bond for Pep–Pep or
in the C� for Gly–Gly interactions. This type of 3-D repre-
sentation offers a useful way to visualize the locations of
the orientational interaction loci with respect to the atomic
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Fig. 4. Cys–Cys potentials. The images in each row correspond to the same radial interaction range. The first column represents the raw potentials, in
the second column are potentials reconstructed with SHS on a 12× 24 angular grid, and in the third are shown potentials reconstructed on a 96× 192
angular grid.

Fig. 5. Gly–Gly potentials. The images in each row correspond to the same radial interaction range. The first column represents the raw potentials, in
the second column are potentials reconstructed with SHS on a 12× 24 angular grid, and in the third are shown potentials reconstructed on a 96× 192
angular grid.
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Fig. 6. Asp–Lys potentials for short-range radial interactions: (a) the raw potentialsUDO21, (b) potentials reconstructed with SHS on a 12× 24 angular
grid, and (c) the orientation-dependentUDO21s potentials reconstructed on a 96× 192 angular grid.

Fig. 7. 3-D representations of the orientation-dependent potentials for Pep–Pep and Gly–Gly interactions. The attractive (blue) and repulsive (red)
potentials values are projected on the surface of a spherical geoid centered in the middle of the peptide bond for Pep–Pep or in the C� for Gly–Gly
interactions. The combined graphical representation of the “ball and stick” peptide bond and glycine�-carbon with a translucent sphere of projected
potential energy, clearly represents the correlation between structure and orientational dependence of the interaction potential energy.

positions. However, such a representation is relatively diffi-
cult to implement for long side chains.

Due to the local reference frame definitions, the centers
of the potential geoid surfaces should be located in the ge-
ometric center of the heavy atoms of the side chain.

In Fig. 8, is shown an alternative spherical contour plot
representation of the orientation-dependent potentials for
Cys–Cys interactions, from two diametrically opposite
points of view. This representation is useful in cases when
only a few interaction loci are found.

Finally, in Fig. 9 are shown 3-D representations of the
reconstructed short-range orientation-dependent potentials

Fig. 8. Front and back views of the orientation-dependent potentials for Cys–Cys interactions.

UDO21s for several types of interactions.Fig. 9ashows the
values of theUDO21s potentials reconstructed for Asp–Lys
on a 12×24 equiangular grid. InFig. 9b, the same Asp–Lys
potentials are reconstructed with a resolution that is eight
times more detailed than the original raw data. The same
96 × 192 equiangular grid is used for the representations
of Asp–Lys, Ile–Arg, Pep–Pep, and Cys–Cys interactions
in Fig. 9c–f. In these representations, the magnitude of the
potentials is proportional to both the radius from the cen-
ter of each local reference frame and to the color (i.e. red
for repulsive and blue for attractive regions). It is therefore,
possible to create 3-D shapes that would correspond both



448 N.-V. Buchete et al. / Journal of Molecular Graphics and Modelling 22 (2004) 441–450

Fig. 9. 3-D representations of the short-range orientation-dependent potentialsUDO21s constructed for: (a) Asp–Lys on a 12× 24 equiangular grid, (b)
Asp–Lys on a 96×192 equiangular grid, (c) Asp–Lys, (d) Ile–Arg, (e) Pep–Pep, and (f) Cys–Cys. In the graphical representations (c) to (f), the magnitude
of the interaction potentials is proportional to both the radius from the center of each local reference frame and to the color (i.e. red for repulsive and
blue for attractive regions).

qualitatively and quantitatively to the relative strengths and
specific features of each SC–SC, SC–BB and BB–BB inter-
action type.

3.3. Decoy tests: improved Z score values

To assess the efficacy of the reconstructed orientational
potentials, we performed tests for discriminating the native
state from multiple decoy sets[17,20]. The results were
obtained for testing the ability of our statistical potentials to
discriminate the native structure of a protein from large sets
of multiple decoy structures generated for the same protein
sequence, using the decoy database of Samudrala and Levitt
[20]. As in [17], the results are shown in terms of the values
of the energyZ scores (ZE), defined as

ZE = E − E

σE
(11)

whereσE is the standard deviation andE is the mean of the
distribution ofE energy values corresponding to each decoy
structure. For comparing the performance (and for studying
the effect of smoothing) of the interaction potentials on sets
of decoy structures, we calculate the energyZE scores both
for the raw, backbone-dependentUDO21 potentials, and for
their reconstructed and smoothed versionsUDO21s. Note that
for a successful test of the interaction potentials, theZE score
must be negative (i.e. the energy of the native state must
have a lower value than the mean energy of the decoys).

Fig. 10. Results from decoy tests. The energyZ scores (ZE) calculated for
multiple decoy sets[20,32–35]“lmds”, “fisa casp3”, “fisa” and “4state”
are compared before (UDO21) and after (UDO21s) applying the SHA/SHS
method. The PDB code for each protein decoy set is shown on the left.
The dark bars correspond toUDO21 and the white bars are forUDO21s.
The cases where theUDO21s potentials perform better in discriminating
the native state from decoys are emphasized by the arrows on the left.
For a majority of decoy sets, the performance of theZE score is actually
improved by using the spherical harmonic representation.
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The data inFig. 10 shows the results of these decoy
tests. The energyZ scores (ZE) were calculated for the
multiple decoy sets[20,32–35]“lmds”, “fisa casp3”, “fisa”
and “4state”. We compared theZE values obtained before
(UDO21) and after (UDO21s) applying the smoothing recon-
struction.

The dark bars correspond toUDO21 and the white bars
are forUDO21s. The cases where theUDO21s potentials per-
form better in discriminating the native state from decoys
are emphasized by the arrows on the left. While both po-
tentials (UDO21 and UDO21s) perform similarly well (i.e.
they have negativeZE scores), for a majority of decoy sets,
the performance is actually improved by using the spherical
harmonic representation. While there is an intrinsic infor-
mation loss introduced[30,31], the potential smoothing that
results appears to marginally improve the performance of
the orientation-dependent potentials.

These results show that the smoothing of the orientational
potential using the spherical harmonic analysis and synthe-
sis approach does not necessarily lead to a loss of accu-
racy. In practice, it can actually lead to continuous, more
realistic and computationally efficient representations of the
orientation-dependent, coarse-grained interactions.

4. Conclusions

We have developed a method for building coarse-grained
potentials using a generalized distance- and orientation-
dependent statistical approach. We have successfully ap-
plied this method to develop a simple conformational model
of proteins and small peptides that includes in an explicit
manner the relative orientations of the SC–SC, SC–BB, and
backbone–backbone (BB–BB) interactions. We have shown
[17] that the performance of energy based scoring functions
can be improved by using statistical information extracted
from the relative residue–residue orientations. Our new re-
sults, obtained for this new set of anisotropic potentials with
only three radial interaction ranges (the previous version
[17] had more radial bins), demonstrate that the statistical
data extracted from protein structural databases can be suc-
cessfully used to build orientation-dependent potentials that
have sufficient continuity properties to make possible their
spherical harmonic analysis. The resulting smooth, contin-
uous interaction potentials are represented using separate
spherical harmonic expansions of the orientation-dependent
potential for short-, medium- and long-range interactions.

The new potentials were tested on a standard database of
artificially generated decoy structures[20]. Although there
is an intrinsic information loss introduced by the spherical
harmonic analysis and synthesis[30,31], the new continuous
orientation-dependent potentials lead to results that are con-
sistent with, and in many cases marginally improved, when
compared to the raw potentials constructed directly from
orientational interaction probabilities. These results show
that the smoothing of the orientational potentials using the

SHA/SHS approach does not necessary lead to a loss of ac-
curacy. In practice, it can lead to continuous, more realistic
and efficient representations of the orientation-dependent,
coarse-grained interactions.

A variety of graphical representations have been devel-
oped to effectively portray the orientational dependence of
the statistical interaction potentials. These representations
should be of value in comparative studies of orientational
dependent potential functions for molecular fluids as well
as proteins.

From a computational point of view, there are poten-
tial benefits both for free energy calculations and for
coarse-grained dynamical simulations that might employ
the continuous, smoother statistical potentials. The memory
requirements for storing the spherical harmonic coefficients,
as opposed to the raw orientational data, are smaller. In ad-
dition, the values of the potentials can be readily computed
for any values of theθ andφ orientational parameters spec-
ified over the entire spherical domain. The new continuous
distance- and orientation-dependent statistical potentials
could be instrumental in developing more efficient com-
putational methods for protein structure prediction as well
as for Monte Carlo or molecular dynamics simulations of
coarse-grained models of peptides and proteins.
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