Numerical simulation of rate constants for a two degree of freedom system in the weak collision limit

John E. Straub, Michael Borkovec, and Bruce J. Berne

Department of Chemistry, Columbia University, New York, New York 10027

(Received 3 October 1986; accepted 24 December 1986)

In two recent papers, we examined the role of intramolecular vibrational relaxation (IVR) in determining the rate for energy activation in polyatomic molecules for both strong\(^1\) and weak collision\(^2\) models. In each study, we compared theoretical predictions with the result of numerical calculations for a quartic bistable coordinate coupled non-linearly to a Morse oscillator\(^3\) and linearly to a harmonic oscillator.\(^4\) We found that in each case the rate constant was sensitive to the degree of coupling between the reaction coordinate and the nonreactive degree of freedom. For weakly coupled systems, the numerical results agree with the predictions of one-dimensional theories which assume that the rate for energy transfer between modes is slow compared to the rate for energy activation in the reaction coordinate. For strongly coupled systems, multidimensional theories which assume that the rate for energy transfer between modes is fast compared to the rate for energy activation in the reaction coordinate must be used. In this Note, we present numerical simulation data for the rate of barrier crossing in a two degree of freedom Markovian system.

Rate constants were calculated using the absorbing boundary version of the reactive flux.\(^5\) The dynamics is described by the Langevin equation where the friction tensor is taken to be isotropic. We use the potential studied by DeLeon and Berne\(^6\):

\[V(x, y) = 4\beta^2 (y^2 - 1) e^{-\alpha x} + 10(1 - e^{-\lambda x})^2 + 1, \]

where \(y \), a quartic bistable coordinate, is non-linearly coupled to \(x \), a Morse oscillator, for nonzero \(x \). All calculations use a temperature \(\beta = 0.1 \), and the units of mass and barrier frequency defined by Eq. (1). The equations of motion were integrated using the velocity version of the Verlet algorithm\(^5\) on an FPS-164 attached processor.

Our simulation data are displayed in Fig. 1. The various theoretical predictions are described below for energy activation in a single well.\(^6\)

1. The one-dimensional theory approximates the friction on the bistable reaction coordinate as \(\gamma \), the diagonal element of the mass weighted isotropic friction tensor. The rate constant is given approximately by

\[k_{1D} = \beta Q \gamma e^{-\gamma_0}. \]

2. The first order two-dimensional theory consists of the asymptotic result accurate to first order in the friction\(^6\)

\[k_{1oc} = (\beta Q)^2 \gamma_0 e^{-\gamma_0}. \]

3. The corrected two-dimensional theory with first order corrections to Eq. (3) in the friction\(^9\)

\[k_{1oc}/k_{TST} = z(1 + a z^{1/3})^{-1}, \]

where \(z = k_{1oc}/k_{TST}, a_2 = 1.372 \), and \(k_{TST} \) is the transition state theory rate constant.\(^10\)

The total rate constant \(k \) for all friction is approximately\(^11\)

\[k^{-1} = k_{ED}^{-1} + k_{SD}^{-1}, \]

where \(k_{ED} \) is the energy activation rate constant given by Eq. (2), (3), or (4), respectively, and \(k_{SD} \) is the Kramers rate constant for saddle crossing.\(^7\)

Figure 1(a) displays the results for the uncoupled system. As expected, the one-dimensional theory of Eq. (2)
Letters to the Editor

accurately predicts the numerical data.

Figure 1(c) shows the results for the strongly coupled system. The two-dimensional theory of Eq. (4) shows excellent agreement. There is rapid IVR and the assumption of fast equipartitioning between modes implicit in Eqs. (3) and (4) is met. In particular, Eq. (4) shows good agreement with the exact RRKM solution. Note that even for small frictions \(\gamma / \omega_\alpha < 10^{-3} \), Eq. (3), which does not include \(\gamma^3 \) corrections, shows large deviations and higher order terms in the friction are important. For a greater number of degrees of freedom differences are even larger.

The coupling for the system corresponding to Fig. 1(b) is intermediate to that of Figs. 1(a) and 1(c). As expected, the simulation results fall between those of the weakly coupled and strongly coupled systems.

Two comments should be made in relation to our previous study. First, our data are consistent with the eigenvalue analysis which places the transition from two-dimensional energy activation to overdamped behavior at higher friction. Second, the Appendix of Ref. 2 contains a discussion of possible mechanisms acting in the weak collision model, absent in the strong collision model, which may increase diffusion in irregular regions of phase space or increase the measure of phase space accessible to reactive trajectories. Comparison of Fig. 1 with the corresponding results in Fig. 1 of Ref. 1 for the BGK model provides no evidence of increased diffusion. Further studies at higher temperatures would allow more definitive comments on the differences in dimensionality dependence of weak and strong collision models.

This work was supported by a grant from the National Science Foundation.

\(^{1}\) Present address: Institut für Physikalische Chemie, University of Basel, Klingelbergstr. 80, 4056 Basel, Switzerland.

\(^{7}\) For application to the double well problem, one multiplies by 1/2 since once the particle is activated it will oscillate freely many times before being deactivated with equal probability in either well.

\(^{8}\) H. A. Kramers, Physica 7, 284 (1940).

\(^{13}\) Energy activation rate constants for multidimensional systems differing from Eqs. (3) and (4), in the choice of the energy threshold for activation, have been proposed; see A. Nitzaan, J. Chem. Phys. 82, 1614 (1985). Our simulation data confirm that the threshold used in Eqs. (3) and (4) is the correct one.

\(^{14}\) For the case of isotropic friction discussed here, the eigenvalue analysis of Ref. 2 reduces to that previously presented by Hänggi; see the second citation of Ref. 10 and Ref. 14.

\(^{15}\) The procedure for calculation of error bars is described in the Appendix of J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 84, 1788 (1986).