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ABSTRACT
The separation of lipid mixtures into thermodynamically stable phase-separated domains is dependent on lipid composition, temperature,
and system size. Using molecular dynamics simulations, the line tension between thermodynamically stable lipid domains formed from
ternary mixtures of di-C16:0 PC:di-C18:2 PC:cholesterol at 40:40:20 mol. % ratio was investigated via two theoretical approaches. The line
tension was found to be 3.1 ± 0.2 pN by capillary wave theory and 4.7 ± 3.7 pN by pressure tensor anisotropy approaches for coarse-grained
models based on the Martini force field. Using an all-atom model of the lipid membrane based on the CHARMM36 force field, the line
tension was found to be 3.6 ± 0.9 pN using capillary wave theory and 1.8 ± 2.2 pN using pressure anisotropy approaches. The discrepancy
between estimates of the line tension based on capillary wave theory and pressure tensor anisotropy methods is discussed. Inclusion of protein
in Martini membrane lipid mixtures was found to reduce the line tension by 25%–35% as calculated by the capillary wave theory approach.
To further understand and predict the behavior of proteins in phase-separated membranes, we have formulated an analytical Flory-Huggins
model and parameterized it against the simulation results. Taken together these results suggest a general role for proteins in reducing the
thermodynamic cost associated with domain formation in lipid mixtures and quantifies the thermodynamic driving force promoting the
association of proteins to domain interfaces.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091450

INTRODUCTION

Membrane spatial heterogeneity has been proposed to play
an essential role in the complex and often collective cellular
functions like protein assembly, enzyme catalysis, and signaling.1
Model lipid bilayers that mimic the lateral heterogeneity observed
in biological membranes are commonly used in experimental,
computational, and theoretical investigations. Ternary mixtures of
saturated lipids, unsaturated lipids, and cholesterol (CHOL) are
commonly employed as model mixtures that exhibit lipid domain
formation, in which saturated and unsaturated lipids laterally phase
separate to form coexisting liquid ordered (Lo) and liquid disor-
dered (Ld) domains.2 The free energy cost per unit length of the

domain interface defines the line tension (see the supplementary
material).

To estimate the line tension of domain interfaces, experimen-
tal studies have employed capillary wave theory analysis of flu-
orescence microscopy images,3–5 and empirical relationships for
the line tension have been derived to describe data from fluo-
rescence microscopy,6,7 micropipette aspiration,8 and atomic force
microscopy9,10 experiments reporting estimates of line tensions
ranging from 0.1 to 4 pN. Analysis of coarse-grained (CG) sim-
ulations employing capillary wave theory11–14 and pressure tensor
anisotropy approaches13–15 have estimated line tensions to be 3–
22 pN. Estimates of line tension between phases in single component
lipid bilayers have been derived from the temperature dependence of

J. Chem. Phys. 150, 204702 (2019); doi: 10.1063/1.5091450 150, 204702-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5091450
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5091450
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5091450&domain=aip.scitation.org&date_stamp=2019-May-22
https://doi.org/10.1063/1.5091450
https://orcid.org/0000-0003-1264-7330
https://orcid.org/0000-0002-4373-1677
https://orcid.org/0000-0002-8685-4220
https://orcid.org/0000-0002-2355-3316
mailto:straub@bu.edu
https://doi.org/10.1063/1.5091450
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-037919
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-037919


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the rate of nucleation16 and the capillary wave approach,17,18 range
from 3 to 10 pN (see Fig. 1 and Table S1 in the supplementary
material for further details).

The majority of work on line tension in membranes has been
based on studies of binary or ternary lipid mixtures.3,6,7,16,18 How-
ever, many have shown that in certain cases, the inclusion of a
quaternary component to the membrane can substantially alter the
thermodynamics of lipid mixtures. Safran et al. and Rosetti et al.
have demonstrated that hybrid lipids with saturated and unsatu-
rated tails can promote lateral heterogeneities by reducing interface
line tension.14,19,20 Additionally, Galimzyanov and co-workers have
reported chevron dependence of domain line tensions as a function
of ganglioside concentration.21

Since proteins can constitute 20%–80% of the membrane mass
in vivo,22 it is essential to consider the effect of proteins on the
membrane line tension. Membrane proteins are believed to influ-
ence the excess free energy at the domain interface by compensating
for hydrophobic mismatch at the domain interface, modulating the
dielectric properties of membrane or modifying the membrane cur-
vature.10,20 For example, using atomic force microscopy and fluores-
cencemicroscopy, Vogel et al. determined that lipid anchoredN-Ras
proteins localize to the domain interface, modulating the line ten-
sion.23 We recently demonstrated that 1000 lipids or more are gen-
erally required to form thermodynamically stable phase-separated
states.24 As such, while studies have employed CG simulations to
investigate the behavior of proteins in phase-separated membranes,
there have been no studies based on simulations using all-atom
(AA) models. In previous CG simulations, Duncan and co-workers
observed reduction in line tension in Lo-Ld phase-separating mix-
tures of di-C16:0 PC (DPPC) and 16:0-18:1 PC (POPC) upon the
introduction of surfactant proteins SP-B and SP-C.25 Janosi et al.
observed the localization of lipid anchored H-Ras protein to domain
interfaces and 40% reduction in line tension in CG simulations of
DPPC, di18:2-PC (DIPC), and CHOL mixtures.11 Marrink and co-
workers studied domain separating CG lipid mixtures and reported
up to 57% increase in line tension with the introduction of WALP23

FIG. 1. Comparison of phase separated lipid domain line tensions estimated from
experiments,3–10 (Exp), theoretical estimates based on capillary wave theory11–14

(CWTlit), and pressure tensor anisotropy13–15 (PTAlit) and line tension estimates
from the current study using capillary wave theory (CWT) and pressure tensor
anisotropy (PTA).

and 7% increase with bacterial rhodopsin.13 Camley and Brown
have also explored the effect of protein on phase-separated mem-
branes using stochastic Saffman-Delbrück hydrodynamics simu-
lations.26 Taken together, these disparate experimental and theo-
retical findings demonstrate the need for an improved qualitative
and quantitative understanding of the role of proteins in stabiliz-
ing phase-separated membranes and the role of membrane domains
in spatial localization of proteins in heterogeneous membrane
environments.

In this manuscript, we report estimates of lipid domain line
tension in phase-separated membranes and the effect of protein on
this line tension. We quantify the line tension using capillary wave
theory on domain interfaces and pressure anisotropies. We then dis-
cuss the source of contrast between these two approaches and also
the effects of model resolution on line tension estimates. We have
extended an analytical Flory-Huggins model (which we previously
developed24) to include the effect of protein insertions to miscible
and phase-separated membranes to conceptualize the effect of pro-
teins on line tension, the domain colocalization of proteins, and the
stability of the phase-separated state.

METHODS

Molecular simulation models and methods

Coarse-grained (CG) systems

Lipid membranes consisting of 1600 lipids were constructed
from the lipidmixture DPPC:DIPC:CHOL in the ratio 40:40:20, pre-
viously demonstrated to support formation of thermodynamically
stable phase-separated lipid domains.27 Membrane-protein systems
were prepared at approximately 1 mol. % protein to lipid fraction
(9 copies of the putative protein per system). In this investiga-
tion, we simulated the trans-membrane region of the 99 residue C-
terminal fragment of amyloid precursor protein (C99) [KLVFFAED-
VGSNKGAIIGLMVGGVVIATVIVITLVMLKKK], which plays a
central role in many recent computational28–32 and experimental33,34
investigations of the amyloid cascade hypothesis for Alzheimer’s
disease, highly charged alpha helical transmembrane protein Syn-
taxin1A (SX1AWiLdtype) [SKARRKKIMIIICCVILGIIIASTIGGIFG],
which is found in the presynaptic plasma membrane, a mutant
of Syntaxin1A where all the charged residues are substituted by
leucine (SX1AMutant) [SLALLLLIMIIICCVILGIIIASTIGGIFG], and
synthetic alpha helical peptides WALP23 [AWWL-(AL)8-WWA]
and WALP31 [AWWL-(AL)12-WWA] which have hydrophobic
thicknesses compatible with the liquid disordered domain and liq-
uid ordered domain, respectively.15 Initially proteins were placed
on a uniform grid, and lipids were randomly arranged in a lipid
bilayer using the CHARMM-GUI Martini Bilayer Maker.35,36 Mar-
tini 2.2 CG parameters for lipids,37 proteins,38 and cholesterol39 were
used.

Membranes were prepared with a water thickness of 17.5 Å on
each side, with 10% waters modeled using antifreeze parameters and
Na+ and Cl− ion concentrations of 0.15M to approximate physio-
logical conditions. Minimization and equilibration of the membrane
systems were carried out according to CHARMM-GUI protocols.36
Production runs were in the NPT ensemble. Velocity rescaling to
295 K was employed using a 1 ps coupling time40 and the semi-
isotropic Berendsen barostat was used with 1 bar pressure,41 5 ps
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coupling time, and a compressibility of 3 × 10−4 bar−1. Tempera-
tures and pressures were selected to mirror the simulation condi-
tions employed in previous studies of phase-separation based on the
Martini CG lipid model12,42,43 and should be sufficient to observe
phase separation over a wide range of concentrations.27 Lennard-
Jones and Coulomb interactions were treated using the GROMACS
shifting function between 0.9–1.2 nm and 0.0–1.2 nm, respectively.
Five replicates of each system were simulated for 11 µs (wall clock
time) employing the leap-frog integrator with a time step of 20 fs.
The mixing entropy and xy-plane area were analyzed for the full
11 µs of each trajectory. The last 2 µs of each trajectory was used
in the analysis of the line tension and lateral colocalization of lipids
and proteins.

All-atom (AA) system

The initial system was constructed by “tiling” 2 DPPC:CHOL
and 2 DIPC:CHOL patches prepared with the CHARMM-
GUI Membrane Builder (Fig. S2).35,36 The composition of each
DPPC:CHOL and DIPC:CHOL patch was assigned to replicate the
lipid to CHOL ratios in equilibrated phase-separated CG mem-
branes of DPPC:DIPC:CHOL (40:40:20) mixtures27 which corre-
spond to estimates of partitioning from x-ray and Raman spec-
troscopy studies.44–46

To solvate the lipid bilayer, a 17.5 Å-thick water layer was set
to each side of the membrane containing Na+ and Cl− ions at an
approximate concentration of 0.15M, resulting in system dimen-
sions of 20.4 nm × 20.4 nm × 9.9 nm dimensions in x, y, and z,
and 428 650 particles. The CHARMM36 force field parameters47,48
and the TIP3P water model49 were used. Each DPPC:CHOL and
DIPC:CHOL patch was energy-minimized and was pre-equilibrated
according to the CHARMM-GUI protocols.35 After construction,
the system was simulated for 3 µs with leap frog integration with
a 2 fs time step.

The production run was maintained at 310 K using the Nosé-
Hoover thermostat50,51 and 1 bar using the Parrinello-Rahman
barostat with semi-isotropic coupling.52 The Smooth Particle-Mesh

Ewald method was used to model long-range interactions.53 Mix-
ing entropy and line tension were estimated using all frames of
the production trajectory. The last 1.6 µs of the trajectory was
selected to represent the equilibrated state of the AA domain
interface.

Molecular-composition-based detection
of domain interfaces

Estimation of line tension is often performed by determin-
ing a continuous interfacial boundary between domains of differ-
ent thermodynamic phases and analyzing the fluctuating interface
using capillary wave theory. Identification of domain interfaces in
lipid bilayers has been undertaken via multiple strategies in the past.
Katira et al.17 employed a Gaussian density field approach intro-
duced by Willard and Chandler,54 Rosetti et al.14 used the intrin-
sic density profile method described by Jorge and Cordeiro,55 and
Ackerman and Feigenson56 developed a Voronoi tessellation-based
phase interface detection algorithm exploiting the local concentra-
tion surrounding lipids. Here, we employed a local composition-
based interface detection algorithm that exploits the spatial
separation between dipalmitoyl-phosphatidylcholine (DPPC) and
dilinoleyl-phosphatidylcholine (DIPC) lipids to define a standing
wave form that describes the domain interface in two dimensions.
The algorithm is robust against appreciable membrane undulations
and minor lipid miscibility. The method is readily generalizable to
more complex membranes such as those containing proteins or gan-
gliosides. The chemical identity of lipid nearest neighbors is used
as an order parameter as it is the natural description of a phase-
separated membrane with saturated and unsaturated lipids. This
could be extended to other order parameter fields like density or
bond-orientational order as appropriate to the system or phase of
interest.17,54

This interface detection algorithm was developed assuming
a phase-separated membrane that has adopted a stripe morphol-
ogy,24 where the interface may lie along the x- or y-axis [Fig. 2(a)].

FIG. 2. (a) Lipid membrane tail coordinates in the xy-plane. Highlight shows an arbitrary bead selected from the tail plane, with neighbors within a 3.0-nm xy-plane cut-off
distance. (b) Instantaneous interfacial beads are detected via nearest neighbor composition criterion (gray circles), binned (magenta stars), and fitted through the binned
interface positions using cubic spline (magenta line). Each DPPC (DIPC) bead was considered to be at interface if 0.25 < XDIPC

i < 0.55 (0.25 < XDPPC
i < 0.55), and each

CHOL bead was considered to be at the interface when 0.33 < XDPPC
i < 0.66. (c) Fluctuations of the interface h(x) from its mean position (straight line) and (d) their average

power spectrum �h2(k)�.
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We identified a two-dimensional surface defined by the C2A
and C2B beads of DPPC, D2A, and D2B beads of DIPC, and
the R3 bead of CHOL in top and bottom leaflets, separately.
This selection is robust to CHOL flip-flops across the bilayer
plane as the CHOL assigned to each leaflet is identified in every
frame.24 For each selected bead (i), the neighbors in the 2D
plane (within a 3.0-nm xy-distance cutoff that includes the sec-
ond solvation shell and beyond) are identified [Figs. 2(a) and S1].
Then, DPPC or DIPC neighbors (NDPPC

i , NDIPC
i ) are extracted and

the corresponding neighbor mol fractions XDPPC
i and XDIPC

i are
computed

XDPPC
i = NDPPC

i
NDPPC

i +NDIPC
i

and XDIPC
i = NDIPC

i
NDPPC

i +NDIPC
i

. (1)

Based on the observation that a stripe-shaped phase separation of a
two component mixture should present equal amounts of neighbors
from each type (Xi = 0.5) at the domain interface, we optimized the
cutoff of values for XDPPC

i , XDIPC
i , and XCHOL

i to avoid discontinu-
ity in the domain interface [Fig. 2(b)]. We find the DPPC (DIPC)
bead to be at the interface if 0.25 < XDIPC

i < 0.55 (0.25 < XDPPC
i< 0.55), such that a DPPC bead should have nearly 50% DIPC

nearest neighbors or a DIPC bead should have nearly 50% DPPC
nearest neighbors. We consider a CHOL bead to be at the interface
when 0.33 < XDPPC

i < 0.66. These values were selected to capture as
many interfacial beads as possible while minimizing the misassign-
ment of miscible lipid clusters. The range of values reported here
should be applicable to any CG or AA system that presents clear
phase separation in a stripe morphology.

In order to extract beads belonging to individual interfaces
while respecting periodic boundary conditions, we employ the
DBSCAN clustering method57 with 2.5 nm clustering threshold and
5% minimum sample fraction. For the interfaces with discontinu-
ities across periodic boundaries, we utilized the coordinates in the
neighboring periodic images to form an uninterrupted interface. A
smoothening procedure is applied by averaging the points belong-
ing to each interface in roughly 1.0 nm bins along the dimension
parallel to the interface. We approximated the functional form of
the interface by fitting a cubic spline with 100 grid points and a
smoothening factor of 0.001 to the binned interfacial coordinates
[Fig. 2(b)]. To filter artifacts, we discarded the frames for which the
length of the spline fitted interface registers a change in excess of 25%
of the median of the spline lengths of the corresponding interface in
the simulated trajectory.

Detection of proteins at domain interfaces

Even for a phase-separated membrane including transmem-
brane proteins, cutoff values of XDPPC

i , XDIPC
i , and XCHOL

i previously
described remain robust in detecting interfacial DPPC, DIPC, and
CHOL beads. Additionally, we detect protein beads at the inter-
face in the following manner. We selected protein beads within
1.0 nm of the lipid tails of each leaflet, allowing the atom selec-
tion to be dynamic to displacement along the membrane normal
or tilting of the protein in the membrane. For each protein bead,
lipid tail nearest neighbors within a 3.0-nm xy-plane distance cutoff
were identified as protein-lipid contacts. The protein-DPPC con-
tacts were used to assign protein beads to the interface as the Lo

domain is less fluid than the Ld domain. We considered a protein
bead to be at the interface if 0.20 < XDPPC

i < 0.80. We adopted
this composition condition as proteins in this study never fully
partitioned to the Lo domain and large protein aggregates were
observed at the domain interface. Once the interfacial lipid and pro-
tein beads were identified, the line interface was fit as described in
the section titledMolecular-composition-based detection of domain
interfaces.

Computing line tension of the domain interface

Using the capillary wave approach, the line tension of the
domain interface was determined by evaluating the power spectrum
[h2(k)] of the interface height fluctuations [h(x)] from a linear inter-
face defining the minimum free energy morphology58–60 [Fig. 2(c)].
Interface height fluctuations in the wave number domain [h(k)] and
line tension (λ) per individual interface are related by

�h(k)h(−k)� = ��h(k)�2� = kBT
λLk2

with k = 2πn
L

and h(k) = 1
L �

L

0
dxh(x)e−ikx, (2)

where k is the wave number, L is the length of the linear inter-
face, n is the wave number mode index that takes integer values
1, 2, 3, . . ., kB is the Boltzmann constant, T is the temperature,
and ��h(k)�2� is the power spectrum of interface height fluctua-
tions in k domain, averaged over all frames [Fig. 2(d)]. We com-
pute λ using the linear regression of ��h(k)�2�−1 vs k2. We have
used the first four wave number modes corresponding to the largest
wavelengths (L, L/2, L/3, and L/4) for the line of best fit (see
the supplementary material for further details). Line tensions for
each of the four interfaces were determined and then averaged
for each replicate. The reported results and errors were estimated
based on the averages and standard deviations computed over five
replicates.

For comparison, the line tension was also computed via analy-
sis of the pressure tensor anisotropy. The derivation, which follows
the work of Jiang et al.,61 is included in the supplementary material.
Considering an interface parallel to the x-dimension and membrane
normal parallel to the z-dimension,

λ = 1
2
�LyLz�12(Pyy + Pzz) − Pxx��, (3)

where λ is the line tension per leaflet, Pxx, Pyy, and Pzz are the pres-
sure tensor components in x, y, and z dimensions, and Ly and Lz are
the simulation box lengths in y and z dimensions, and the average
is taken over all samples at equilibrium. The results and errors were
estimated based on the averages and standard deviations computed
over five replicates.

Software and computing systems

CG MD simulations were carried out with the GROMACS
5.062–64 simulation platform, using 16 MPI threads, achieving
upward of 800 ns/day performance, while the AA simulation was
performed with GROMACS2016.3 using two P100 GPUs which
were each assigned 8 OMP threads, achieving 7.8 ns/day perfor-
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mance. Trajectories were analyzed by GROMACS packages, and in
house scripts utilizing MDAnalysis,65,66 NumPy and SciPy libraries,
and molecular visualization were rendered with Visual Molecular
Dynamics (VMD).67

RESULTS AND DISCUSSION

Establishing membrane equilibrium
and interfacial stability

The clear identification of interfaces in stripe-shaped macro-
scopic phase separations depends on the presence of a stable
membrane configuration that can be approximated by a quasi-
two-dimensional representation. Figures 3(a)–3(d) illustrate the
final configurations of a membrane system (MEM) and a mem-
brane protein system (C99), where stripe-shaped lipid domains
are formed. Binary mixing entropy in the simulated systems
(Smix),24

Smix = −p1 log2(p1) − p2 log2(p2) (4)

where p1 and p2 are contact probabilities between similar and
dissimilar types of lipids, respectively, reaches a stationary state
from 2.5 µs onward, following the initial formation of the domain
interface [Fig. 3(e)]. The ratio of the domain interface perime-
ter, estimated from the length of the spline fitted to the domain
interface in the interface detection process (see the section titled
Methods) to the membrane area is also stationary throughout the
final 2 µs of dynamics used in the analysis [Fig. 3(f)]. Lateral box

length (L) shows rapid equilibration within initial 1 µs of simulation
time (Fig. S3 in the supplementary material). Taken together, these
observations establish constant area per lipid justifying the assump-
tion of negligible surface tension in the thermodynamic formulation
of the line tension.68–71

Protein colocalization at the domain interface

Illustrations of the interface detection method on the final
frames of simulation trajectories (Fig. 4) depict the coarse shape
of the interface corresponding to large wave length capillary waves.
Instances of protein colocalizations along the domain interface are
also evident. Lateral density profiles (Fig. 5) show pronounced pro-
tein density peaks in the interfacial regions (gray) demonstrating
the preference for proteins to localize at the domain interface
in phase-separated Martini membranes. We have characterized
the time evolution of protein colocalization by calculating the
shortest distance in the xy-plane between the center-of-mass of
each protein and the membrane domain interface (see Fig. S4 in
the supplementary material). Proteins generally maintain a dis-
tance between 1 and 2 nm from the interface [Fig. S4(b) in the
supplementary material]. However, a moderate fraction of pro-
teins is located near the domain interface from the onset of inter-
face formation and continues to be colocalized along the domain
interface throughout the trajectory with a minimum protein-to-
interface distance of 0.1–0.2 nm [Fig. S4(c) in the supplementary
material].

FIG. 3. Snapshots of (a) top and (b) side views of final configurations of a membrane system (MEM) and snapshots of (c) top and (d) side views of a membrane protein (C99)
system. Systems are colored with DPPC (blue), DIPC (red), CHOL (gray), water (turquoise), NaCl (yellow), and proteins (green). Time evolutions of (e) binary mixing entropy
[Smix = −p1 log2(p1) − p2 log2(p2)], where p1 and p2 are contact probabilities between similar types of lipids and dissimilar types of lipids and (f) ratio of domain interface
perimeter to membrane area (P/A) in last 2 µs of each simulation, where stable interfaces have formed showing averages (thick lines) and standard deviations (shaded). The
time series are smoothed by performing running average over a 25 ns window. Simulated systems are color-coded and designated in the following manner. The membrane
only system: black (MEM), C99 in membrane: green (C99), SX1AWildtype in membrane: brown (SX1A.WT), SX1AMutant in membrane: cyan (SX1A.M), WALP23 in membrane:
indigo (WALP23), and WALP31 in membrane: magenta (WALP31) (see Table S2 for further details).
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FIG. 4. Domain interfaces detected in the last frames in simulation trajectories of representative systems. Detected interfaces and membrane components are colored with
the same scheme adopted in Fig. 2. (a) Membrane system and membrane systems with proteins (b) C99 (green), (c) SX1A.M (cyan), (d) SX1A.WT (brown), (e) WAL23
(indigo), and (f) WALP31 (magenta).

FIG. 5. Lateral density profiles of lipids and proteins across the domain interface, illustrating protein colocalization in the interfacial region. Gray rectangles depict the interfacial
region in which DPPC and DIPC have nearly equal molar fractions.
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Similar observations have been reported in Martini simula-
tions of lipid-anchored H-Ras proteins in membrane domains by
Gorfe and co-workers11,72 and for palmitoylated and unpalmitoy-
lated transmembrane domains from the Linker for Activation of
T-cells (tr-LAT) in phase-separated membranes by Lin et al.73 It
has also been shown both tr-LAT and palmitoylated and unpalmi-
toylated synthesized peptide composed of tryptophan (W), alanine
(A), and leucine (L) amino acids (WALP) reside near the domain
interface by de Jong et al. in Martini simulations.74 Winter and co-
workers have reported similar findings for lipid anchored N-Ras
proteins in membranes using confocal laser scanning microscopy
and atomic force microscopy.9,23,75,76 Glycoprotein human immun-
odeficiency virus (HIV) gp41 is also reported to colocalize at the
domain interfaces facilitating membrane fusion.77,78

Limitations in the electrostatic description in the Martini
model diminish the hydrophilic interactions of protein residues
with water.37,42 These shortcomings in the CG model preclude
us from investigating the effects of varying spatial localization
within domains and at domain interfaces on the protein struc-
ture. In addition, even substantial variation in protein sequence
does not lead to expected differences in the protein partitioning
between domains observed in experimental studies (Figs. 5 and 6).
Lin et al. have also observed such indifferent interfacial accumu-
lation of peptides for palmitoylated and unpalmitoylated tr-LAT
and a shorter mutant of palmitoylated tr-LAT in Martini phase-
separated membranes,73 which conflicts with their previous find-
ings in giant plasma membrane vesicles.79,80 This Martini protein
model has also been reported to show an exaggerated tendency to
aggregate that further hinders the assessment of membrane-protein
interactions.81,82

Quantifying line tension and the linactant
effect of proteins

To estimate the stability of the domain interface, we calculated
the line tension defined as the excess free energy per unit length of
the domain interface using the capillary wave theory (CWT)58–60
and pressure tensor anisotropy (PTA) methods (see the section
titled Methods and the supplementary material).12,61 CWT leads to
estimates of 3.1 ± 0.2 pN for the line tension, in good agreement

FIG. 6. Average interface lipid (DPPC, DIPC, and CHOL) and protein (PROT)
compositions defined via the instantaneous interface detection algorithm with error
bars (gray).

with recent findings by Janosi et al.11 and Risselada and Marrink12
(Table S1 in the supplementary material). The discrepancies from
the early work of Schäfer and Marrink83 and Domański et al.13 may
result from the older Martini CHOL model,37 while a more mod-
ern CHOL model was used in this study.39 Rosetti et al. reported
systematic over-estimation of domain interfacial line tension using
simulations based on the previous version of the Martini CHOL
model in bilayers containing hybrid polyunsaturated lipids.14

The introduction of proteins results in 25%–35% reduction
in the line tension relative to lipid-only mixtures as calculated by
the CWT approach. While the PTA method is not sensitive to this
effect, due to the higher uncertainty seen in the line tension esti-
mates (see Table S1 in the supplementary material and Fig. 7), the
CWT results support the hypothesis of Brewster and Safran that pro-
teins act as linactants.20 Janosi and co-workers also reported 40%
decreases in line tension calculated using the CWT method and
data derived from Martini simulations of domain separating lipid
mixtures after the inclusion of H-Ras protein.11 The opposite effect
was observed by Marrink and co-workers who reported increases in
line tension by up to 57% upon the introduction of WALP23 and
a 7% increase upon introduction of Bacterial rhodopsin, as com-
puted using the PTA approach.13 Such behavior has implications in
nanoscale lipid domains as well, where proteins with GPI anchors or
trans-membrane domains have been proposed to modulate domain
stability.84

Comparison of capillary wave and pressure
tensor anisotropy methods

The CWT and PTA methods were used to estimate the line
tension in our CG simulations leading to agreement within the sta-
tistical error (see Fig. 7 and Table S1 in the supplementary material).
However, PTA does not appear to be suitable for probing small
changes in line tension resulting from the addition of linactants
as there is a substantial statistical error, even when averaging over
replicate trajectories.

The Martini model is parameterized against oil water parti-
tioning of organic molecules,37,38,42 making it appropriate for cap-
turing excess free energy due to lateral partitioning of lipid and
proteins in membranes. The extensive simulation times and system
sizes accessible to the Martini model make it possible to obtain the

FIG. 7. Comparison of line tensions per leaflet in simulated membrane systems,
with and without proteins, calculated using the capillary wave (red) and pressure
tensor anisotropy (black) methods. Horizontal line (red) indicates the line tension
(CWT) of lipid membrane system, highlighting linactant natures of proteins in other
systems captures by the CWT method. (See Table S2 for line tension reductions
observed in each system.).
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higher precisions observed via the CWT method. The PTA method
involves appraisal of forces arising from a number of factors (electro-
statically driven hydrophilic interactions of lipid head groups with
water being the most prominent), which can be difficult to cap-
ture in a CG model due to reduced degrees of freedom and arte-
facts in the treatment of the electrostatics.42 For example, Sansom
and co-workers have demonstrated that Martini membrane simu-
lations with its nonpolarizable water model may exhibit significant
deviations in modeling the lipid-water surface.85

As line tension is a phenomenon that does not necessarily
extend to the molecular level, methods employed to quantify the
line tension using molecular simulations rely on specific assump-
tions.20 The CWT method employs a continuum description of the
membrane and assumes a contribution to the free energy from each
quadratic wave length mode of the power spectrum of the interfacial
fluctuations.58–60 The inverse power spectra of height fluctuations of
interfaces in each simulated system is fitted as a linear function of
the square of the wave number. We have validated this assumption
through the mean-squared Pearson’s correlation coefficient (�r2�)
of the linear fit [see Figs. 8(a) and 8(b)].

The PTA method assumes that in a fully equilibrated system,
pressure tensors in the dimensions perpendicular to the domain
interface are equal.12,83,86 As such, the bulk pressure is taken to
equal the average of the transverse pressures in the derivation of the
relationship between the anisotropy of the lateral pressure tensors
(see the supplementary material). We have assessed this assumption
in Fig. 8(c). All the systems show deviation in absolute difference
between the pressure tensors in the two perpendicular dimensions to
the domain interface averaged over replicates (��∆P�αα ��), compared
to an ideal system. Reduced degrees of freedom and highly simplified
electrostatic interactions in the CG model as well as the heterogene-
ity introduced by membrane proteins may be the contributing fac-
tors to the high uncertainty in line tension values determined using
the PTA method.87,88

The Martini model employs a top-down coarse-graining strat-
egy aiming at reproducing key experimental and bulk atomistic sim-
ulation observables. However, the resulting reduction in degrees of
freedom substantially reduces the system entropy. The reduction
in entropy must be compensated for by a reduction in the mag-
nitude of terms contributing to the enthalpy. The Martini model
describes nonbonded interactions through a Lennard-Jones 12-6
potential. This has been noted to sometimes manifest in over-
structuring of fluids, resulting in unphysical phenomena such as the
spontaneous freezing of water at physiological conditions.42 Such
nonsystematic coarse-graining leads to complexities in projecting
observables defined in fully atomistic frameworks to CG systems.
Voth and co-workers have extensively discussed issues related to
transferability in the calculation of observables from AA and CG
model simulations.89 In pressure calculations, the Martini model
employs a virial expression in direct analogy to an atomistic sys-
tem. This approach has been shown89 to be valid only in instances
where CG interactions are volume-independent. Hence, the differ-
ences in inter- or intramolecular forces, as well as limitations in the
pressure calculation through the viral expression based on Martini
model simulations, could detrimentally influence the line tension
estimated by the PTA method. This may explain the observed dis-
crepancy between the PTA and CWT results (Fig. 7 and Table S1 in
the supplementary material). Newer CG lipid models developed

FIG. 8. (a) Inverse average power spectra of interface height fluctuations(��h(k)�2�−1) as a function of the square of wave the number (k2). (b) Mean-

squared Pearson correlation coefficient in ��h(k)�2�−1 vs k2 averaged over
replicates (�r2�). (c) Absolute difference between the pressure tensors in the
two perpendicular dimensions to the domain interface averaged over replicates(��∆P�αα ��).

by employing systematic bottom-up mapping between CG and
AA representations have been developed in part to address these
issues.90

Estimates of line tension using CG and AA models

To understand differences that may arise between CG and
AA representations of phase-separated domain interfaces in these
DPPC:DIPC:CHOL (40:40:20) bilayers, we equilibrated a stripe-
shaped AA phase-separated system using the CHARM36 force field.
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FIG. 9. (a) Top and (b) side views of the final configuration of the simulated AA domain interface. System components include DPPC (blue), DIPC (red), CHOL (gray),
water (cyan), and NaCl (yellow) with lipid head group P atoms and CHOL O atoms depicted as spheres. (c) Instantaneous membrane domain interface detected in the final
configuration of the AA system (same color scheme as in Fig. 2). (d) Line tension per leaflet estimates based on CWT and PTA, in each 400 ns block of the AA trajectory.
Error bars for the CWT estimates in each block are generated by averaging the four individual interfaces from top and bottom leaflets (see the section titled Methods), no
error estimate could be given for PTA in blocks since only one replicate was simulated.

Figures 9(a) and 9(b) illustrate the final configuration of the AA
system, where gradual formation of the interfacial standing wave
and the development of impurities in each condensed phase are evi-
dent. We tracked the evolution of the interface by computing Smix
of the system (see Fig. S5). The system appears to be mostly station-
ary after 1.4 µs of simulation time. In addition, we employed the
CWTmethod to quantify the line tension by analyzing the interfacial
height fluctuations on the quasi-two-dimensional surface formed by
the lipid tail plane defined by the C27 and C37 atoms of DPPC and
DIPC lipids and C8 atom of CHOL [see Fig. 9(c)]. The resulting esti-
mate of the line tension was 3.6 ± 0.9 pN. The error estimate is based
on block averaging of the final 1.6 µs portion of the trajectory with 4
uniformly sized blocks. The mean-squared Pearson’s r in the line fits
of ��h(k)�2�−1 vs k2 averaged over blocks is 0.93 ± 0.03. The line ten-
sion estimate derived using the PTA method shows a block average
of 1.8 ± 2.2 pN for the AA system [see Fig. 9(d)].

The line tension computed via the CWT method in AA sim-
ulations is comparable but slightly higher than that obtained using
the CG model. The PTA method estimates a lower line tension in

the AA simulations but with a substantially larger error. The change
in line tension obtained with CWT arises from differences in the
profile of the domain interfaces between AA and CG models [see
Fig. 10(a)]. The AA model interface displays smaller amplitudes at
the two lowest wave number modes [see Fig. 10(b)]. Hence, the
inverse power spectrum of the AA model shows some exaggeration
in the gradient in the transition between smaller to larger wavenum-
ber modes in comparison with the CG model [see Figs. 10(c) and
10(d)]. There is significant variability in the interface height fluc-
tuations between AA trajectory blocks [see Figs. 10(b) and 10(c)],
leading to the large error estimate in the line tension of the AA
interface.

TheMartini model is optimized to produce accurate free energy
differences, even though the magnitude of entropies and enthalpies
are smaller than in AA models.42 This may be the origin of the con-
sistency in the line tension values for CG and AA systems estimated
using the CWT method, which utilizes the domain interface pro-
file resulting from lipid partitioning. The increase in line tensions
(by 0.5 pN) observed in the AA model relative to the CG model
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FIG. 10. (a) Distributions of the interface height fluctuations in real space (h(x)). (b) Discrete-time fast Fourier transforms of the interface height fluctuations in wave number
(k)-space. (c) The average power spectrum of interface height fluctuations in k-space (��h(k)�2�) colored in gray for CG and cyan for AA. Low wave number modes used

in fitting the line tension (black for CG and blue for AA). (d) Variations in the inverse average power spectra of interface height fluctuations (��h(k)�2�−1) as a function
of k2.

may be attributed to an underestimation of enthalpic or entropic
contributions to the excess free energy at the domain interface in
the CG model. Bennett et al. have demonstrated semiquantitative
agreement between the Martini model and an atomistic model rep-
resented using the Berger lipid parameters for free energy differences
associated with the exchange of a saturated lipid with an unsaturated
lipid (∆∆G) in a phase-separated ternary lipid mixture. However,
the entropy change (−T∆∆S) and enthalpy change (∆∆H) associ-
ated with the exchange of lipids using an atomistic model were
reported to be −158 kJ/mol and 176 kJ/mol, while the entropy and
enthalpy differences resulting from the Martini model showed sub-
stantial reductions to −21 kJ/mol and 38 kJ/mol, respectively.91 In
the case of the PTA estimates, CG and AA line tensions differ by
nearly 3 pN, with both methods having high statistical error. While
simulations of the AA system extend to 3 µs, the system has not
yet established its stationary state as measured by the time evolu-
tion of the mixing entropy (see Fig. S5). Given the apparent near-
convergence of the mixing entropy to a stationary state, it is rea-
sonable to expect converged values for the computed line tension
to fall within the range of the noted statistical error. In summary,
dissimilarities in inter- or intramolecular forces between CG and
AA model and shortcomings in the PTA approach, including a
large statistical error, may all contribute to the observed discrep-
ancy in line tension estimates for AA and CG systems using the PTA
approach.

Flory-Huggins model of a phase-separated
membrane with a protein

We previously developed a simple analytical model24 to
describe the thermodynamics of two-phase separation in a ternary
lipid mixture. Although this model was based on a two-component
Flory-Huggins model92,93 as an approximation, it served as a use-
ful guide to demonstrate the thermodynamic driving force of phase
separation and its finite size effects.24 Here, we extend this analytical
model to incorporate the effects of a protein monomer.

We consider a two-dimensional lattice model of a membrane.
Each lipid tail is represented by a single cell in a square lattice where
the coordination number z = 4. We suppose that the binary mix-
ture is composed of unsaturated tails that are structurally disordered
(D) and saturated tails that are structurally ordered (O) in the phase
separated state. The phase separation of these O andD lipids approx-
imates the formation of liquid disordered (Ld) and liquid ordered
(Lo) phases, respectively. We consider only the nearest neighbor
interactions. The interaction energy between lipid tails are denoted
by wOO, wDD, and wDO. We examine pure phase-separation into two
parallel stripes where the system size is L × L in length and d is the
lattice spacing. The free energy in the absence of protein is written
as

F = Fbulk + Finterface, (5)
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where Fbulk = xDl2 z
2wDD + xOl2 z

2wOO and xD and xO are the molar
fraction of unsaturated and saturated lipid tails, respectively, with
l = L/d and the free energy due to the interface, Finterface = 2lχ ,
where χ = wDO − (wOO + wDD)/2. By definition, the line tension
is

λ = Finterface
2L

= χ
d
. (6)

Now, we consider the insertion of a protein occupying m × m cells.
The free energy of the system with the protein localized at the

boundary is written as

Fm×m
bo = Fbulk + 2lχ −mχ + 4mχ̄ − kBT ln 2l

− kBT ln
sinh[(m + 1)βη]

sinhβη

= Fbulk + 2L
�
�
χ
d
− mχ

2L
+
4mχ̄
2L
− kBT

2L
ln

2L
d

− kBT
2L

ln
sinh[(m + 1)βη]

sinhβη
�
�, (7)

FIG. 11. Lateral density profiles of lipids and protein monomers within the axis of phase separation, illustrating protein partitioning to the Lo and Ld domains and the domain
boundary region.
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with χ̄ = ��wPD − wDD
2 � + �wPO − wOO

2 ���2 and η = �wPD − wDD
2 �− �wPO − wOO

2 � where wPO and wPD are interaction energies between
proteins and saturated tails and protein and unsaturated tails,
respectively. In a similar fashion, the free energy of anm ×m protein
localized within Lo and Ld phase can be written as

Fm×m
lo = Fbulk − 2lχ + 4mχ̄ − 2mη − kBT ln xOl2, (8)

Fm×m
ld = Fbulk − 2lχ + 4mχ̄ + 2mη − kBT ln xDl2, (9)

respectively.
By comparing Eqs. (5) and (7), the impact of protein insertion

on the thermodynamic cost of domain formation can be measured
as the line tension change per linactant

∆λm×m = −mχ
2L

+
4mχ̄
2L
− kBT

2L
ln

2L
d
− kBT

2L
ln

sinh[(m + 1)βη]
sinhβη

. (10)

Let us explore this result term by term. The first term −mχ /2L cap-
tures the fact that the protein eliminates m (unfavorable) bonds
between the Ld phase and the Lo phase. The second term 4mχ̄ �2L
is due to the average solvation free energy of the protein. If the
protein can form favorable bonds in both the Ld phase and the Lo
phase such that �wPD − wDD

2 � < 0 and �wPO − wOO
2 � < 0, the protein

works as a stronger linactant. If the protein forms only unfavor-
able bonds �wPD − wDD

2 � > 0 and �wPO − wOO
2 � > 0, the protein

is not expected to act as a good linactant although the protein is
expected to migrate to the boundary. The third term kBT

2L ln 2L
d is a

purely entropic term. This final term addresses the fact that the mul-
tiple states with interaction energy differing by a multiple of η con-
tribute to this free energy (please see the supplementary material for
derivations).

With this minimal model as a guide, we carried out series
of protein monomers simulation in DPPC:DIPC:CHOL (40:40:20)
lipid mixtures adopting the same Martini simulation protocols
as previously discussed (see the section titled Methods and the
supplementary material) to parameterize the quantities χ , η, and
χ̄ . Twelve proteins, listed in Table S3, were considered. As η < 0
(η > 0) is associated with the affinity of protein to the Ld (Lo) phase,
the η value can be obtained from the protein’s partitioning coeffi-
cient between Ld and Lo phases which is calculated based on themin-
imum distance (in the xy-plane) distributions of protein monomer
to the instantaneous Lo-Ld domain interface in the simulated sys-
tems (see Fig. S7). The χ value can then be estimated from protein’s
affinity to the domain interface, and χ̄ can also be extracted from the
change of the line tension per linactant (∆λ) upon addition of pro-
tein (Fig. 11 and Tables S4 and S5 in the supplementary material).
Figure 12(a) shows the general phase diagram.When affinity of pro-
tein for the Ld (Lo) phase is large, i.e., η � 0 (η � 0), the protein
concentration in Ld (Lo) increases. In our model, the driving force to
localize proteins at the boundary is −mχ , the replacement of unfa-
vorable interactions between the Ld and Lo phases with interactions
between homologous lipid pairs. Hence, when χ is larger, the protein
is more likely to be found at the boundary. In addition, the local-
ization of protein at the boundary is generally expected when |η| is
small.

FIG. 12. (a) The general phase diagram predicted by the Flory-Huggins model indicating the proteins’ affinity to the Ld phase, Lo phase, or phase boundary (bo). At the red
(blue) surfaces, the protein concentration of the Ld (Lo) phase is equal to the protein line density at the phase boundary. When χ is small and/or T is high, the miscible phase
will form (under gray surface, calculated for N→∞) (b) The χ and η values obtained with protein monomer simulations are displayed on the phase diagram at T = 295 K.
The black solid and black dashed lines show the χ value obtained from the current CWT result from lipid-only simulation and one that can be obtained in spirit of our previous
work,24 respectively. As discussed in the main text, the deviation of χ obtained with protein monomer simulation from that obtained with a lipid-only simulation (black lines)
can be thought of the protein’s affinity to the boundary. The gray line corresponds to the gray surface in panel (a).
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Based on our simulations (Fig. 11), we estimated η and χ for
each protein and summarized the results in the form of a phase dia-
gram [Fig. 12(b)], together with the χ values obtained with lipid-only
simulations. Our present CWT result λ = 3.1 pN with assumption
of d = 5 Ω translates into χ ≈ 222 cal/mol via Eq. (6). Our previ-
ous work,24 after minor modification described in the supplemen-
tary material to match the conditions of this work, suggests that
χ ≈ 208 cal/mol is in remarkable agreement with the present result.
On the other hand, the χ values obtained from protein monomer
simulations vary around 200 cal/mol [Fig. 12(b)]. The overestima-
tion or underestimation of χ with respect to a lipid-only simulation
can be associated with protein’s property of “boundary-affinity” or
“boundary-phobicity.”

While bulkier side-chain mutants have been predicted to pre-
fer the Ld phase to the Lo phase,94 we did not necessarily observe
this tendency. While tr-LAT-allF colocalized completely in the Ld
phase (η� 0), the η-value of tr-LAT-allL, tr-LAT-allI, and tr-LAT-
allV are larger (more Lo phase prone) than tr-LAT-allA. It is also
evident that tr-LAT-allL, tr-LAT-allI, and tr-LAT-allV have large χ
values, suggesting the strong affinity for the boundary. In the Mar-
tini model, amino acid side chains of L, I, and V are represented
by one particle, while the side chain of F is represented by a three-
particle ring, and A has no side chain particle. This suggests that
one-particle protein side chains allow for Martini proteins to pref-
erentially partition to the Lo side of the interface, perhaps due to
more favorable packing with ordered lipid tails. It is possible that the
coarse-graining in the Martini model is too severe and that the dif-
ference in packing between the Ld phase and the Lo phase is not well
reproduced. These observations suggest that a more detailed repre-
sentation such as an all-atom model is needed to accurately predict
the protein partitioning behavior.

CONCLUSIONS

Using molecular dynamics simulations employing the Martini
2.2 coarse-grained model and the CHARMM36 all-atom model,
the line tension between thermodynamically stable lipid domains
formed from ternarymixtures of di-C16:0:PC:di-C18:2:PC:cholesterol
at 40:40:20 mol. % ratio was investigated using capillary wave theory
and pressure tensor anisotropy approaches. Using a capillary wave
theory approach, the line tension was estimated to be 3.1 ± 0.2 pN
for the Martini model and 3.6 ± 0.9 pN for the CHARMM36
model of Lo-Ld domain interfaces. Line tension calculations based
on the pressure tensor anisotropy method were in agreement with
the capillary wave theory estimates but presented a larger statistical
uncertainty.

The impact of protein acting as a linactant on the structure and
fluctuations of the interface formed between Lo and Ld domains in
ternary lipid mixtures was investigated using molecular dynamics
simulations employing the Martini model. In the Martini model,
proteins were generally observed to migrate to the domain inter-
face and to lower the line tension by 25%–35% as calculated by
the capillary wave theory approach. The pressure tensor anisotropy
method was unable to capture this effect due to the higher statistical
error.

The Martini model has the ability to appropriately repro-
duce the lateral partitioning of lipids but suffers from inaccuracies
resulting from the approximate treatment of electrostatics and

under estimation of changes in entropies and enthalpies resulting
from lipid partitioning associated with phase separation. In general,
dissimilarities in inter- or intramolecular forces between coarse-
grained and all-atom models and shortcomings in the pressure ten-
sor anisotropy approach contribute to the observed discrepancy in
line tension estimates for all-atom and coarse-grained systems. We
conclude that the capillary wave theory approach provides the most
accurate estimates of the change in line tension associated with the
introduction of transmembrane proteins in phase-separated lipid
bilayers using the Martini model.

We expanded a Flory-Huggins-like model of lipid phase sep-
aration to conceptualize the effect of protein on the free energy
of phase-separation. This model provides a way of organiz-
ing our thinking about the thermodynamic driving forces deter-
mining the location of proteins in phase-separated lipid bilayer
systems as a function of the line tension and protein-lipid
affinities.

Further investigation of domain interfaces using all-atommod-
els or a coarse-grained protein model that can appropriately change
the structure in response to a heterogeneous membrane environ-
ment is needed in order to develop a better understanding of protein
partitioning in membrane and its effect on domain size and stabil-
ity, critical to the form and functionality of heterogeneous biological
membranes.

SUPPLEMENTARY MATERIAL

See supplementary material for tabulated domain interface line
tension values measured experimentally or estimated theoretically;
radial distributions of lipid head and tail groups; visualizations of the
all-atom phase-separated system; time evolutions of membrane lat-
eral area, mixing entropy, average distance from protein to domain
interface, and minimum distance from protein to domain inter-
face, lipid, protein compositions, and line tension reduction in the
simulated systems; mixing entropy of the all-atom phase-separated
system; derivations of capillary wave theory and pressure tensor
anisotropy expressions of line tension; details of protein monomer
simulations; and distributions of minimum distance to the interface
(in the xy plane) for protein monomers. Additionally, it describes
the derivations and parameterization of the Flory-Huggins model of
a phase-separated membrane with a protein.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the generous support of

the National Science Foundation (Grant No. CHE-1362524) and
the National Institutes of Health (Grant No. R01 GM107703). We
are also thankful for the high performance computing resources
of the Boston University Shared Computing Cluster (SCC). G.A.P.
is supported by a National Science Foundation Graduate Research
Fellowship (No. DGE-1840990).

REFERENCES
1S. Sonnino and A. Prinetti, Curr. Med. Chem. 20, 4 (2012).
2D. Marsh, Biochim. Biophys. Acta, Biomembr. 1788, 2114 (2009).
3A. R. Honerkamp-Smith, P. Cicuta, M. D. Collins, S. L. Veatch, M. den Nijs,
M. Schick, and S. L. Keller, Biophys. J. 95, 236 (2008).

J. Chem. Phys. 150, 204702 (2019); doi: 10.1063/1.5091450 150, 204702-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-037919
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-037919
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-037919
https://doi.org/10.2174/09298673130103
https://doi.org/10.1016/j.bbamem.2009.08.004
https://doi.org/10.1529/biophysj.107.128421


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

4C. Esposito, A. Tian, S. Melamed, C. Johnson, S.-Y. Tee, and T. Baumgart,
Biophys. J. 93, 3169 (2007).
5R. D. Usery, T. A. Enoki, S. P. Wickramasinghe, M. D. Weiner, W.-C. Tsai,
M. B. Kim, S. Wang, T. L. Torng, D. G. Ackerman, F. A. Heberle, J. Katsaras,
and G. W. Feigenson, Biophys. J. 112, 1431 (2017).
6T. Baumgart, S. T. Hess, and W. W. Webb, Nature 425, 821 (2003).
7T. Baumgart, S. Das, W. W. Webb, and J. T. Jenkins, Biophys. J. 89, 1067
(2005).
8A. Tian, C. Johnson, W. Wang, and T. Baumgart, Phys. Rev. Lett. 98, 208102
(2007).
9K. Weise, G. Triola, L. Brunsveld, H. Waldmann, and R. Winter, J. Am. Chem.
Soc. 131, 1557 (2009).
10K. Weise, D. Huster, S. Kapoor, G. Triola, H. Waldmann, and R. Winter,
Faraday Discuss. 161, 549 (2013).
11L. Janosi, Z. Li, J. F. Hancock, and A. A. Gorfe, Proc. Natl. Acad. Sci. U. S. A.
109, 8097 (2012).
12H. J. Risselada and S. J. Marrink, Proc. Natl. Acad. Sci. U. S. A. 105, 17367
(2008).
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