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The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase tran-
sition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting
optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an
effective sampling of configurations that are metastable or unstable in the canonical ensemble via
successive unimodal energy distributions across phase transition regions, often characterized by
S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with
Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW
water at various densities provide a comprehensive characterization of diverse thermodynamic and
structural properties intrinsic to phase transitions. Graph representation of minimized structures of
bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous
ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly
ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid
transition to a continuous one in nanoconfined mW water with increasing density of the system
was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of
internal energies and heat capacities, and a characteristic variation of lateral radial distribution
functions, and transverse density profiles across transition regions. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4896513]

I. INTRODUCTION

The phase behavior of bulk water has received exten-
sive interest due to the rich complexity of structures char-
acterizing liquid, solid and clusters.1–4 Nanoscale confined
water adds a new dimension of phase behavior and has gen-
erated intense interest5–10 due to its relevance in biology and
materials science. In a nano-confined water system, the sep-
aration between two infinite parallel plates serves as a nat-
ural variable to tune the degree of confinement. As the in-
terplate separation increases, monolayer, bilayer, three-layer,
and four-layer confined water systems can be produced.8, 11–14

Molinero et. al. found that, of the series of confined ices rang-
ing up to four layers, only the buckled bilayer has an anoma-
lously high melting point.8 Bilayer water can form various
crystals, quasicrystals, and amorphous structures, including
hexagonal ice, pure pentagonal ice, mixed hexagonal and pen-
tagonal ice, and dodecagonal quasicrystals.9 The transitions
from liquid to various crystal and quasicrystal states in con-
fined bilayer water were shown to be first-order, based on the
sharp drop in the potential energy and discontinuity in the dif-
fusion coefficient.9
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First-order phase transitions in finite size systems
have a unique feature in the statistical temperature, TS(E)
= [∂ln �(E)/∂E]−1, �(E) being the density of states, re-
ferred to as an S-loop or backbending, through which the
temperature decreases upon absorbing energy in the region
of metastable and unstable states. The depletion of phase-
coexistent configurations stemming from the free energy
penalty for forming interfaces15 is manifested in a bimodal
structure in the energy distribution and the energy states be-
tween the two peaks are intrinsically unstable in the canon-
ical ensemble.15–19 One effective way to enhance sampling
in phase-coexistence regions is to replace a canonical en-
semble sampling by a generalized ensemble sampling with
non-Boltzmann sampling weights. The recently developed
generalized Replica Exchange Method (gREM)20 optimally
combines multiple non-Boltzmann ensemble samplings with
a popular replica exchange scheme.21–33 The generalized en-
semble sampling weights are determined from tailored effec-
tive temperatures through an inverse mapping strategy. The
mapping is equivalent to umbrella sampling for a number
of energy windows, with a “thermometer” in each window.
Since its development, gREM has been successfully applied
to study phase transitions in Potts spin systems, an adapted
Dzutugov model, Lennard-Jones fluid, and bulk water.20, 34–36

Here we study the solid-liquid phase transition in bilayer con-
fined water as a demonstration of the utility of the generalized
Replica Exchange Method.
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II. METHODS AND MATERIALS

A. Generalized exchange method

In the gREM simulation, each replica α, (α = 1,· · ·,
M), is associated with an effective temperature Tα(E; λα), λα

being a set of relevant parameters, and samples a configura-
tional space with the generalized ensemble weight Wα(E; λα),
which is determined from the effective temperature through
the inverse mapping

Tα(E; λα) = [∂wα/∂E]−1, (1)

where wα = −lnWα is the generalized effective potential. The
effective temperatures are conveniently parameterized using
linear functions with a uniform slope for all replicas as

Tα(E; λα) = λα + γ0(E − E0), (2)

where the control parameter γ 0 is the constant slope, E0 is a
constant in the relevant energy range, and λα is the T-intercept
at a chosen E0. The optimal parameter values of λα and γ 0 can
be determined by performing short canonical Monte Carlo
(MC) simulations at the lowest and highest temperatures of
interest (see Ref. 20 for details).

The linear effective temperature of Eq. (2) produces a
generalized ensemble sampling weight

Wα(E; λα) ∼ [λα + γ0(E − E0)]−1/γ0 , (3)

which governs the trial moves within one replica and replica
exchanges between neighboring replicas. The acceptance
probability of MC trial move in configuration space within
replica α is

AgREM(x → x′) = min[1, ew
α

(E(x))−w
α

(E(x′))]. (4)

The acceptance ratio for replica exchange between neighbor-
ing replicas α and α + 1 is

AgREM(α; xx′) = min[1, exp(�x
α)], (5)

where�x
α=wα+1(E(x′))−wα+1(E(x))+wα(E(x))−wα(E(x′)).

After all replicas complete one MC sweep, replica exchanges
were attempted between neighboring replicas with a random
selection of α (a sweep being defined by N single particle trial
moves).

B. Statistical temperature weighted histogram
analysis method (ST-WHAM)

Since each replica in gREM samples a configurational
space with the non-canonical sampling weight Wα(E) all
simulation results should be combined to estimate cor-
rect canonical averages via a reweighting. The Statistical
Temperature Weighted Histogram Analysis Method (ST-
WHAM)37–39 is utilized to combine multiple generalized
ensemble runs to determine the entropy estimate S(E)
= kBln�(E). Once the density of states is determined all
canonical thermodynamic averages are determined for any
temperature by the reweighting technique. Contrary to
the conventional Weighted Histogram Analysis Method
(WHAM),40 ST-WHAM does not require an iterative pro-
cess to determine relevant partition functions, and directly

determines the inverse statistical temperature estimate, βS(E)
= 1/TS(E), given Wα(E) and associated histograms Hα(E).

The entropy estimate S(E) or corresponding density of
states estimate is computed from a numerical integration of
βS(E) = ∂S(E)/∂E, enabling a substantial acceleration of the
data analysis without loss in accuracy. The ST-WHAM esti-
mate for the inverse statistical temperature is obtained as

βS =
∑

α

fα(E)

(
∂lnHα

∂E
− ∂lnWα

∂E

)
, (6)

where Hα(E) is the energy histogram in replica α, fα(E)
= Hα(E)/

∑
αHα(E) is the simulated histogram fraction. Due

to the rapid variation of βS for small E a direct integration
of βS is not desirable so we first approximate the statistical
temperature TS(E) on equally spaced energy grids, allowing
a piecewise analytical integration.37 All canonical thermody-
namic properties are completely determined with the deter-
mined S(E).

The Helmholtz free energy density at a given tempera-
ture T is calculated by FT(E) = E − TS(E) and the reweighted
probability density function is given by PT (E) = e−F

T
(E)/T

= eS(E)−E/T . The canonical expectation value for any quan-
tity is computed as

〈A(T )〉 =
∫

dEeS(E)−βEA(E)∫
dEeS(E)−βE

, (7)

and the canonical heat capacity is estimated through the en-
ergy fluctuation as

Cv(T ) = 〈E(T )2〉 − 〈E(T )〉2

kBT 2
. (8)

C. Monatomic water (mW) model

We employed the monatomic water model (mW), which
is a coarse-grained model that represents a water molecule as
an intermediate element between carbon and silicon.41 This
potential reproduces the structural, thermodynamic, and dy-
namic properties of liquid water with comparable or better ac-
curacy than the most popular atomistic water models at much
less computational cost. mW has been applied in the study of
pure bulk water3, 42, 43 and nanoconfined water,44, 45 as well as
biological water46 and clathrate hydrates.47

The mW model consists of a sum of pairwise two-body
and three-body interactions described by a functional form
of the Stillinger-Weber potential.48 The Stillinger-Weber po-
tential was originally developed to model silicon, so most pa-
rameters in the silicon potential can be used for the mW model
without change. Only three parameters are changed to adapted
to the monatomic water model, which are the tetrahedrality
λ = 23.15, the diameter σ mW = 2.3925 Å, and energy scale
ε = 25.895 kJ/mol. In this study, the water-like molecules
were confined between two parallel featureless hydrophobic
plates separated by a distance D. The water-wall interaction
was modeled by a Lennard-Jones 9-3 potential as

φLJ−93 = ε

[
2

15

(
σp

δz

)9

−
(

σp

δz

)3
]

, (9)
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TABLE I. Simulation parameters for 10 systems including number of molecules, plate sizes, effective densities
and parameters in gREM. Here Lx and Ly are the lengths of the plate in the parallel directions, Ly is fixed to 8.5 Å
for all systems, ρ is the effective densities, and E0, λ1, λ32, and γ 0 are parameters in T

α
as shown in Eq. (2).

Thirty two replicas are used in gREM simulations for all systems, and simulation length is 106 MC sweeps.

System N Lx (Å) Ly (Å) ρ (g cm−3) E0 (kJ/mol) λ1 (K) λ32 (K) γ 0 (mol K kJ−1)

System 1 256 36.0 31.2 1.2328 −40.95 220.00 420.00 − 36.5679
System 2 256 34.5 34.5 1.1643 −41.61 200.13 380.25 − 18.2764
System 3 256 34.8 34.8 1.1443 −42.18 200.13 380.25 − 14.0019
System 4 256 35.0 35.0 1.1312 −41.91 200.13 380.25 − 15.5259
System 5 256 35.5 35.5 1.0996 −42.76 200.13 440.29 − 22.6551
System 6 256 35.8 35.8 1.0812 −42.23 200.13 440.29 − 24.1468
System 7 576 56.1 48.6 1.1643 −42.01 220.00 340.00 − 4.9615
System 8 576 57.7 50.0 1.0812 −42.69 240.00 440.00 − 10.2134
System 9 800 61.5 61.5 1.1643 −42.07 220.00 370.00 − 5.0381
System 10 800 63.3 63.3 1.0812 −42.68 220.00 280.00 − 5.5218

where δz is the distance in z between the water molecule and
the plate, σ p = 3.56 Å, and ε = 0.569 kJ mol−1.8

The separation between plates, D, was chosen to be 8.5 Å
because previous study8 showed that 8.5 Å is the optimal dis-
tance for which the melting temperature of bilayer ice reaches
a maximum in the mW model. Periodic boundary conditions
were applied in the parallel (x and y) directions to mimic infi-
nite parallel plates. Total ten simulations were performed with
varying N =256, 576, and 800 water molecules at six differ-
ent densities ranging from 1.08 g cm−3 up to 1.23 g cm−3.
We have chosen to consider the system at constant volume,
following the design of a previous study of phase transitions
in nanoconfined water films.5 The simulation parameters in-
cluding numbers of particles, lengths of plates, effective den-
sities, effective temperature parameters in Eq. (2) for gREM,
and total simulation times were summarized in Table I. The
effective densities are estimated using the method in the pre-
vious study11 as ρ = Nm/(LxLyL

′
z), where N is the num-

ber of water molecules, m is the mass of a water molecule,
and Lx and Ly are the lengths of the plates. Here L′

z is the
effective distance between the plates accessible to the water
molecules confined between two hydrophobic plates, defined
as L′

z = D − (σmW + σp)/2 = 5.5237 Å.

D. Water structure analysis

To characterize structural properties of water molecules
the lateral radial distribution function (RDF) gxy(r)11 is com-
puted as a function of the lateral position rxy parallel to the
confining plates as

gxy(r) = 1

ρ2V

∑
i �=j

δ(r − rij )[1 − θ (|zi − zj | − δz/2)],

(10)
where V is the volume, rij is the lateral distance between
coarse-grained molecules i and j, z is the z coordinate, δz =
2 Å, and δ(x) is the Dirac δ function. Note that the Heaviside
function θ (x) restricts the sum to pairs within the same layer.

The lateral static structure factor S(q) is the Fourier trans-
form of the lateral RDF49, 50 determined as

S(q) = 1 + 2πρ

∫ L

0
r

(
sin(qr)

qr

)
[gxy(r) − 1]dr, (11)

where q = 2πk/L, k being an integer number from 1 to N, and
L is the length of the simulation box.

E. Basin-hopping global optimization

Basin-hopping (BH) global optimization,51, 52 as imple-
mented in the GMIN53 package, was employed to explore a
simulated potential energy landscape. The BH scheme used
in this work is as follows:

1. Apply a random Cartesian displacement to the initial co-
ordinates r i ;

2. Find the local minimum rn from the perturbed coordi-
nates r ′

i ;
3. Accept a trial move to the new configuration rn with the

probability of p(i → n) = min[1, e−β(E
n
−E

i
)] where Ei

and En are the energies at the initial and new local min-
ima, and β = 1/kT.

6 × 103 BH steps were run for each starting structure. At
each step, random Cartesian displacements up to 0.8 Å were
applied to each particle. The temperature parameter T was
fixed at 8.0 kJ mol−1. Local optimization was performed us-
ing a modified version of Nocedal’s limited memory BFGS
(L-BFGS) minimizer.54, 55 The root-mean-square gradient of
the local minima was converged to 10−4 kJ mol−1 Å−1.

III. RESULTS AND DISCUSSION

With an optimal choice of effective temperatures Tα(E;
λα) unstable or metastable energy states in the canonical en-
semble corresponding to the S-loop region in TS(E) are trans-
formed into stable ones in the generalized ensemble, result-
ing in a unimodal probability distribution function (PDF). The
necessary and sufficient condition on Tα(E; λα) to achieve a
unimodal PDF is derived by examining a local stability of the
generalized free energy density, βFα(E) = wα(E) − S(E), at
extrema E∗

α , determined as

Tα(E∗
α; λα) = TS(E∗

α) = T ∗
α , (12)

where E∗
α corresponds to the crossing point between Tα(E)

and TS(E). The stability condition is

βF ′′
α (E∗

α) = (γS − γα)/T ∗
α

2
, (13)
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FIG. 1. (a) Effective temperatures T
α

(E) (a set of parallel lines with nega-
tive slope) form unique crossing points (black open squares) with the statisti-
cal temperature TS(E) (black curve). (b) Generalized probability distributions
functions P

α
(E) of corresponding replicas α = 17, 18, 19,. . . , 26 of System

6 in Table I.

where γS = T ′
S(E∗

α) and γα = T ′
α(E∗

α), the prime being a
differentiation with respect to E. Exploiting the linear
effective temperatures in Eq. (2) a unimodal PDF is ensured
by γα(E∗

α) = γ0 < γS(E∗
α) around E∗

α . Expanding Pα(E) up to
second order at E∗

α verifies

Pα(E; γ0) ≈ exp
[ − (E − E∗

α)2/2σγ

]
, (14)

where σγ = T ∗
α

2/(γS − γ0), yielding a Gaussian PDF cen-
tered at E∗

α .
Fig. 1(a) demonstrates that the linear effective temper-

atures Tα(E) form unique crossing points E∗
α with the sta-

tistical temperature TS(E) across the transition region, where
TS(E) displays the S-loop. Setting E0 = −42.23 kJ mol−1 and
γ 0 = −24.15 mol K kJ−1, replica-dependent effective tem-
peratures, Tα(E; λα) = λα + γ 0(E − E0), were assigned
using evenly spaced λα between λ1 = 200.13 K and λ32
= 440.29 K. As illustrated in Fig. 1(b) the linear effec-
tive temperatures with negative slope, γ0 < γS(E∗

α), result in
Pα(E) centered at E∗

α with a Gaussian shape, naturally bridg-
ing between ordered and disordered phases with unimodal en-
ergy distributions across the transition region. Figs. 1–3 show
simulation results of System 6 in Table I.

In order to characterize structural differences between
liquid and solid phases near the transition temperature, we
compared the lateral radial distribution functions gxy(r) and
structure factors S(q) of two representative replicas 18 and
25 (see Fig. 2). Note that the effective temperatures, T18(E)
and T25(E), form crossing points with TS(E) at E∗

18 = −40.45
kJ/mol and E∗

25 = −38.20 kJ/mol, respectively, at the same
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FIG. 2. (a) Lateral radial distribution function gxy(r) and (b) structure factor
transformed from gxy(r) of replica 18 (blue line) and replica 25 (red line)
of the same systems as in Fig. 1. (c) The transverse density profile of water
along confinement direction (z direction) for replica 18 (blue) and replica 25
(red).

T ∗
18 = T ∗

25 = 288.7 K. The RDFs of replicas 18 and 25 in
Fig. 2(a) show marked differences in terms of the magnitude
of the peaks, and the number of peaks. The RDF of replica
18 corresponding to the solid phase has several pronounced
peaks up to 14 Å, while only three peaks are visible in replica
25, indicating an absence of long range order characteristic of
the liquid phase. The structure factor of replica 18 displays a
prepeak at q ≈ 2, a sharp first peak, and a split second peak,
while S(q) in replica 25 lacks the prepeak and the split in the
second peak.

To examine the layering effects from the confinement we
computed the transverse density profile ρz (TDP) along the z
direction in Fig. 2(c). The TDPs for replicas 18 and 25 have
two pronounced symmetric peaks with respect to the slit cen-
ter (z = 0), confirming that two layers of water molecules
are confined in the nanoslit. However, the TDP of replica
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25 has a much wider distribution with smaller peaks at each
layer center and with non-zero density values across the slit
center, while the TDP of replica 18 showed a vanishing den-
sity at the slit center. This implies that water molecules in
replica 18 can easily move between two layers across the
slit center, while transverse movements of water molecules
in replica 25 are highly restricted, resulting in a strong lay-
ering effect. The differences in RDFs, structure factors, and
transverse density profiles reveal the solid-like and liquid-
like characteristics of the configurations in replica 18 and 25,
respectively, manifesting the coexistence of two structurally
distinct states in the canonical ensemble.

It is instructive to examine the free energy density as
a function of energy (see Fig. 3). After a sufficiently long
simulation with gREM, multiple replica simulations are opti-
mally combined to produce the entropy estimate, S(E), via ST-
WHAM.37 Once the entropy is determined, canonical ther-
modynamic properties, including internal energy E(T) and
heat capacity Cv(T ), can be calculated as in Eqs. (7) and
(8). In contrast to the statistical temperature, TS(E), char-
acteristic of the microcanonical ensemble in Fig. 1(a), the
canonical ensemble average, E(T), monotonically decreases
as T decreases and shows a sharp drop across the phase tran-
sition region in Fig. 3(a), which corresponds to the peak
in the heat capacity Cv around the transition temperature
Tm = 288.7 K. The free energy density in Fig. 3(b) at
Tm, F(E, Tm) = E − TmS(E), exhibits two local minima at
E1 = −38.1 and E3 = −40.5 kJ mol−1, and one local maxi-
mum at E2 = −39.5 kJ mol−1, resulting in the bimodal struc-
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FIG. 3. (a) Energy temperature curve in the canonical ensemble (red line)
and molar heat capacity C

v
(T ) (blue line) of System 6. (b) Probability dis-

tribution function PT(E) and free energy FT(E) at the melting temperature
Tm = 288.7 K.
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FIG. 4. (a) Energy versus temperature curve, E(T), and (b) molar heat ca-
pacity, C

v
(T ), of System 1–6, the parameters of which are given in Table I.

The change in internal energy (latent heat) across the transition region from
liquid to solid is monotonically decreasing with increasing density.

ture in PT(E) in contrast to the unimodal PDFs in gREM
across the phase transition region.15, 17–19

We also performed gREM simulations at several densi-
ties, ρ, varying the system size N = 256, 576, and 800 (see
Table I for the detailed description of systems), in order to
investigate the effect of density on the phase transition in
nanoconfined mW water. The reweighted internal energies
and heat capacities in the canonical ensemble for System 1–
6 are illustrated in Figs. 4(a) and 4(b), respectively. Inter-
estingly, the decrease in internal energy (latent heat) across
the transition region from liquid to solid is monotonically de-
creasing with increasing ρ. This means that the character of
the first-order phase transition between liquid and solid in
nanoconfined mW water becomes much weaker in the high
density regime, in which freezing of water may occur through
a continuous transformation.

To investigate structural changes associated with the
phase transition at various ρ both profiles of RDF and TDP
are examined across replicas near the transition region for
System 2 and 6 corresponding to ρ = 1.0812 g cm−3 and
1.1643 g cm−3, respectively. As illustrated in Fig. 5(a) the
variation of gxy(r) at high density is almost continuous across
replicas, while at low density gxy(r) is well segregated as
clearly seen in first and second peaks in Fig. 5(b). The
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FIG. 5. Lateral radial distribution function gxy(r) of all replicas in System 2
(a) and System 6 (b). A substantial difference between systems is apparent
in the long-range order, which shows a continuous transition at high density
and a more abrupt transition at low density.
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FIG. 6. The transverse density profiles (TDPs) of water along the confine-
ment direction (z) of all replicas in System 2 (a) and System 6 (b). A substan-
tial difference between systems is apparent in the density at the slit center,
which varies continuously at high density and more abruptly at low density.
There is a substantially higher density of water at the slit center for the liquid
phase at low density, compared with the liquid phase in the higher density
system.

continuous variation of gxy(r) at higher density is most ap-
parent in the long-range order. For the lower density system,
there are clearly two sets of replicas — those that show sub-
stantial long-range order and those that do not — with an
abrupt transition between the two. The substantial differences
in the behavior of gxy(r) for the high and low density systems
are also apparent in the transverse density profiles in Figs. 6(a)
and 6(b). At higher density (System 2), the peaks at each layer
center are continuously rising across replicas from liquid to
solid phase with a marginal density at the slit center, implying
that transverse movements of waters are highly restricted in
both solid and liquid phase. At lower density (System 6), the
profiles show higher non-zero density at the slit center in liq-
uid phase replicas, implying that water molecules can freely
move between the two layers in the liquid phase. These ob-
servations are consistent with the Stanley group’s conjecture
regarding the possibility of a “crossover” from first-order to
continuous transition between the liquid and solid state with
increasing density.5 We note that this crossover behavior was
not observed in previous work by Molinero and co-workers.9

However, that work was based on an NPxyT ensemble while
we have used an NVT ensemble, as was done in the study of
the Stanley group.5 The Stanley group also did note crossover
behavior in an NPxyT ensemble simulation as well.5

The crossover behavior from a first-order transition to
a continuous one with increasing density is also seen in the
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FIG. 7. The energy-temperature curves formed by most probable energy sets
[E∗

α, T ∗
α ] determined by gREM simulations for systems with densities ρ1

= 1.1643 g cm−3 (a) and ρ2 = 1.0812 g cm−3 (b). The lines and symbols
in red, green, and blue show the results for systems with 256, 576, and 800
molecules, respectively.
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FIG. 8. Examples of minimum energy structures derived from basin-hopping
global optimization for the smaller (N = 256) water molecule system. (a)–(f)
The minimized structures of System 1–6, respectively.

profile of the approximate statistical temperatures, TS(E), in
Fig. 7, in which most probable energies, E∗

α , corresponding
to the crossing points between Tα(E) and TS(E), were plot-
ted with T ∗

α = Tα(E∗
α; λα) across replicas for N = 256, 576,

and 800, while maintaining the density of systems at ρ1
= 1.1643 g cm−3 in Fig. 7(a) and ρ2 = 1.0812 g cm−3 in
Fig. 7(b). It is apparent that the statistical temperature esti-
mates from several independent gREM simulations at differ-
ent N are in overall good agreement, implying that finite size
effects are marginal in our simulations. Interestingly, TS(E)
for low density systems shows a clear S-loop characteristic
of first-order phase transitions, while it varies monotonically
without noticeable structure across the transition region in
high density systems.

To characterize the global minima structures for System
1–10, basin-hopping global optimization51, 52, 56 was applied
starting from equilibrium configurations of the lowest energy

FIG. 9. Examples of minimum energy structures derived from basin-hopping
global optimization for the intermediate (N = 576) and large (N = 800)
water molecule systems. (a)–(d) The minimized structures of System 7–10,
respectively.

TABLE II. Percentage distributions of the n-membered ring in System
1–10, derived from 100 minimized structures. Results for global minimum
structure only are shown in parentheses.

Ring size n = 4 (%) n = 5 (%) n = 6 (%) n = 7 (%) ρ (g cm−3)

System 1 0.5 (0) 93.3 (92.8) 6.2 (7.2) 0 (0) 1.2328
System 2 3.2 (8.3) 25.9 (27.7) 68.9 (63.9) 2.0 (0) 1.1643
System 3 2.4 (1.6) 15.8 (9.7) 77.1 (82.3) 4.7 (6.4) 1.1443
System 4 2.6 (3.0) 14.6 (14.9) 78.6 (79.1) 4.2 (3.0) 1.1312
System 5 0.1 (0) 13.4 (10.9) 73.5 (78.1) 13.0 (10.9) 1.0996
System 6 1.2 (0) 17.8 (16.1) 65.8 (74.2) 15.2 (9.7) 1.0812
System 7 3.4 (2.6) 25.7 (27.0) 63.9 (63.2) 7.0 (7.2) 1.1643
System 8 0.03 (0) 2.8 (0) 95.2 (99.3) 2.0 (0.7) 1.0812
System 9 2.8 (2.1) 32.9 (31.5) 57.7 (59.4) 6.6 (7.0) 1.1643
System 10 0.09 (0) 12.7 (12.6) 76.0 (76.3) 11.2 (11.1) 1.0812

replica in each gREM simulation using the GMIN package,
yielding representative snap shots in Figs. 8 and 9. The pu-
tative global minimum of System 8 at ρ = 1.0812 g cm−3

for N = 576 corresponds to a regular hexagonal ice form,
while in all other systems the ground states were imperfect
hexagonal ices with some defects. While this leads to a less
regular global minimum structure, our results show that it
does not impact the character of the thermodynamics of the
solid-to-liquid phase change. The minimized structures for
these systems show varying composition of polygonal rings
in each layer. We made use of graph representation of the
structures, in which vertices represent particles, and an edge
between two vertices represents a nearest neighbor contact be-
tween two particles with a cut-off of 3.35 Å. A ring is a con-
nected graph in which each vertex shares exactly two edges
with other vertices in the ring. For the bilayer structures in
this work, we counted rings within individual layers. We cal-
culated a composition of n-membered rings on the basis of
100 minimized structures, only one of which was the global
minimum.

Table II lists the percentage distributions of n-membered
rings (n = 4, 5, 6, 7) for System 1–10, showing an overall
trend that the composition of pentagonal rings drops with de-
creasing density and the combined composition of hexagonal
and heptagonal rings increases with decreasing density. This
is consistent with a view of a transition from a more disor-
dered solid at higher density to more ordered solid at lower
density. Interestingly, the ring counts for the 100 structures
are quite similar to those of the global minimum structure in
all cases.

IV. CONCLUSION

In summary, the effectiveness of the gREM for the
study of first-order phase transitions was demonstrated using
nanoconfined mW systems at diverse simulation conditions.
By employing efficient replica exchanges across unimodal en-
ergy distributions spanning phase transition regions, gREM
attains a comprehensive sampling for metastable and unstable
configurations intrinsic to the phase transitions, regions only
rarely accessed in canonical ensemble simulations due to the
presence of high free energy barriers.
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The graph representation analysis for low-lying solid-
phase structures, determined by basin-hopping global op-
timization using the GMIN package, shows heterogeneous
crystalline structures composed of different compositions of
pentagonal, hexagonal, and heptagonal rings depending on
the simulation conditions. Interestingly, minimized structures
of low density systems exhibiting the first-order transition
character predominantly contained hexagonal rings, while the
percentage of pentagonal rings gradually increases in high
density systems showing a continuous transitions.

With an optimal integration of multiple replica simula-
tions of gREM using the ST-WHAM we characterized de-
tailed thermodynamic and structural properties of solid-liquid
phase transitions in nanoconfined mW water at various den-
sities. The first-order phase transitions between liquid and
hexagonal ice in the low density regime was explicitly illus-
trated in terms of the existence of an S-loop or backbending
in the statistical temperature, TS(E), sharp drops in internal
energies, pronounced peaks in heat capacities, and quantita-
tive differences in profiles of RDF and TDP between solid
and liquid phases. Interestingly, characteristics of a first-order
transition in nanoconfined mW water were observed to be
much weaker at high density, accompanied by an absence of
backbending character in TS(E), gradual changes of both in-
ternal energies and heat capacities, and continuous variations
of both RDFs and TDPs across replicas sampling the phase
transition regions. This suggests the possibility of crossover
from a first-order transition to a continuous one in quasi-
two-dimensional confined water systems depending on the
density, which was recently hypothesized based on a full
atomistic simulation of TIP5P water.5 Additional studies of
nanoconfined water using the gREM approach in alternative
ensembles, including the NPxyT ensemble, may provide ad-
ditional insight into the possible validity of this intriguing
conjecture.
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