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A method for time series analysis of molecular dynamics simulation of a protein is presented. In this
approach, wavelet analysis and principal component analysis are combined to decompose the spatio-
temporal protein dynamics into contributions from a hierarchy of different time and space scales.
Unlike the conventional Fourier-based approaches, the time-localized wavelet basis captures the vi-
brational energy transfers among the collective motions of proteins. As an illustrative vehicle, we
have applied our method to a coarse-grained minimalist protein model. During the folding and un-
folding transitions of the protein, vibrational energy transfers between the fast and slow time scales
were observed among the large-amplitude collective coordinates while the other small-amplitude
motions are regarded as thermal noise. Analysis employing a Gaussian-based measure revealed that
the time scales of the energy redistribution in the subspace spanned by such large-amplitude collec-
tive coordinates are slow compared to the other small-amplitude coordinates. Future prospects of the
method are discussed in detail. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4834415]

. INTRODUCTION

Energy flow,':? such as anisotropic heat diffusion through
protein residues, or vibrational energy transfer through the vi-
brational states of a protein, has long motivated experimental
and computational studies toward its role in photosensing,>-¢
photosynthesis,” ligand-binding and dissociation,®'* and
allostery.'41¢ For example, the existence of particular path-
ways of anisotropic heat diffusion was proposed to explain
the allostery of the proteins belonging to the PDZ domain
family.!> !¢ In terms of the vibrational energy transfer,!”~!”
time-resolved absorption spectroscopies have revealed the
anisotropic energy transfers among peptide’s or protein’s col-
lective modes.”?!

In general, energy flow pathways and the time scale of
the equipartitioning of energy influence the kinetics of chem-
ical reactions, such as the rate of conformational change of
a protein.’>?* In this regard, developing a method to iden-
tify and classify the energy flows in protein molecules has an
impact in elucidating the mechanism of protein functions. To
investigate such nonstationary, anharmonic dynamics of pro-
teins, molecular dynamics (MD) simulation has been a power-
ful tool. Thus far, studies characterizing MD trajectories have
focused primarily on static aspects or equilibrium distribu-
tion properties such as the free energy profile. For nonsta-
tionary and anharmonic dynamics, such approaches are not
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sufficient to characterize the process because the amplitudes
and frequencies of the dynamics vary along the time evolu-
tion. Methods based on the time correlation functions or their
frequency-domain representations (e.g., power spectra) suf-
fer from the same problem since the assumption of the sta-
tionarity for the underlying process is not valid, particularly
when relaxation by the excess energy transfer is the subject
of investigation. To overcome this issue, various approaches,
based on time-localized representations for nonstationary pro-
cesses, have been proposed, including instantaneous normal
mode analysis,>*?> moving normal mode coordinates,?® and
windowed-Fourier approaches.”’-?8

Protein dynamics are often investigated in the framework
of the (generalized) Langevin equation where one can reduce
the complex Newtonian dynamics of the atoms of the pro-
tein/solvent to the simple stochastic dynamics of a few de-
grees of freedom. In this approach, the energy transfer is in-
terpreted as a dissipation due to a friction from the predefined
“system” to the surrounding environment (“bath”). The rate
of energy transfer can be related to the friction which can be
estimated via the autocorrelation function of velocities (or the
mean square displacements of coordinates). This approach,
however, is not suitable for the detection of the energy flow
pathways of interest in this study, because it is assumed that
the excess energies always dissipate from the predefined sys-
tem to the bath on average.

In this article, we present a wavelet-based approach,? fo-
cusing on a characterization of the vibrational energy trans-
fer through the vibrational states of a protein. Unlike the
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conventional Fourier-based approaches, the wavelet trans-
form provides a set of orthogonal basis functions in the
time-frequency domain, and thus is suitable to detect the vi-
brational energy transfers. We demonstrate the method by
applying it to time series derived from MD simulations
of a coarse-grained minimalist protein model which is a
3-color, 46-bead model protein whose potential and free
energy landscapes, kinetics, and dynamics have been well
studied.*-3*

While earlier studies that used the wavelet transform to
analyze MD trajectories of proteins focused on identifying
or clustering conformational states,>>° we use the approach
to identify vibrational states and measure time scales for
equipartitioning vibrational energy. To this end, we first apply
the principal component analysis (PCA)*** to decompose
the various space scale contributions from the original multi-
variate MD trajectory. Then we calculate the momenta con-
jugate to the principal components (PCs) and analyze those
using multiresolution decomposition via the discrete wavelet
transform. By combining the methods in this way, the vibra-
tional states and energy redistribution of the spatio-temporal
dynamics of a protein are naturally characterized in a hierar-
chical manner. In the analysis, we postulate the low viscosity
regime in condensed phase in which the system is weakly cou-
pled to a heat bath by Berendsen’s thermostat with a relatively
small coupling time.

We find the vibrational energy transfers between the fast
and slow time scales are clearly observed in a set of large-
amplitude PCs during the folding/unfolding transitions in the
minimalist protein model, while the rest of the small ampli-
tude PCs behave as thermal noise. After identifying the states,
we evaluate the time scale for equipartitioning of vibrational
energy using a measure of the extent to which the distribu-
tion is Gaussian (“Gaussianity”) based on the skewness of the
time-localized distribution function.

Il. METHODS

A. Multiresolution decomposition of collective
momenta

How do biomolecules having several time and space
scales evolve through the state space? The state space here
involves not only the conformational degrees of freedom, on
which the overdamped Langevin formulation is based, but
also on their changes in time, that is, momenta. There is no
general answer of what kind(s) of coordinate(s) or projec-
tion(s) is(are) best to represent collective motions of mul-
tidimensional systems. Among several possible candidates,
we chose PCs which have been often used to reduce the
dimensionality of multivariate time series because of their
simplicity. 4043

The technical idea behind the PCA is to find the orthog-
onal eigenvectors that capture the large variances in the mul-
tivariate time series with the highest amount of information.
Consider the variance-covariance matrix R of the Cartesian
coordinates q (or mass-weighted coordinates M'/?q) of the
particle positions. For simplicity, we assume that each co-
ordinate has the mean position as its origin. The variance-
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covariance matrix is a semi-definite positive matrix, and one
can find the eigenvectors U that diagonalize R

U 'RU=r, (UTU=1).

The eigenvalue r;, the ith element of the diagonal matrix r,
represents the variance of the ith PC, Q;, defined as a linear
combination of the original coordinates,

Q=U'q. (1

The larger the value of r;, the better the ith PC, Q;, repre-
sents the variance of the distribution of the system travers-
ing through the high-dimensional conformational space. The
{Q;} are sorted in the decreasing order of the variance,
ry > ry >, ..., 3y > 0 (where N is the number of particles).

The conjugate momentum P; to the Q; is derived from
a canonical transformation from the old conjugate variables
q and p to the new conjugate variables Q and P. Consider a
generating function F defined by**

3N 3N

F(q.P)=) " Ujgq;P.

i=1 j=I

From Eq. (1), we derive that
3N
oF
9P, =0, = ZUjiij,
j=1
and
3N
oF
—=pj=) UjP.
aq] J ; J

The new momenta P conjugate to Q are then given by
P=U"p.

If the harmonic approximation holds, the motion of the
Q; of larger variance tends to be slower and the vibrational
frequency of the corresponding momentum P; is invariant dur-
ing the course of time evolution. On the other hand, with an-
harmonic dynamics, because of the time dependence of the
amplitudes and frequencies of the motions, the fast and slow
time scale modes can mix even in a single Q;.

In this article, we propose a multiresolution decomposi-
tion of the collective momentum P;(f) based on orthogonal
wavelets.?”** This way, a given P; is decomposed into contri-
butions from a hierarchy of different time scales,

Pty =Y d" () +ai). )

j=1
Each of the di(j )(t) is called the detail at the jth level of time
scale 2 At, and is given by

(N7 AD/(2) A—1

di(j)([) — Z

k=0

i@,

where N7 is the total time step of the trajectory Ny = 2", nis
an arbitrary integer), and At is the sampling time. {di(,f)} are
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the wavelet coefficients of P;, defined by
o _ [N ()
dj’ = f P,y (1) dt.
0
Here, {1//,§j )(t)} are the wavelet bases, which form a set of or-

thogonal bases in L?(R), and are given by scaled and trans-
lated versions of a single mother wavelet W (?),

0 1 (r — k2 At)
Y (1) = — - .

V2iAt 27 At
Increasing j to j + 1 enlarges the function w,gj ) by a factor of
two, and thus the time scale of changes in the amplitude of the
momentum P;(¢) (making the most important contribution to
the jth level of time scale) is YAt In practice, the multiresolu-
tion decomposition is truncated by a finite level n (<log, Nr),
although the maximum level is strictly determined by the to-
tal time steps Ny, with the relation n ~ log, N7. In this arti-
cle, n = 10 is used, which will be later found to be sufficient
to capture most of the vibrational motions in the minimalist
protein model. a;(¢) in Eq. (2) is called the approximation,
which includes all the contributions to the time dependence
of P;(f) on levels higher than the truncation level n. It is often
expected that a;(f) corresponds to aperiodic diffusive motion
(e.g., Ref. 45). As the mother wavelet, the eight coefficient
wavelets of Daubechies?®** are employed (see Fig. 1). These
functions are nonzero only in a finite interval (i.e., finite sup-
port) and behave well with respect to time-localization. The
computational complexity of the discrete wavelet transform
is O(N), superior to that of the fast Fourier transform algo-
rithm, O(NlogN), used in the conventional analyses. Also,
the data parallelization of the code for the set of momenta is
straightforward.

B. Kinetic temperature of collective coordinates
over scales

The multiresolution decomposition of collective mo-
menta is expected to shed light on the time scale of the
equipartitioning of vibrational energy, or the redistribution of
the energies between different scales of the collective mo-

t

FIG. 1. Mother wavelet function of the eight coefficient Daubechies wavelet
W(t) (red) and the corresponding scaling function ®(z) (blue). Since the
Daubechies wavelet has no explicit expression, the functions were approx-
imated by the iterations of inverse discrete wavelet transform.
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tion. Before going into the characterization of the temporal
behavior of multiple levels, we first define the time-averaged
property of the kinetic energies of collective motions. The av-
eraged kinetic energy, or kinetic temperature over scales,*
from the output of the wavelet analysis, in analogy with con-
ventional power spectra, provides us with a decomposition of
the temperature of the system over the underlying time scales
of its dynamics.

The kinetic energy of the system is rewritten in terms of
the momenta P conjugate to the PCs Q,

1 3N 1 3N
K(it) = — 2t=— P<2t.
(t) 2m§p,() Zm;j,o

Here, we used the orthogonal property of the PCs and as-
sumed that the masses are uniform. See Appendix A for the
derivation of the kinetic energy under a general coordinate
transformation. If the equipartitioning holds for {p;} and {P;}
under the ergodicity condition, the temperature of the system
is proportional to the time-averaged kinetic energy,

1 T
(K) = lim —/ K(t)dt
T—>00 T 0

3N

= > NkgT. 3)

We substitute the multiresolution decomposition Eq. (2)
into Eq. (3) and make use of the orthogonality relation of the
wavelet basis. Then, the averaged kinetic energy can be de-
composed as

3N n

K= 53 [ M)+ (@)

i=1 \ j=1

This expression provides a resolution of the temperature of
the system over the levels of time scales {2/ At} for each col-
lective momentum P;,

3N n

3N
T:ZTt:Z ZTi(j)—'—Tia , 4)
i=1

i=1 \ j=I
where
1" = ((d”)’)/ 3N kpm).
and
T = (a?)/ BNkgm).

Hereafter, these temperatures, Ti(’ ) ,and T are referred to as
kinetic temperatures over scales.

Li and co-workers® previously applied this decomposi-
tion of kinetic temperature to the time series of the total ki-
netic energy of solid and liquid argon. They found the shift
of the peak maximum in the kinetic temperatures toward fast
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time scales as temperature was increased, resulting from both
the higher mean particle velocities, leading to a shorter time
between collisions, and from the steeper portion of the re-
pulsive potential. On the other hand, in this article, we fur-
ther decomposed the temperature into contributions from col-
lective momenta conjugate to the PCs. This decomposition
is a key step to characterize different space scale dynamics
of proteins. In fact, it will be shown that collective momenta
have different temperature “spectra” depending on their space
scales in the latter analysis.

C. Gaussianity of collective momentum distribution

In order to evaluate the time scale of the equipartitioning
of vibrational energy, or the redistribution of the energies be-
tween different scales of the collective motion, we measure
the time-dependence of the Gaussianity of the momentum P;
by using the third order central moment of P;,

vi = ((Pi — (P))),

where ( - ) is the expectation. This measure, called the (unnor-
malized) skewness, evaluates the asymmetry of the shape of
the distribution function. Negative values for the skewness in-
dicate that the distribution has a long tail in the left (relative
to the right) and positive values for the skewness indicate the
distribution has a long tail in the right (relative to the left). For
a Gaussian distribution, the skewness becomes zero since the
Gaussian has a completely symmetric shape.

In general, the estimation of the skewness requires large
numbers of samples and should be carefully evaluated for
samples with limited length. Thus, instead of determining the
absolute value of the skewness, we diagnose the convergence
of the estimates of the skewness as a function of time. By eval-
uating the time scale of the convergence, we estimate the time
scale for which the distribution of P; relaxes to a Gaussian
distribution.

If the estimation of the skewness, y;, is calculated over
the subset of the trajectory with step length n, which is suf-
ficiently shorter than the total step length N7, one can make
a number of estimations {y;(n)} at different regions of the
time window with length nAt (taken not to overlap with each
other). If the snapshots of trajectories in different time win-
dows are uncorrelated, the variance of the estimation y;(n) is
expected to decrease monotonically, as n increases. Specifi-
cally, the following scaling relation holds:

Var(y(n)) = % )

where ¢ is the sixth order moment of P;.

On the other hand, if the snapshots are statistically cor-
related during a certain time step Tgep, the above relation is
expected to be deformed. A simple stochastic process with
low-order correlations yields (see Appendix B for details),

M6Taep(T, 1)

Var(y;(n)) = ©)

where 7 is the decay time of P;. 74 is regarded as the typ-
ical time scale for which the distribution of P; relaxes to a
Gaussian distribution. Existence of multiple decay times and
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higher-order correlations may also deform the simple scaling
relation (Eq. (5)) in a similar manner to Eq. (6) but with more
complicated dependence of T4, on the decay times. We here
focus on the time scale of T4 in terms of Gaussianity and
alleviate the explicit calculation of the decay times and higher
order correlations.

lll. MODEL

We demonstrate the method by applying it to a frequently
studied variant of a 3-color, 46-bead protein model*® whose
potential and free energy landscapes, kinetics, and dynamics
have been studied extensively.’*** The model is composed
of hydrophobic (B), hydrophilic (L), and neutral (N) beads.
The potential energy function of the model (called the BLN
model) is described by

bond angle

V= XinR(R,,,H Roy' + 3 Z Ko (6; — 60)

dihedral
+e ) LAl +cosg) + Bi(l + cos 3¢y)]

nonbonded - 12 p 6
) (3]

ij
The details of the parameters are given in Refs. 30-33.
Throughout this study, the units of energy, temperature, bead
mass, and time are €, €/kg, m, and t* = o /m /€, unless oth-
erwise noted explicitly. For small single-domain proteins, an
ideal funnel-type energy landscape*’ has been postulated as
one of the most fundamental properties, which manifests a
two-state like transition. In this article, in order to shed light
on the nature of coarse-grained dynamics of folding inherent
to small proteins, we impose the Go-type bias®"*%4% toward
the global minimum structure of the BLN model and apply
our analyses to this biased variant of the BLN model. For
the constant temperature MD simulation, Berendsen’s ther-
mostat was used>® with an integration time 0.0025¢* in which
the system is coupled to a heat bath with a coupling time of
0.507*. In the scheme of Berendsen’s thermostat, the system is
weakly coupled to a heat-bath, and thus it is suitable to inves-
tigate the dynamical properties of the original Hamiltonian
system under an isothermal condition compared with other
thermostats.>! In most studies of low-frequency, collective
motions in proteins, it is assumed that the dynamics is over-
damped by referring to the viscosity of real water. In contrast,
our choice of the coupling time of 0.50#* may underdamp the
low-frequency motions compared to those in real water al-
though the damping time of velocity cannot be directly com-
pared with the coupling time since Berendsen’s thermostat
rescales not velocities but the total kinetic energy. The viscos-
ity dependence of the folding rates for the BLN models was
first investigated by Klimov and Thirumalai.>? In a later study
by Best and Hummer, the origin of viscosity dependence of
the (macroscopic) folding rate was explained by the “inter-
nal friction” arising from nonlinear couplings of intra-protein
interactions and non-Markovian effects in microscopic tran-
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FIG. 2. Time courses of root mean square deviations with respect to the
global minimum structure at 7 = 0.2 (blue), 0.6 (green), and 2.0 (red).

sitions on the rough energy landscape. Thus, even when the
viscosity is so large that the dynamics looks “overdamped” at
macroscopic scale, energy flow pathways and the time scale
of the equipartitioning of energy at microscopic scale could
affect the kinetics at macroscopic scale, such as the folding
rates. In this regard, developing a method to identify the hi-
erarchy of energy flows should be of crucial importance in
bridging microscopic dynamics and macroscopic behavior in
complex environments.

The model exhibits a sharp two-state like transition
around the folding temperature 7y ~ 0.60. Simulations were
performed over a wide range of temperatures that is below
the folding temperature Ty (T = 0.2), around Ty (T = 0.6),
and above Ty (T = 2.0). In Fig. 2, time courses of the root
mean square deviations (RMSD) with respect to the global
minimum structure at 7= 0.2, 0.6, and 2.0 are shown. Trajec-
tories were recorded every 100 integration time steps, i.e., At
= 0.0025¢* x 100 = 0.25¢*, and 2'7( = Ny)-step snapshots
were analyzed at each temperature (thus, the full trajectory
length is 2'7 Ar =217 x 0.25¢* = 32768¢*).

The PCA was performed for the Cartesian coordinates of
the beads at each temperature. Before conducting the PCA, a
fitting preprocess was applied for each trajectory in order to
eliminate the global translations and rotations of the molecule.
In the process, the least-squares fitting was recursively applied
with respect to the average structure until the convergence of
the average structure was achieved. It was confirmed that the
last (smallest) six eigenvalues of the variance-covariance ma-
trix were almost zero, indicating that the translations and ro-
tations were properly eliminated. Also, the robustness of the
eigenvectors was checked by comparing the eigenvectors cal-
culated using the first and last half subsets of the full trajec-
tory (given in Fig. S1 in the supplementary material>*). The
convergence of the eigenvectors was considered to be reason-
able, suggesting that the PC modes reflect the (true) ensemble
of our system.

It was found that the 1st PC (Q;) makes a large contri-
bution to the total variance of the system (30.9% for 7= 0.2,
48.2% for T = 0.6, and 26.7% for T = 2.0) compared to the
others (e.g., the 2nd PC (Q») has 11.9% for T = 0.2, 12.6%
for T=0.6, 11.2% for T = 2.0). The contributions rapidly de-
crease as a function of the PC index, and the contribution of
the 50th PC (Qso) is, for example, 0.2% for T= 0.2, 0.02% for
T = 0.6, and 0.06% for T = 2.0 (given in Fig. S2 in the sup-
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plementary material>*). After the PCA, the mode structures
of the PCs were visualized on the average structure for each
temperature (given in Figs. S3 and S4 in the supplementary
material®*). The visualization revealed that the 1st PC modes
of T= 0.6 and T = 2.0 have collective opening/closing mo-
tions involving the terminal strands. Since the BLN model
consists of four strands, and three flexible loop regions con-
necting them, the rigid-body like motions of the strands are
reasonable considering the energetics. Also, the 1st PC mode
at T = 0.2 is related to the fluctuations of the loop and termi-
nal regions. On the other hand, the structures of the 50th PC
mode show anti-correlated motions between adjacent beads in
the sequence, involving local deformations of the rigid strands
irrespective of temperatures.

IV. RESULTS
A. Multiresolution decomposition

Figure 3 shows the time propagation of the details,
dfj )(t), and the approximation, a;(¢), of P;(¢) of the largest
amplitude collective motion (the 1st PC or Q,(¢)) at three dif-
ferent temperatures, that is, below the folding temperature
T; (T = 0.2), around T; (T = 0.6), and above Ty (T = 2.0).
Here, the multiresolution decomposition was carried out up
to 10 levels corresponding to time scales from ¢ = 2! Az to ¢
= 2'0A¢, where At is the sampling time. Note that the time
scale of the first level, ¢t ~ 2! At, corresponds to that of one
oscillation of bond stretching between two beads. At T = 0.2
the fluctuations of P;(#) mostly originate from the details of
di(t), j = 4,5, reflecting that the system is trapped within a
potential basin in the folded state. In contrast, at 7 = 2.0, the
details with slow time scales (d{j )(t), Jj=35,...,9) become
dominant due to the fact that the system explores a much
wider region on the potential energy landscape requiring a
longer time scale for the excursion than that in the folded
state.

In turn, at T = 0.6 ~ T}, the fluctuations of the de-
tails show mutual dependence across scales along the course
of time evolution. Comparing Fig. 3 with the RMSD plot
(Fig. 2) shows how the amplitudes of the fluctuation of the
details reveal precisely when the protein exhibits a folding
or unfolding transition. From the figure, it is clear that the
vibrational energy redistribution occurs between the fast and
slow time scales. For instance, when the unfolding transition
takes place, the fluctuations at the fast time scales (dfi )(t),
j=1,...,4),1ie., vibrational energy with high-frequencies,
are transferred to the slow time scales (di’)(t), j=6,...,8),
i.e., vibrational energy with low-frequencies. At the folding
transition, the inverse energy transfer can be observed from
the low to high frequency components in the collective co-
ordinate. The detailed correlations between the RMSD and
slow and fast time scales were investigated in Fig. S10 in the
supplementary material.** While it was found that a fast time
scale (df3)(t)) responds simultaneously to the structural tran-
sitions, we could not determine the exact timings of the tran-
sitions for a slow time scale (d;g)(t)) because of the nature
of the multiresolution decomposition (as there is lower time
resolution for slower components).
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FIG. 3. Multiresolution decomposition of P; fluctuations, lowest line at 7= 0.2 (a), 0.6 (b), and 2.0 (c). Higher lines show fluctuations in successively lower
frequency bands, from lowest, d'° at top, to highest frequencies, d', next to bottom. At T = 0.6, a number of energy transfers between “fast” and “slow” scales
coupled with folding-unfolding transitions are observed.

One notable characteristic, which may be a property of  this “wavelet-PC” analysis can reveal the transition of vibra-
this specific model, is the sharpness of the transition between  tional energy between slow and fast modes, if it exists.
folded, fast-motion states and unfolded, slow-motion states. The fluctuations of approximation a;(f) are relatively
Whether this behavior appears in simulations of real proteins small compared to other contributions to the time dependence
remains to be explored in future work. However, it is noted irrespective of temperature. The same tendency was also
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FIG. 4. Multiresolution decomposition of Psg at 7= 0.2 (a), 0.6 (b), and 2.0 (c). Ordering is that of Fig. 3.

observed for the other collective momenta. As noted in
Sec. I A, the approximation a;(f) includes all contributions
to the time dependence of the collective momentum on levels
higher (slower) than the truncation level 10. Thus, the small
amplitudes of a;(¥) indicate that (1) the multiresolution de-
composition up to 10 levels captures the essence of a hier-

archy of the collective dynamics along the chosen, collective
momenta and (2) the contribution of a;(f) to aperiodic diffu-
sive motion is negligible in our system.

Figure 4 shows the details and the approximation of the
50th largest amplitude collective motion, Ps (conjugate to the
50th PC, Qsp), at three different temperatures. In contrast to
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the results of the largest amplitude motion, P; (Fig. 3), the
amplitudes of the fluctuations of the details have large values
around the fast time scales (dg{)) @),j=1,...,4) irrespec-
tive of temperature, and the redistribution of the vibrational
energy cannot be seen during the time course of evolution.
From this observation, it is suggested that the harmonic ap-
proximation of the potential energy surface holds well in the
subspace spanned by small amplitude PC modes. These har-
monic modes are invariant during the folding/unfolding tran-
sition implying that these modes do not participate in the tran-
sition compared to the anharmonic modes, such as the largest
amplitude motion, P;.

In order to obtain further insights in terms of struc-
ture, the motions of the 1st PC (Q;) in the folded and un-
folded states were investigated by inverting typical structures
from the average structure and the 1st PC (given in Fig. S5
in the supplementary material®*) following the protocol of
Ref. 55. It was found that, in the folded structure, the 1st PC
mode “feels” the strong hydrophobic interactions between the
strands while the unfolded state shows large opening/closing
motions of the strands largely due to the hinge motions of the
three flexible loop regions. On the other hand, the structures
inverted from the 50th PC (Qs0) show little difference in the
folded and unfolded states, as both states are found to be local
deformations around the average structure (given in Fig. S6 in
the supplementary material>*).

B. Kinetic temperatures over scales

Then, how do the kinetic temperatures, Ti(j ) in Eq. (4),
associated with Q; distribute over scales? As the contribu-
tions of details dl.(j ) to the fluctuations of collective momen-
tum P;, we show the kinetic temperatures for P; and Ps over
different scales at these three temperatures in Fig. 5. As one
can infer from Fig. 3, for Py, the scale corresponding to the
maximum peak tends to shift toward slower scales (larger j
in dl-(j ) ) as the temperature increases although at 7 = 0.6 the
kinetic temperature of P; is divided into two peaks around
Jj = 3, and 8. On the other hand, for Psy, the contribution

2°F ) 7=0.2 [oF
= 1
L (@) 7=0.
©, 750
IS ‘0.1—
~ 0 et o O
K ki ™
¥m0.4-
<
&2 0ol
B
=
0
= oF
x<
-~
&gk
S
-~

o

jllevel]

FIG. 5. Kinetic temperatures for P; (circles) and Pso (rectangles) at 7= 0.2
(a), 0.6 (b), and 2.0 (c). The abscissa denotes the level j which has the time
scale of r = 2/ At, where At is the sampling time. As the level increases, the
corresponding time scale changes from the highest frequency (corresponding
to the bond stretching motion) to low frequencies.

J. Chem. Phys. 139, 215101 (2013)

-
//

/
ll
\

/

/

/
\
.
.
\

\
\
\

1
.
.

40 0.1

I
\

30
20 0.05

"10 index of PC

////;

jlevel]

FIG. 6. Three-dimensional shaded surface whose z-components are the ki-
netic temperatures TI.(J at T = 0.6, on the plane defined by the level j of the
multiresolution decomposition and the index i of PC. The surface is colored
according to the kinetic temperature from blue to red.

from the different scales always falls into a set of fast com-
ponents around j = 1 and 2. Compared with P;(¢) there exists
neither temperature-dependence nor folding/unfolding event-
dependence at the folding temperature for Psy. Again, this
suggests that the energy redistribution due to the anharmonic
dynamics during the folding/unfolding transition occurs in the
relatively small subspace spanned by large-amplitude collec-
tive “modes.”

The size of this subspace was investigated by calcu-
lating the kinetic temperatures from the 1st to 50th collec-
tive momenta at 7 = 0.6. Figure 6 plots a three-dimensional
shaded surface whose z-components are the kinetic temper-
atures (Ti(]) in Eq. (4)) at T = 0.6, on the plane defined by
our “wavelet-PCA” decomposition (the level j and the index
i of PC). In the figure, the double peaks at fast and slow time
scales at around j = 3, 7, and 8 are observed up to the 15th
collective momentum, suggesting that the energy redistribu-
tion occurs in this 15-dimensional subspace, much smaller
than the full dimensional space of the model (the number of
full dimension is 46 x 3 = 138). To our knowledge, Fig. 6
provides us with a new insight about protein dynamics; the
figure clearly reveals a set of coupled degrees of freedom in
the dynamics, which is hard to detect with “static” analyses,
such as the free energy landscape on the coordinate space.
The figure suggests that the dynamical properties of the pro-
tein folding can be reduced to nonlinearly coupled vibrational
oscillators in this small subspace, and the rest of degrees of
freedom are regarded as thermal noise.

Considering the amplitudes of fluctuations in the coor-
dinate space, the observed double peaks up to the 15th col-
lective momentum at 7 = 0.6 are reasonable since the large-
amplitude 15 PCs (conjugate to the collective momenta) rep-
resent 97% cumulative contributions to the total variance in
the fluctuations of the coordinates. Thus, our finding implies
that one could reduce both the ensemble and the dynamics
of the folding/unfolding transitions into this relatively small
subspace. As shown in the previous figure (Fig. 5), no double
peaks were observed for low-indexed PCs at the other temper-
atures (7 = 0.2 and 2.0) in the thee-dimensional plots (given
in the supplementary material®*).
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C. Relaxation to a Gaussian distribution
of collective momenta

How fast is the vibrational energy redistributed in each
collective momentum? Does the time scale of the relaxation
to a Gaussian distribution depend on the kinds of PCs or the
states where the system resides? In Fig. 7, we present the vari-
ances of p;(n) as a function of the logarithm of the time win-
dow step n in the folded state (corresponding to the time re-
gion [11250, 13750] in Fig. 2), and the unfolded state (cor-
responding to the time region [5000, 7500] in Fig. 2), respec-
tively. In the folded state (Fig. 7(a)), Var(y;(n)) tends to fol-
low the scaling relation of Eq. (5) indicating that 7 4., is small
compared with the observed time scales, that is, the dynam-
ics is regarded as independent stochastic processes whose dis-
tribution is close to the Gaussian distribution. This tendency
holds for all the P; irrespective of temperatures in the folded
state.

On the other hand, in the unfolded state (Fig. 7(b)), the
scaling relation starts to deviate for the momenta conjugate
to the large-amplitude coordinates and they do not appear to
follow the relation even around the time scale of t = 2'°A¢
(2° = 512 times longer than the time scale of one oscillation
of bond stretching between two beads ¢ &~ 2! Af). This means
that the dynamics of these momenta preserve memories at the
observed time scales, and more importantly, they do not sim-
ply follow the Gaussian distribution based on the central limit

(b) unfolded

2 4 6 8 10
log2 n

10 ;

FIG. 7. The variances of the skewness estimation p;(n) as a function of the
logarithm of the time window step # in the folded state (a), and the unfolded
state (b). The logarithm of n, logyn, is equivalent to the level j of multires-
olution decomposition, both of which have the time scale of t = 2/ At. The
values of P (circles) and Psq (rectangles) are plotted at 7 = 0.2 (blue), 0.6
(green), and 2.0 (red).
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theorem. Interestingly, the deviations from the scaling rela-
tion are pronounced at 7 = 0.6 rather than those of 7' = 2.0.
Non-Gaussianity seems to be strong at the transition temper-
ature. These imply that the time scale of vibrational energy
relaxation for the process of collective motions with large am-
plitudes is relatively slower in the unfolded state than in the
folded state, although small amplitude motions are simply re-
garded as spectator modes of “thermal noise” in the protein
system irrespective of which state the system visits.

V. DISCUSSION AND CONCLUSION

In this article, we have applied the multiresolution de-
composition using wavelets to a small coarse-grained pro-
tein model. The momenta conjugate to the collective coor-
dinates captured by the PCA and the kinetic energy under
general coordinate transformation were formulated, decom-
posing various space scale motions into contributions from
large-amplitude and small-amplitude PC “modes.”

Unlike the conventional Fourier-based approaches, the
wavelet-based approach provides the time-localized decom-
position of the collective momenta, which reveals the vibra-
tional energy transfers depending on the folding/unfolding
transitions of the system. The contributions or details from a
hierarchy of time scales are further characterized by the effec-
tive kinetic temperatures of the system in analogy with con-
ventional Fourier spectra, and the Gaussianity measure based
on the skewness of the shape of the distribution function.
From these analyses, we have made the following observa-
tions regarding the conformational transition of a model pro-
tein in the low viscosity regime in condensed phase: (i) The
vibrational energy redistribution due to the anharmonic nature
of the conformational transition occurs in a relatively small
subspace spanned by the large-amplitude collective coordi-
nates. (ii) In the subspace, the vibrational energies are trans-
ferred between the slow and fast “modes” and these transfers
are well correlated with the events of folding/unfolding tran-
sitions. (iii) The time scales of the energy redistribution along
the large-amplitude collective coordinates are slow compared
to the fluctuations of the other small-amplitude coordinates.
(iv) Thus, for the reactive large-amplitude collective coordi-
nates, the effect of the coupling with the non-reactive small-
amplitude coordinates can be regarded as thermal noise.

In previous studies, the anharmonic nature of protein dy-
namics has been investigated by various simulation studies,
most of which have mainly focused on the anharmonic as-
pects of the potential or free energy landscapes along the
large-amplitude collective coordinates. The characterization
of the energy landscape tells us the “static” property of
the system, such as the conformational distribution under
the equilibrium ensemble. In this study, we have combined
wavelet and principal component analyses to give a new
perspective that identifies functionally important vibrational
states and elucidates the exchange of energy between slow
and fast vibrational modes, as it occurs in the temporal be-
havior of a protein model. This was accomplished by apply-
ing our methods to the time series of the momenta instead of
the atomic coordinates. The momentum space is not only suit-
able to characterize the “dynamic” aspects of the anharmonic
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system, such as vibrational energy transfer, but is also appro-
priate to detect the transitions between a number of minima on
the energy landscape as demonstrated in the correlations be-
tween the energy transfers and the conformational transitions
by this study.

It is noted that the Gaussianity measure based on the
skewness of the shape of the distribution function evaluates
the asymmetry of the shape. Thus, for example, this mea-
sure lacks to differentiate Lorentzians (symmetric shapes but
longer tails than Gaussians) from Gaussians. In order to ex-
plore symmetric but non-Gaussian shapes of the distributions,
an application of the fourth moment (kurtosis), which primar-
ily measures the heavy tails of the distribution, will be useful
in future work.

The methods applied here can be further developed in
several directions. One is to introduce other multivariate sta-
tistical methods to interpret the multivariate data sets instead
of the PCA. For example, the relaxation mode analysis®®>’
or the time-structure based independent component analysis
(tICA)*® would be superior to the PCA in the sense that it
can capture the slow hidden collective variables which are
often unrecognized in analyses based on PCA. In particular,
the wavelet analysis of coordinates (instead of momenta) ex-
tracted from these methods would be suitable for the investi-
gation of slow diffusive motions since the coordinates can be
regarded as a low-pass filtered process of velocity in terms of
signal processing. A second development would be to extract
time-localized coordinates (or their conjugate momenta) from
the pattern of the multiresolution decomposition of the orig-
inal Cartesian coordinates (or momenta). This can be done
with singular value decomposition of the wavelet coefficient
matrix,*® in analogy with the conventional spectral density
matrix.>® Using this approach, Kamada and co-workers re-
vealed that the clusters of the collective motions of Ther-
momyces lanuginosa lipase drastically change during the time
evolution, involving single or multiple secondary structures.>
Still one more future direction would be using our approach to
identify the degree of sharpness of temporal changes in vibra-
tional energy distributions associated with formation of key
contacts in a protein’s history. Coupling the power of wavelets
with the capability of a clustering algorithm in the time-
frequency domain would provide a new pathway to deeper
understanding of the dynamics of a complex system.
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APPENDIX A: KINETIC ENERGY UNDER GENERAL
COORDINATE TRANSFORMATION

1. Kinetic energy in general coordinates

In the following, the Cartesian coordinates of the jth par-
ticle are denoted as (g3 — 1)+ 1, 43¢ — 1) + 2> ¢3;)- The mass of
the jth particle is denoted by m3; (j=1,..., N), and we use
here the convention of m3(; _ 1)+ 1 = m3; — 1y+2 = m3;. Then,
the kinetic energy of the total system is given by

| 3N
— 52
K—Ezl:m,qi.

Suppose that a general transformation is given to another
coordinate system Q; (I=1,..., M)

qi = fi(Q1,0Q2,...,0m) (@ =1,...,3N).

Here, we include a possibility of holonomic constraints, i.e.,
M < 3N. After differentiating g; by ¢ as

M
afi
q,-=2i<Ql,Q2,..

£ 8Q1 '7QM)QZ

i=1,...,3N),

the kinetic energy is represented by

1 Mo MOaf
c-ixm(2ie) (Sie)

! k=1

- af; of:
_EZQle;miB_Qla_Qk

| M
=3 > mi0i0k,
Lk=1

where we define

3N
B of of
= Zm’agl 20:

i=l1

If the masses are not uniform, we can define a mass-
scaled orthogonal transformation {g;} — {Q;} so that
3N
afi 9fi
i =S my 2 O
—"50,90;
=m'181x,

where the matrix {m; ;} becomes diagonal, and the kinetic
energy is

1
/A2
K = 3 kglkak.
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In particular, if the masses of the particles are the same,
i.e., m = m;, and the transformation is orthogonal,

3N af; 8fl
256,90,

then, the kinetic energy becomes simply

M
m -9
k=720

It is found that, in the cases of linear transformation, as
the PCs used in this study, the orthogonality (mass-scaled or-
thogonality) is required for the coefficients of the transforma-
tion. However, for nonlinear transformation, these conditions
should hold for any values of the generalized coordinates.

= OLk>
i=1

2. Introduction of momenta in general coordinates

The Lagrangian in general coordinates Oy (k=1, ..., M)
is given by

L(le"'s QM? le“'sQM)

1 X .
=3 Z mp Q10— V(Q1, ..., Om),
Lk=1

where V(Q1, ..., Q) is the potential. The momenta P, (k

=1,..., M) are defined by P, = %

9 (1 ¢
P = 3_Qk (5 Z my 0 Qk)

Lk'=1

M M
= Zml,k 0= ka,le~
=1 =1

M
Q;= 2 i g Py
=1

Then, the kinetic energy is expressed as

1 M
5 Zml,k

k=1 j

K

M
> i Py

M
. j P;
=1 j'=

I
N =
M=
E
>
™
>~
™
3

E

When the matrix {my ¢} x=1,. ..
=m' 8y 1), My ; = [ZT; holds. The kinetic energy becomes di-

u 1s diagonal (i.e., my

agonal

M 2

P.
K = L
2 5o

Jj=1 ’
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In particular, if the masses are uniform, and the transfor-
mation is orthogonal, the kinetic energy becomes

1 M
K=ﬁZPﬁ.

Jj=1

APPENDIX B: GAUSSIANITY MEASURE

Skewness is a measure of the asymmetry of the distribu-
tion function of a random variable X. Since one of the most
significant properties of a Gaussian function is its symmet-
ric shape, the skewness is often used to evaluate whether the
given distribution function is Gaussian or not. In the follow-
ing, we formulate the convergence of the estimates of the
skewness as a function of time.

Here, as a measure of the skewness, we use the third cen-
tral moment w3 of the random variable X,

y = (X — ),

where (-) means the expectation, or the ensemble average,
and p is the expectation of X. Since we use the momentum P;
as X, u =0and y = (X>) = 0. For time series (X} (j eN)
with length n, an estimator for y is

y is an unbiased estimator for y, i.e., (§) =y = 0. To in-
vestigate the convergence of p, we define the variance of the
estimates for the skewness,

Var(P) = (7 — ()%
= (x3x3). (B1)

Let us assume that the stochastic process {X,,} follows
a Gaussian process characterized by a covariance matrix
My = (X;Xk) and (X;) = O for all j. Then the expectation of
X;F(Xy, ..., X,,), where F is an arbitrary function of {X;}, is
given by®°

n a
(X;F(X1,.... X)) =D My o P X)),
k
k=1

This relation can be used to work out the expectations of the
products of Eq. (B1). Applying the above relation to Eq. (B1)
yields

R 9 n n
Var(p) = — Zl ; M MM
j: =

+ n% >3 M. (B2)
j=1 k=1

When the covariance matrix is diagonal, i.e., My = 028 s
where §j;, is the Kronecker delta, the variance of the estimates
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for the skewness is simply given by

Var(p) = % (B3)

where (g is the sixth order moment of X (g = 150°9).
On the other hand, let us assume that the covariance ma-
trix element M is expressed by a single exponential function,

Mj = o2 W=illT,

where 7 is the decay time of X. Then, the first term of the r.h.s.
of Eq. (B2) can be calculated explicitly

9 n n
e} DY MMM

j=1 k=1

6 n n
_% 3OS ekl
n2
j=1 k=1

L j=1k>j
906 [ !
=—|n+2> (n—De"
n L =1
900 [14e/7

n |1—el/r

2671/1:(1 _ efn/r)
n(l —e-l/r)y

Also, the second term is

6 n n
=22 M

j=1 k=1
B 60’6 1+ 673/1 2673/1:(1 _ 673n/r)
T o |1=e3m n(l —e=3/7)2

We find the variance of the estimates for the skewness,

vagpy =2 (24 1 %4
ar(p) = — | — — ,
V=G5t st
where
L4 e T 2e7VT(] — /)
A, = -
l—el/r n(l —e-lr)?

Now, we introduce a quantity with a dimension of time,
called statistical dependence time Tqep.?' defined by

9 6
Tdep(fv n) = (EAT + EAT/3) s (B4)
and the variance is written as
Var(p) = w (B5)

As was discussed in Ref. 61, Eq. (B5) expresses that the statis-
tical degrees of freedom, or the number of independent mea-
surement of the skewness is reduced by the factor 1/74, due
to the correlations among the successive measurements. Thus,
the time scale of 74, can be interpreted as the mean interval
of successive statistically independent measurements.

It is noted that 74.,(7, n) depends not only on the decay
time 7 but also on the length of the time series n. Thus, the
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variance of the estimates, Eq. (BS), deviates from the simple
scaling relation as a function of n (Eq. (B3)) when the value
of t is large compared with the time step of sampling.

In the large n limit, the value of 74, can be related to the
decay time 7. Taylor expansion of Eq. (B4) with regard to 1/t

yields
; (23 (1
proo Tep = T E_'_ 1072 + )|
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