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Order parameter free enhanced sampling of the vapor-liquid transition
using the generalized replica exchange method
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The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal en-
semble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an
optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well
suited for the effective simulation of first-order phase transitions characterized by “backbending” in
the statistical temperature. While the metastable and unstable states in the vicinity of the first-order
phase transition are masked by the enthalpy gap in temperature replica exchange method simula-
tions, they are transformed into stable states through the parameterized effective sampling weights in
gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distri-
butions. The enhanced sampling across metastable and unstable states is achieved without the need to
identify a “good” order parameter for biased sampling. We performed gREM simulations at various
pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid
phase transition at different pressures. We observed a crossover from the first-order phase transition
at low pressure, characterized by the backbending in the statistical temperature and the “kink” in
the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The
controlling mechanisms of nucleation and continuous phase transition are evident and the coexis-
tence properties and phase diagram are found in agreement with literature results. © 2013 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4794786]

. INTRODUCTION

The replica exchange method (REM) (or parallel
tempering)’'?> has been widely used in the computer sim-
ulation of diverse complex systems such as proteins,>®
glasses, 10 and atomic clusters,!! !> where methods based on
sampling the conventional canonical ensemble struggle to at-
tain ergodic sampling over a rugged energy landscape charac-
terized by multiple minima separated by high barriers.'3> In
the standard temperature REM (fREM), a set of statistically
independent canonical molecular dynamics (MD) or Monte
Carlo (MC) simulations run in parallel at specified tempera-
tures. The coupling of low and high temperature replicas via
exchanges of configurations allows the low temperature repli-
cas to escape from trapped regions more easily, facilitating
ergodic sampling.!> While /REM has proven to be highly ef-
fective in the equilibrium sampling of stable phase states, the
standard rfREM struggles to attain its maximum power in the
vicinity of a first-order phase transition.'6-20

In moving across a strong phase change, canonical en-
ergy distributions are effectively disjointed and character-
ized by an energy gap corresponding to a latent heat. Since
the acceptence probability of replica exchanges is deter-
mined by the energy overlap of neighboring replicas, an en-
ergy gap between Pr_7,(E) and Pr. 7, (E) around the critical
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temperature T., P7(E) being the canonical probability den-
sity function (PDF) at the temperature 7, significantly im-
pairs replica exchanges. The acceptance of replica exchanges
for a pair of inverse temperatures, 8 and f’, close to f.
= 1/T., becomes exponentially suppressed as A(BE; B E’)
= min[1, e2PE =] s ¢ IAPAEl where AR =B — B and AE
is the energy gap. The generalized Replica Exchange Method
(gREM)?! has been developed to restore the full power of
replica exchange by incorporating noncanonical ensembles
into the replica exchange paradigm. The generalized ensem-
ble sampling weights are determined from tailored effective
temperatures through an inverse mapping strategy.

Illustrative simulations on a Potts spin system with vary-
ing system size and simulation conditions demonstrated a
comprehensive sampling.?! The quantitative comparison be-
tween gREM and Wang-Laudau (WL) sampling revealed that
gREM provided an order of magnitude acceleration of tun-
neling transitions over WL, while maintaining a faithful sam-
pling for the phase transition region as in flat histogram meth-
ods.

Application to the study of an adapted Dzutugov model
explored the effectiveness of gREM in sampling a solid-liquid
phase transition.?? In this work, gREM is used to study the
vapor-liquid phase transition in Lennard-Jones fluids, which
has been the subject of extensive studies.>*~%8

Originally, gREM was formulated at constant volume
where the internal energy of the system was a natural dynam-
ical variable. However, in most vapor-liquid transition experi-
ments the pressure, or, equivalently, the chemical potential of
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the vapor, is held constant.?*=3! Approaches informed by clas-
sical nucleation theory (CNT) usually consider the formation
and growth of a liquid droplet at constant pressure.>>>* In this
work, gREM is extended to include volume fluctuation at con-
stant pressure for the effective simulation of the vapor-liquid
transitions.

In a standard NPT ensemble, the liquid cluster cannot co-
exist stably in the vapor phase. The liquid cluster that is bigger
than the critical size will grow in order to minimize the excess
free energy, while the cluster that is smaller than the critical
size will shrink, in order to lower the excess free energy. Ten
Wolde and Frenkel?”3> used a biased Monte Carlo (“umbrella
sampling”) approach to stabilize large droplets. Schrader,
Virnau, and Binder*® used the successive umbrella sampling
to observe the liquid droplets coexisting in stable thermal
equilibrium with supersaturated vapor at a range of densities.
While these methods are successful in probing metastable
states associated with the liquid-vapor transition, they rely on
the identification of a “good” order parameter for the transi-
tion, to exploit in the application of biased sampling, which
can be difficult to identify in more complex systems.’

The gREM approach allows an effective sampling of
metastable and unstable states in the vapor-liquid coexistence
states, independent of knowledge of an effective order param-
eter for the transition. In a gREM simulation, each stage of
the phase transition can be stabilized, including the forma-
tion of a liquid droplet, the growth of a liquid cluster, and
vanishing of the vapor phase. Recently, a crossover from a
purely nucleation-controlled process to a spinodal decompo-
sition was predicted for LJ fluids in a deeply supercooled
regime.?”-38 Since we are able to observe the whole transition
process through gREM simulation, we can effectively assess
the mechanism of the vapor-liquid phase transition at various
conditions.

The paper is organized as follows. In Sec. II, the method-
ology is described and in Sec. III, we compare the sampling
effectiveness of gREM with fREM approaches, and present
simulation results of phase behavior, including the phase dia-
gram, the Gibbs free energy as a function of pressure, and the
structural properties at low and high pressures. Salient con-
clusions are presented in Sec. IV.

Il. METHODS AND MATERIALS

A. Generalized replica exchange method at
constant pressure

Originally, gREM was formulated at constant volume,
where the internal energy E of the system is a natural vari-
able at the fixed volume V. To incorporate volume fluc-
tuation critical to a vapor-liquid transition, we extended
g¢REM to the isothermal-isobaric—NPT ensemble.?> The
enthalpy, H = E 4+ PV, which describes the thermal en-
ergy change when a process occurs at a constant pres-
sure, P, becomes a key dynamical variable in the NPT
ensemble. The density of states in enthalpy is defined
as Q(H; P)= [dV [d*rS[H(E(r),V)—(E + PV)]. The
isobaric entropy is S(H; P) = kglnQ(H; P) (kg = 1), anal-
ogous to the entropy in the microcanonical ensemble, and the
statistical temperature is Ts(H) = [3S/0H] ™.
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Each replica @ in gREM simulation with M replicas
(@ =1, ..., M) is associated with an effective temperature
Ty(H; Ay), and sampled with generalized ensemble weight
W(H;Ay). The sampling weight W,(H, Ay) is determined
from the effective temperature through the inverse mapping
strategy as

1 /
Wa(H)= —lnfde. (1)

The linear effective temperatures are aligned in parallel
as

To(H; Aa) = ha + y(H — Hy) (@)

with the control parameters including y, the constant slope,
Hy, a constant in the relevant enthalpy range, and A, the
T-intercept at a chosen Hj. Denoting the lowest and high-
est temperature as T and Ty, respectively, the average en-
thalpy A, and Hy can be determined by short canonical
runs at T; and T),. The value of H, can be set as Hy = H;.
The dynamic range of A, is determined as A; = T; and
Ay = Ty — y(Hy — H)), so that the first and Mth effective
temperatures Cross [ﬁ 1, Th] and [Hy, Ty, respectively. The
intermediate values of A, (I < o < M) are determined by
equally dividing the parameter space as

Ay = A1+ (ax— DAX 3)

and AA = Ay — A)/M — 1).
Detailed simulation protocols of gREM are defined by
the following three steps:

(i)  Perform short canonical runs at several temperatures
between T and Ty, to determine the data set, [H,, T,].
Select a proper y to be less than the minimum slope
of the statistical temperature Ty, and determine X, by
employing Eq. (3) between A = T and Ay =Ty
— j/([:IM — 1:11), with Hy = I:Il.

(i) Run the gREM simulation in each replica by making
Monte Carlo trial moves in configuration space with the
acceptance probability

Ainra(X — X) = min[ 1, e"«H=waH0] (4

where the effective potential w,(H) = —InW,, W, be-
ing the sampling weight.

A Monte Carlo trial move consists either of an at-
tempted single particle displacements or a trial volume
change; one trial volume move is made after N trial
single particle displacements are performed, where N
equals the number of particles.

After all replicas finished N attempted single particle
displacement and a trial volume move, attempt a replica
exchange between neighboring replicas with the accep-
tance

Ajner(; XX') = min[1, exp(Aq)], ®)

Ag =Wai1(H") = Woi1(H) +wo(H) —wa(H'), where
H=E@r)+PVand H =E(F')+ PV'.

(iii)) Once a sufficiently long production run has been per-
formed, calculate the entropy estimate S(H) by joining
multiple generalized ensemble runs via the weighted
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histogram analysis method (WHAM)?*® or statistical
temperature weighted histogram analysis method (ST-
WHAM).*

B. Statistical temperature weighted histogram
analysis method (ST-WHAM)

A recently developed statistical temperature weighted
histogram analysis method (ST-WHAM)* is used for pos-
terior analysis of gREM simulation results. This method
takes advantage of the already-determined sampling weights
of replica, W,(H), and the associated enthalpy histogram,
P,(H), where P denotes the histogram and H denotes the en-
thalpy. The goal is to directly determine the inverse statistical
temperature Bs = dS/0H as a weighted superposition of the
individual statistical temperature estimates, without undeter-
mined parameters. Thermodynamic quantities such as entropy
can be evaluated upon the numerical integration of this statis-
tical temperature. Unlike conventional WHAM,* ST-WHAM
does not use the iterative technique to determine the relevant
partition function, but instead determines Bg directly from
W (H) and P,(H). This leads to a substantial acceleration
of the data analysis without a loss in accuracy as has been
demonstrated in a number of recent applications.*'**> A more
complete description of ST-WHAM is provided in the supple-
mentary material.>3

C. Lennard-Jones fluid

We study the vapor-liquid phase transition in a Lennard-
Jones system* in which the interaction potential was trun-
cated and shifted at a cutoff radius r. = 2.50, where o is the
particle diameter. The energy of interaction ¢ between any
two particles separated by a distance r is given by

_Jeu) —eure) <.
(p(r) o { O r 2 rCa

where ¢pj(r) = 4e(c'?/r'?2 — 0%/r%) is the full LJ interac-
tion, € and o are the LJ well depth and diameter, and r.
= 2.50 is the interaction cutoff separation. We made no long-
range corrections and applied cubic periodic boundary condi-
tions. Reduced units employ € and o as characteristic energy
and length scales, respectively. The numerical values for ar-
gon are ¢ = 0.3405 nm, €; = 119.8 K.

lll. RESULTS AND DISCUSSION
A. Sampling effectiveness

A comparative study was performed between gREM and
fREM simulations in order to explore the difference in sam-
pling effectiveness. The simulations were performed at pres-
sure P = 0.04 for a system with 250 particles, and number of
replicas M = 99 in both fREM and gREM simulations. For
fREM, the temperature of each replica was equally allocated
between the lowest and highest temperature 71 = 0.7 and Ty,
= 1.1. The effective temperature of gREM simulation obeys
Eq. (2), and the parameters in the effective temperature are H
= —1218.6, 11 = 0.7, Ayy = 5.1 and y¢ = —0.0029046.

J. Chem. Phys. 138, 104119 (2013)

0.06 T T T T T T T

0.04

0.02 -

0.08 -

~ 0.06

0.04

0.02 -

Enthalpy H/N

FIG. 1. (a) and (b) show the resulting generalized probability distribution
functions (GPDF) of replica 1,6,11,16,---,96 sampled by tfREM and gREM,
respectively. The enthalpy gap in fREM is marked in (a).

In the strong first order phase transition, the statistical
temperature Ts(H) exhibits a negative slope, the so-called
backbending or S-loop. Instead of using canonical temper-
atures, gREM uses effective temperatures in order to form
unique stable crossing points with the statistical temperature,
Ts. The linear effective temperatures of different replicas, T,
are aligned in parallel with a constant slope y, which is less
than the slope of Tg in the backbending region. As a re-
sult, unique crossing points are formed between T, and T
throughout the enthalpy range of interest. An illustration of
linear effective temperature is provided in the supplementary
material.>?

Since T,(H; \y) was designed to form a unique, stable
crossing point, Hj, with Ts(H), the resulting PDFs are sharply
localized around H; with a Gaussian shape in Fig. 1(b), and
naturally bridge the vapor and liquid phases with unimodal
enthalpy distributions across the transition region. In contrast,
the canonical enthalpy distributions of fREM are effectively
disjoint by an enthalpy gap corresponding to the latent heat
between vapor and liquid phases, which is displayed in PDFs
in Fig. 1(a). Note that only 20 out of 99 replicas were plotted
in Fig. 1 and actual overlaps between neighboring replicas are
greater.

During the simulations, we kept track the movement of
replicas of both fREM and gREM in the enthalpy space.
Figure 2 shows the trajectories of replica 61 and 14 of both
REM and gREM. While the rfREM trajectories sample two
narrow ranges in enthalpy space, the trajectories of gREM
reach the lowest and highest boundaries and span the en-
thalpy space. The tunneling transitions** in the two replicas
and other replicas (not shown) enable the mixing between the
high and low enthalpy configurations. The gREM simulation
achieves comprehensive sampling in the phase transition re-
gion, while fREM fails because of the intrinsic instability of
canonical ensemble in the backbending region.
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FIG. 2. (a) The enthalpy trajectories of replica 14 in f/REM (blue line) and
gREM (red line). (b) The enthalpy trajectories of replica 61 in fREM (blue
line) and gREM (red line).

B. Vapor-liquid phase coexistence properties
and phase diagram

gREM simulations were carried out for systems at seven
pressures and with two different sizes, 250 and 1000 particles,
exploring temperatures as functions of enthalpy and density,
T(H) and T(p), and liquid-vapor coexistence points and spin-
odal points at each pressure.

The line of equilibrium coexistence of two phases in a
one-component system corresponds to equalities of the pres-
sures, temperatures, and the chemical potentials of the lig-
uid and vapor phases. At equilibrium, the Gibbs free en-
ergy difference, AG = (Hyyp — Hiig) — T fg:p dS =0, Hyyp
and Hjiq being the enthalpy of vapor and liquid phases at the
coexistence temperature. Given that the statistical tempera-

0.7 L 1 L I L I L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p=N/V

FIG. 3. The coexistence temperatures and densities of the N = 250 system
are plotted with red filled circles, and that of the N = 1000 system is plotted as
blue squares. The critical temperature and density for N = 250 and N = 1000
system is denoted by the red star and blue cross, respectively. The error bars
for the present simulations are smaller than the figure symbols. The critical
and coexistence points reported by Vrabec et al.’ are in green filled triangles.
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FIG. 4. (a) Temperatures T(H) as functions of enthalpy at seven different
pressures for systems with 250 particles. The liquid-vapor coexistence tem-
perature and enthalpy points (Tcg, Hcg) are plotted as red filled circles. The
black open squares and triangles denote liquid and vapor spinodal points,
respectively. (b) Temperatures T(p) as functions of density at seven different
pressures. Same colors and symbols are used for the same simulations in both
(a) and (b).

ture Ts(H) = (0H/3S)y, p, integration yields AS = ffzq“" dH/
Ts(H). Therefore, the coexistence temperature must satisfy

(6)

AG _ Huap - Hliq /Hw'p dH
T T

m, Ts(H)

Equation (6) is equivalent to the Maxwell equal area rule. The
equilibrium temperatures on the coexistence curve are deter-
mined through this method.

For the simulations of N = 1000 and N = 250 systems,
99 replicas are used, and the other parameters are in the sup-
plementary material.>® The critical temperature, T, and den-
sity, p., can be obtained through fitting the coexistence points
to Guggenheim-type equations.*”-*8 For N = 250 system, T,
= 1.0780 and p. = 0.3198 and for N = 1000 system, T,
= 1.0730 and p. = 0.3224. Vrabec et al. reported similar val-
ues as T, = 1.0779 and p. = 0.3190. The coexistence and
critical points of these three systems are shown in Fig. 3.

While crossing the phase coexistence of binodal curve,
the system enters the metastable phase, which retains its
restorative reaction to small perturbations of density.>*
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FIG. 5. The temperature variation of Gibbs free energy per particle, G(T)/N,
at pressure P = 0.03. The letters A — G denote the states on the Gibbs
function.

Conditions of stability against this kind of perturbation are
violated only when the system reaches the spinodal, which
is the locus of points surrounding the unstable region.*> The
spinodal points can be simply identified by the maximum
and minimum of the T(H) and T(p) curves as shown in
Figs. 4(a) and 4(b). The density region bounded by spinodal
points has a positive slope, giving a negative thermal expan-
sion coefficient and indicating an instability.

The degree of backbending in the T(H) curve gradually
decreases as the pressure increases. At some low pressures,
such as P1 = 0.0078, the transition region of 7(H) displays se-
vere backbending. When pressure reaches P7 = 0.096, which
is close to the critical pressure,46 the backbending is almost
transformed into an inflection and the first order phase transi-
tion becomes second-order, in agreement with the theoretical
prediction for the behavior at the critical point.

J. Chem. Phys. 138, 104119 (2013)
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FIG. 6. Behavior of the Gibbs free energy per particle, G(T)/N, as a function
of temperature at seven different pressures.

C. Thermodynamic properties calculated
from ST-WHAM

We employed ST-WHAM to compute the entropy and
subsequently the Gibbs free energy for the system of 1000
particles. The temperature variation of Gibbs free energy per
particle, G(T)/N, at pressure P = 0.03 is shown in Fig. 5. The
Gibbs function intersects itself at point D, which is the liquid-
vapor coexistence point and the liquid and vapor phases are
the sections on the left and right sides of point D, respec-
tively. The liquid and vapor curves are connected together
through the intermediate states on the kink where the curva-
ture changes sign. Following Callen,** we refer to the kink on
the Gibbs function as the closed loop. The discontinuity of the
curvatures of liquid and vapor curves is the characteristic of a
first order phase transition.

The closed loop results from the fact that enthalpy func-
tion, H(T), is triple-valued in T for the backbending regime.
For a given temperature, three states are available to the
system, as, for example, the states designated by A, B, and
C. Among these three states, state C is unstable to small

FIG. 7. Configurations of 6 different states throughout the phase transition at P3 = 0.03. The vapor particles are in red and the liquid particles are in gray. (e)
and (g) are side views of the states in (d) and (f), respectively. Note that the size of each box is not proportional to the volume of the state.
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FIG. 8. Configuration of 6 different states throughout the phase transition at
P7 = 0.096. The color scheme is the same as in Fig. 7. Note that the size of
each box is not proportional to the volume of the state.

fluctuations in density. A and B are stable, and the Gibbs func-
tion is a local minimum. In generalized ensemble sampling,
such as gREM simulation, the metastable and unstable states
such as state B and C are transformed into stable states. Sim-
ilarly, the Gibbs function is tripled-valued at another temper-
ature, where states E, F, and G, are stable, metastable, and
unstable states, respectively, in the canonical ensemble.

We have shown that backbending in T(H) curves de-
creases with the increasing pressure in Fig. 4. Because the
closed loop in G(T)/N curves are the result of the backbending
in T(H), we expect the closed loop will shrink when the pres-
sure increases. Figure 6 presents the evolution of the Gibbs
function at seven different pressures. The closed loop is large
at the low pressures, becomes smaller with the increasing
pressure, and at P = 0.096 the closed loop almost disappears.
With the diminishment of the closed loop, the Gibbs functions
of the liquid and vapor phases are connected together with-
out the discontinuity in the curvatures, and the liquid-vapor
phase transition becomes a second order continuous phase
transition.

D. Structural properties

It is known that nucleation and continuous phase transi-
tion are the two mechanisms that control the first-order and
second-order phase transitions, respectively. Direct inspec-
tion of the atomic configurations will validate the statement.
The configurations of the system at a lower pressure, P3
= 0.03, and near the critical pressure, P7 = 0.096, are
shown in Figs. 7 and 8, respectively. The vapor particles are
marked in red and the liquid particles are in gray. Stillinger’s
criterion®® was used to determine whether a particle is liquid-
like or vapor-like, and the cutoff radius is . = 1.5. The results
presented in this section are for systems with 1000 particles.

The configurations of six states, denoted as states 1 to
6, are shown in Fig. 7. Beginning with the pure vapor phase
in state 1, a spherical liquid droplet is seen in state 2, the
spherical droplet grows larger in state 3, becomes cylinder-
like in state 4, grows into a slab-like shape in state 5, and in
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state 6 reaches the pure liquid phase. The occurrence of these
states agrees with results in previous work.3%>!-52 The struc-
tural change of the states along the transition path shows that
nucleation is the controlling mechanism of the vapor-liquid
phase transition at P3.

The configurations of the system at P7 = 0.096 are
shown in Fig. 8. From Fig. 8(a) to 8(f), the system gradually
transforms from vapor to liquid phase but stays homogenous
without the phase domain separation. At this pressure, the
growth of liquid phase takes place in a collective and diffusive
manner.

IV. CONCLUSION

In this work, we demonstrated the advantages of gREM
in simulating the vapor-liquid phase transition in the truncated
and shifted Lennard-Jones fluid. The parameterized effective
temperatures in gREM are tailored to avoid an intrinsic insta-
bility of the canonical ensemble in the negative slope region of
the statistical temperature Ts(H) in first order phase transition.
The optimal sampling weight is determined from the effective
temperature through the inverse mapping strategy. By com-
bining generalized ensemble sampling with replica exchange,
our method enables a comprehensive sampling for phase
transition region with a succession of unimodal enthalpy
distributions.

Originally formulated in NVT ensemble, gREM has been
extended to the isothermal-isobaric (NPT) ensemble to ac-
commodate the volume change in vapor-liquid phase transi-
tion. The phase transition was studied at various pressures be-
low and close to the critical point. The statistical temperature
as a function of enthalpy Ts(H; P) is computed at each pres-
sure by ST-WHAM based on the data produced by gREM
simulations. The coexistence temperatures and densities are
calculated through the Maxwell equal area construction. The
spinodal points are identified as the maximum and minimum
points of the Ts(H) curves. Our results are consistent with the
literature*’ results.

We studied the change in the nature of liquid-vapor phase
transition with the change in the pressure. At low pressures,
strong first-order phase transition features are observed as
the backbending in the statistical temperature as a function
of enthalpy, T;(H), and the closed loop in Gibbs function,
G(T). However, as the pressure increases, the first-order fea-
tures gradually diminishes, and the liquid and vapor phases
are connected together without discontinuity in the curva-
ture of enthalpy and Gibbs function. The diminishment of
the discontinuity indicates that the liquid-vapor transition be-
comes second-order continuous phase transition near the crit-
ical pressure.

Direct inspection of the atomic configurations of the in-
termediate states has shown the controlling mechanisms in
the two scenarios. At low pressures, it is apparent that nu-
cleation controls the vapor-liquid phase transition as shown
by the liquid droplet formation and growth process. Near the
critical pressure, a coalescence or collective growth of the
new phase displays the characteristic of a second order phase
transition.
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The comprehensive sampling for metastable or unstable
states with no additional order parameters, explicitly demon-
strated in vapor-liquid phase transition of Lennard-Jones flu-
ids, makes gREM a promising tool in diverse applications of
complex fluids, water and protein simulations.
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