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We present an iteration-free weighted histogram method in terms of intensive variables that di-
rectly determines the inverse statistical temperature, βS = ∂S/∂E, with S the microcanonical en-
tropy. The method eliminates iterative evaluations of the partition functions intrinsic to the con-
ventional approach and leads to a dramatic acceleration of the posterior analysis of combining
statistically independent simulations with no loss in accuracy. The synergistic combination of the
method with generalized ensemble weights provides insights into the nature of the underlying phase
transitions via signatures in βS characteristic of finite size systems. The versatility and accuracy
of the method is illustrated for the Ising and Potts models. © 2011 American Institute of Physics.
[doi:10.1063/1.3626150]

The weighted histogram analysis method (WHAM) or
multiple histogram method1 is a powerful technique for
combining multiple independent Monte Carlo (MC) or molec-
ular dynamics simulations to consistently calculate thermody-
namic properties. Enhanced sampling methods greatly bene-
fit from WHAM, improving the precision of the density of
states,2 free energy differences,3 and potentials of mean force
along reaction coordinates.4–7

The central quantity in the original formulation of
WHAM (Ref. 1) is the density of states �(E) or the micro-
canonical entropy S(E) = kB ln �(E) (kB = 1). In this ap-
proach, M independent simulations performed with the sam-
pling weights Wα(E) = e−wα (E) (α = 1, . . . ,M), and wα the
effective potential, are combined to determine the optimal es-
timate for � as

�̃(E) = H (E)∑M
α=1 NαWα(E)/Zα

, (1)

where H (E) = ∑
α Hα , Hα(E) = NαPα(E), and Nα and Pα

are the number of samples and the normalized distribution
in run α, respectively. The unknown relative partition func-
tion Zα in Eq. (1) is determined self-consistently by solv-
ing Zα = ∑

E �̃(E, {Zα′ })Wα . The direct iteration method
for Zα is commonly used with the convergence criterion,∑

α |(Zk
α − Zk−1

α )/Zk
α| ≤ δZ , where δZ is a threshold value

and k is the iteration step.2 However, the convergence of-
ten becomes slow with increasing M , requiring thousands of
iterations.8

In this paper, we propose an iteration-free, statistical tem-
perature weighted histogram analysis method (ST-WHAM).
While conventional WHAM is formulated in terms of all ex-
tensive quantities {S; Hα,Wα}, ST-WHAM is expressed in
terms of the corresponding derivatives. The goal is to directly
determine the inverse statistical temperature βS = ∂S/∂E as
a weighted superposition of the individual statistical tempera-
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ture estimates, βS
α = ∂ ln Hα/∂E − ∂ ln Wα/∂E, with no un-

determined parameters. Eliminating the need to determine Zα

leads to a substantial acceleration of the posterior analysis of
merging independent runs without a loss in accuracy. The de-
termination of βS yields S, and reveals valuable information
characteristic of phase transitions in finite size systems.9

Basic formulation: We proceed by first converting
Eq. (1) into a weighted average of the individual density of
states estimates, �α = Hα/�α , �α = NαWα/Zα ,

�̃(E) =
∑

α

f̃α(E)�α(E), (2)

where f̃α represents the energy-dependent, normalized
weight, �α/

∑
α �α . Multiplying the numerator and denom-

inator by �̃ further identifies f̃α = H̃α/H , where the his-
togram H̃α = �̃ �α is reweighted by �̃. The reweighted H̃α

is not necessarily identical to the simulated Hα even though∑
α H̃α = H and

∑
E H̃α = Nα .

We take the logarithm of both sides of Eq. (2) and differ-
entiate with respect to E to express

β̃S = ∂ ln �̃

∂E
=

∑
α

f ∗
α

∂ ln �α

∂E
+

∑
α

f ∗
α

∂ ln f̃α

∂E
, (3)

where f ∗
α = (�α/�̃)f̃α = Hα/H is the simulated histogram

fraction. Throughout the paper the “*” symbol denotes ST-
WHAM estimates.

The first term in Eq. (3) is a weighted superposi-
tion of each individual statistical temperature estimate, βS

α

= ∂ ln Hα/∂E − ∂ ln Wα/∂E, yielding the ST-WHAM esti-
mate for βS , as

β∗
S =

∑
α

f ∗
α

(
βH

α + βeff
α

) = βH + βW , (4)

where βH = ∑
α f ∗

α βH
α , βH

α = ∂ ln Hα/∂E, and
βW = ∑

α f ∗
α βeff

α , with βeff
α = ∂wα/∂E the weight-

dependent, inverse effective temperature.10 The key ob-
servation is that with no undetermined parameters, Eq. (4)
uniquely determines β∗

S by weighting the known, intensive
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estimates, βH
α and βeff

α , in proportion to the number of
samples in the corresponding histograms at energy E. In
contrast, smoothly joining the extensive quantity �α requires
the determination of Zα , even though f̃α is replaced by f ∗

α in
Eq. (2).

The second term in Eq. (3) is the difference between the
WHAM and ST-WHAM estimates, and after substituting f̃α

reduces to

δβS = β̃S − β∗
S =

∑
α

f ∗
α

(
βH̃

α − βH
α

)
, (5)

yielding β̃S = ∑
α f ∗

α (βH̃
α + βeff

α ). Note that with replacing
H̃α by Hα , β̃S leads to β∗

S and δβS � ∑
α f ∗

α ∂ ln f ∗
α /∂E

= ∂
∑

α f ∗
α /∂E = 0. As Nα increases, both H̃α and Hα

rapidly converge to the exact result H ex
α = NαP ex

α , where “ex”
denotes exact values. Hence, the accuracy of both methods is
similar with δβS � 0 for Nα � 1, which we will demonstrate
for the Ising model.

Once β∗
S is determined via Eq. (4) we can compute the

corresponding entropy estimate

S∗ =
∑

α

∫ E

EL

f ∗
α (z)βS

α (z)dz =
∑

α

∫ E

EL

β̄S
α (z)dz, (6)

where β̄S
α = β̄H

α − β̄W
α , Ā = f ∗

α A. Directly integrating
Eq. (6) is not desirable due to the rapid variation of βS

for small E. We approximate the statistical temperature T ∗
S

= β∗
S

−1 on an equally spaced energy grid Ej = G(E/�)�,
where � is the bin size and G(x) returns the nearest integer
to x. Hence, T ∗

S (E) � T ∗
j + ηj (E − Ej ) for E ∈ [Ej ,Ej+1],

with T ∗
j = T ∗

S (Ej ) and ηj = (T ∗
j+1 − T ∗

j )/�. This approxi-
mation allows an analytical integration and gives a mapping
from β∗

S to

S∗ =
imax∑
j=L

Lj (Ej+1) + Limax (E), (7)

where Lj = 1/ηj ln[1 + ηj (E − Ej )/T ∗
j ], and imax = i − 1

if E ∈ [Ei − �/2, Ei], and imax = i if E ∈ [Ei,Ei + �/2].
The same strategy is equally applicable to the po-

tential mean force (PMF) calculation along the reaction
coordinate η(x), x being coordinates. The PMF at the in-
verse temperature β0 with the reference potential w0 is de-
termined as − 1

β0
ln ρ(η), ρ(η) = ∫

dxδ[η(x) − η]W0(x)/Z0,

W0 = e−β0w0 . The WHAM estimate for ρ(η), conjugated with
multiple runs with the sampling weight Wα = exp{−β0(w0

+ wα(η))}, wα being the biasing potential, is obtained5 as

ρ̃(η) = H (η)∑M
α=1 NαW̃α(η)/Zα

, (8)

W̃α = exp{−β0wα}. Denoting each individual estimate, ρα

= Hα/�α , �α = NαW̃α/Zα , Eq. (8) further transforms to

ρ̃(η) =
∑

α

f̃α(η)ρα(η) (9)

analogous to Eq. (2). Taking the logarithm of both sides and
differentiating with respect to η yields the WHAM estimate
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FIG. 1. ST-WHAM results for the 2D Ising model with linear dimen-
sion L = 32 and M = 4. (a) H ex (solid line), H ex

α (dashed line), and f ∗
α

= H ex
α /H ex (dotted line); (b) β∗

S (solid line) and β̄S
α (dashed line); (c) βH

(solid line) and β̄H
α (dashed line), and (d) βW (solid line) and β̄W

α (dashed
line) as a function of e = E/2L2. The magnitude of H ex

α is adjusted for vi-
sualization, and α = 1, 2, 3, and 4 from left to right in (a). The same color
scheme is used for all figures.

for the derivative of ln ρ(η) as

∂ ln ρ̃

∂η
=

∑
α

f ∗
α

[
∂ ln Hα

∂η
+ β0

∂wα

∂η

]
+

∑
α

f ∗
α

∂ ln f̃α

∂η
.

(10)
By retaining only the first term in Eq. (10) the ST-WHAM
estimate for ∂ ln ρ

∂η
is obtained as a weighted superposition

of ∂ ln ρα/∂η over the simulated histogram faction f ∗
α as in

Eq. (4). A similar expression to the first term in Eq. (10) is
also derived in the “umbrella integration” by extending the
thermodynamic integration method and has shown to reduce
the statistical errors compared to conventional WHAM.6

Numerical simulations: The determination of β∗
S by

ST-WHAM given Hα and Wα is now illustrated for the
2D Ising model. We exploit the known exact values
Sex (Ref. 11) to prepare the normalized histograms, H ex

α,i

= exp{Sex
i − Ei/Tα}/(�

∑
i exp{Sex

i − Ei/Tα}), with � = 4
at four equally distributed temperatures Tα between T1 = 2.0
and T4 = 2.6 [see Fig. 1(a)]. The normalized weight f ∗

α in
Fig. 1(a) equals one for non-overlapping energy regions and
rapidly decreases to zero as H ex

α decreases.
By replacing βH

α (Ei) by its finite difference form,
ln(H ex

α,i+1/H
ex
α,i−1)/(2�), Eq. (4) determines the smoothly

varying β∗
S in Fig. 1(b), which is indistinguishable from βex

S

= (Sex
i+1 − Sex

i−1)/(2�). Both β̄H
α and β̄W

α in Figs. 1(c) and
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FIG. 2. (a) Time τM required to compute S given H ex
α at M equally dis-

tributed temperatures between T1 = 2.0 and TM = 2.6 for L = 32, (b) the
error estimates ε(βS ), and (c) ε(S) as a function of Monte Carlo steps per
spin (MCS) averaged over ten realizations of canonical runs with M = 4.

1(d), respectively, are significant only for f ∗
α �= 0. Approxi-

mating H ex
α ≈ exp[β ′

S(E∗
α)(E − E∗

α)2/2], where the prime in-
dicates differentiation and E∗

α is determined from βS(E∗
α)

= βα , we find that βH
α ≈ β ′

S(E∗
α)(E − E∗

α) changes sign as E

crosses E∗
α , giving rise to the oscillatory behavior of βH in

Fig. 1(c). The weighted average of βW = ∑
α f ∗

α βeff
α , βeff

α

= βα , exhibits a staircase modulation [see Fig. 1(d)] and
offsets βH , resulting in β∗

S ≈ ∑
α f ∗

α [β ′
S(E∗

α)(E − E∗
α) + βα]

corresponding to a weighted superposition of tangents of βS

at E∗
α .
As β∗

S � βex
S most errors in S∗ arise from the mapping in

Eq. (7). To examine the accuracy of this mapping we com-
pute the error ε(S∗), with ε(A) = ∑

i |(Ai − Aex
i )/Aex

i |2 for
Ei ∈ [E∗

1 , E∗
M ], by shifting S∗

i and Sex
i to their correspond-

ing values at E∗
1 . We find ε(S∗) ≈ 10−9, showing that the er-

ror is negligible, even though the energies are discrete. To
demonstrate the speed-up of the posterior data analysis us-
ing ST-WHAM we compare the time, τM , needed to deter-
mine the entropy estimate for increasing M . Histograms H ex

α

(α = 1, . . . ,M) are prepared at M equally divided temper-
atures between T1 = 2.0 and TM = 2.6. The log-log plot in
Fig. 2(a) reveals that τM in WHAM scales as τM ∼ M2.3 for
large M regardless of the value of δZ . In contrast, τM in ST-
WHAM is independent of M , because the need to determine
Zα has been eliminated.

The main source of error in finite length simulations is
the statistical fluctuation of Hα . The accuracy of WHAM and
ST-WHAM, is compared by plotting ε(βS) and ε(S) as a func-
tion of MC steps per spin (MCS) in Figs. 2(b) and 2(c), re-
spectively, for canonical runs at evenly distributed tempera-
tures with M = 4. All quantities are averages over ten inde-
pendent realizations and β̃S is calculated from the reweighted
H̃α . Both ε(β̃S) and ε(S̃) in WHAM depend strongly on δZ

and gradually decrease with decreasing δZ . These errors reach
the accuracy of ST-WHAM for δZ = 10−11, implying that
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FIG. 3. Results for the q-state 2D Potts model. (a) T eff
α (dashed line), T ∗

S

(solid line), Hα (dotted line), and characteristic energies ẽo, ẽs,1, ẽds,2, ẽds,1,
ẽs,2, and ẽd (see the text) from left to right (circles); (b) representative con-
figurations at different α for q = 50 and L = 24, (c) T ∗

S (ẽ), (d) β∗
S

′ for
L = 24 (solid line) and L = 36 (dashed line); (e) free energy densities per
spin F (ẽ, Tc) with varying q. In (a), α = 10, 20, 30, 40, 50, 60, 70, 80, and
90 in both T eff

α and Hα . The same color scheme is applied to (c)–(e).

ST-WHAM corresponds to the asymptotic limit of WHAM
associated with δZ = 0. Because ε(S∗) is greater than the er-
ror intrinsic to the mapping (≈10−9), the errors in S∗ are
mostly due to the statistical uncertainties in Hα .

In addition to the simplification of the numerical analy-
sis realized using ST-WHAM, the direct determination of βS

via ST-WHAM unveils key signatures characteristic of phase
transitions.9 Of particular interest is its use with the general-
ized ensemble weight,

Wα = [λα + γ (E − E)]−1/γ , (11)

where {λα, γ, E} are a set of tunable parameters.12, 13 This
form of Wα yields Hα ≈ exp{κ∗/2(E − E∗

α)2} centered at
the crossing point E∗

α between TS and T eff
α = [∂wα/∂E]−1

= λα + γ (E − E). Here κ∗ = (γ − γS)/T 2
S (E∗

α) and γS

= T ′
S(E∗

α). If we vary γ from −∞ to γS , we can continuously
tune the ensemble from δ(E − E∗

α) to a locally flat Hα . The
use of Wα is particularly well suited to sampling strong first-
order phase transitions, in which coexisting states are asso-
ciated with the characteristic backbending of TS , i.e., γS(E)
< 0.9 Phase-mixed configurations are intrinsically unstable
in the canonical ensemble due to κ∗ > 0. These metastable
states are directly accessible in Wα with γ < γS via a uni-
modal Hα .13

To explore the synergistic combination of ST-WHAM
with generalized ensembles in strong first-order phase tran-
sitions, we consider the q-state 2D Potts model with toroidal
geometry. For each q, two short canonical runs at Tl = 0.9Tc

and Th = 1.1Tc, with Tc = 1/ ln(1 + √
q) the critical tem-

perature of the infinite lattice, were performed to approx-
imately determine the internal energies El and Eh, giving
γ = 10(Th − Tl)/(El − Eh) < γS for all sampled energies
and E = El , λ1 = Tl , λM = Th + γ (Uh − Ul), and λα = λ1

+ (α − 1)(λM − λ1)/(M − 1).13 Runs of 106 MCS for each
α with M = 100 associated with T eff

α in Fig. 3(a) produce
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successive unimodal Hα , which are merged to determine T ∗
S

for q = 50. Note that Hα are peaked at crossing points E∗
α

between T eff
α and T ∗

S . Representative configurations at inter-
mediate α in Fig. 3(b) demonstrate that various mixed-phase
configurations are sampled.

The non-monotonic variation of T ∗
S in Fig. 3(a) char-

acterizes a sequence of phase transitions.14 The local max-
imum and minimum at ẽs,1 and ẽs,2 are associated with the
nucleation of disordered (α = 20) and ordered (α = 80)
droplets in each stable phase. The flat region near Tc be-
tween ẽds,1 and ẽds,2 (> ẽds,1) represents the formation of strip
phases corresponding to α = 50 and 60 in Fig. 3(b). Here
ẽ = (e − eo)/(eo − ed), with eo and ed the energies of the free
energy minima of the ordered and disordered phases at Tc. As
q increases both backbending (ẽs,1 < ẽ < ẽs,2) and the strip
phase region (ẽds,1 < ẽ < ẽds,2) gradually expand with more
pronounced transition markers [see Fig. 3(c)].

All the relevant transitions are determined by identify-
ing the locations of zeros and peaks in the derivatives of
β∗

S in Fig. 3(d). The two central peaks at ẽds,1 and ẽds,2, lo-
cate the transitions between the droplet and strip phases, and
are close to the droplet-strip transition energies (gray ver-
tical lines) in the infinite volume limit, π−1 − 1 and π−1,
respectively.15 For L increasing from 24 to 36 (dashed line)
both ẽds,1 and ẽds,2 for q = 50 and 100 shift to the thermo-
dynamic transition points. Zeros of β∗

S
′ corresponding to ẽs,1

and ẽs,2 yield “effective spinodal points,” in which metastable
droplets start to grow by absorbing background fluctuations
in stable phases.14 The free energy densities per spin in
Fig. 3(e), F (ẽ, Tc) = ẽ − TcS

∗/2L2, exhibit wells at ẽ = −1
and 0, and inflections at ẽs,1 and ẽs,2, with flat humps between
ẽds,1 and ẽds,2. Here F is set to zero at ẽd .

In summary, an efficient weighted histogram analysis
method, ST-WHAM, has been proposed in terms of intensive
variables. The method directly determines βS and S with no
iterative evaluations of partition functions, providing the same
accuracy as conventional WHAM for infinite iterations. If
combined with parameterized, generalized ensemble weights,
ST-WHAM gives the complete sequence of phase transitions
among various metastable states via distinct markers in βS

as exemplified by our simulations of the q-state Potts model.
We anticipate that directly accessing both βS and S “on the
fly” during the simulation via ST-WHAM will allow for con-
siderable acceleration in the performance of sampling algo-

rithms that rely on iterative refinements of S (Ref. 16) or
βS .17

In closing, some potential limitations in our approach
should be addressed. As both WHAM and ST-WHAM as-
sume overlaps between energy distributions extra interpola-
tions or extrapolations of Hα(E) using a proper functional
form would be necessary for unvisited energy regions in
rugged or glassy systems. The numerical instability of com-
puting partial derivatives with respect to each order parameter
and recovering extensive quantities from intensive ones poses
a challenge in the extension of our approach to PMF calcula-
tions in multiple order parameters.
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0750309, CHE-1114676, and CHE-0833605) and the Na-
tional of Institutes of Health (NIH) (R01 GM076688) for sup-
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reading of the manuscript.
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