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An extension of the simulation tempering algorithm is proposed. It is shown to be particularly suited
to the exploration of first-order phase transition systems characterized by the backbending or S-loop
in the statistical temperature or a microcanonical caloric curve. A guided Markov process in an
auxiliary parameter space systematically combines a set of parametrized Tsallis-weight ensemble
simulations, which are targeted to transform unstable or metastable energy states of canonical
ensembles into stable ones and smoothly join ordered and disordered phases across phase transition
regions via a succession of unimodal energy distributions. The inverse mapping between the
sampling weight and the effective temperature enables an optimal selection of relevant
Tsallis-weight parameters. A semianalytic expression for the biasing weight in parameter space is
adaptively updated “on the fly” during the simulation to achieve rapid convergence. Accelerated
tunneling transitions with a comprehensive sampling for phase-coexistent states are explicitly
demonstrated in systems subject to strong hysteresis including Potts and Ising spin models and a 147
atom Lennard-Jones cluster. © 2010 American Institute of Physics. �doi:10.1063/1.3503503�

I. INTRODUCTION

The molecular dynamics �MD� and Monte Carlo �MC�
algorithms have become the primary tools for studying equi-
librium properties of diverse physical, chemical, and biologi-
cal systems.1–3 However, simulating complex systems com-
prised of many particles with competing interactions often
struggle to attain an adequate sampling of configurational
space due to the trapping problem arising from rugged en-
ergy landscapes.4,5 A great deal of efforts has been devoted to
the development of enhanced sampling algorithms to accel-
erate the convergence of MC and MD simulations.6–25

One promising approach to achieving this goal is to
combine multiple canonical ensemble simulations with an
additional Markov process in temperature space. A well-
known method exploiting this idea is the simulated temper-
ing �ST�8,9 or expanded ensemble method,10 in which broken
ergodicity at low temperatures is alleviated via a random
walk in temperature space with a proper biasing weight fa-
cilitating temperature transitions.

While the ST approach has been widely applied to com-
plex systems,26–32 a number of challenges must be set to
realize the full potential of the approach, the most demand-
ing being the unknown dependence of the temperature
weight. Since the exact weight corresponding to a relative
free energy is not known a priori, preliminary simulations
refining the weight are required. The refinement process is
susceptible to local trapping in a complex energy landscape
when the temperature weight for newly sampled regions is
not well optimized. This limits the practical application of
the ST in comparison to the temperature replica exchange

method �tREM� or parallel tempering �PT�6,14,15 that does not
require an extra biasing weight.

Recently, several sophisticated methods have been pro-
posed to accelerate the determination of the temperature
weight.30–34 One robust approach exploits the “average
guide”31 or “adaptive integration method,”32 in which the
temperature weight is adaptively updated by numerically in-
tegrating the derivative of the Helmholtz free energy. By
determining the internal energy estimate from running aver-
ages of simulated trajectories, the weight determination is
significantly accelerated. The usefulness of the average guide
has been demonstrated in the combination of the ST and
generalized ensemble sampling. In generalized simulated
tempering �GST�,35 optimally parametrized non-Boltzmann
weights combined with the weight-dependent average guide
enable a systematic improvement over acceptance ratios for
subensemble transitions, exploiting delocalized energy distri-
butions.

In more recent years, considerable attention has been
paid to the application of ST to biomolecular simulations36–38

due to its better scaling property with system size and supe-
rior acceptance ratio for temperature transitions. Several
comparison studies39–41 revealed that ST with a properly
chosen temperature weight exhibits faster diffusion in tem-
perature space and a better sampling efficiency in compari-
son to the tREM. Combinations of the ST and other en-
hanced sampling methods have further explored this
synergistic advantage.42–45 However, the widespread use of
ST to systems with complex energy landscapes and applica-
tions involving strong phase transitions, in which a large
energy gap intervenes between two macroscopic phases, still
remains challenging.

In this paper, the applicability of ST is further extended
to diverse first-order phase transition systems by analyzing
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how conventional ST struggles to sample metastable states
associated with the backbending �or S-loop� in the statistical
temperature TS�E� �or microcanonical caloric curve�46 char-
acteristic to first-order phase transitions in finite size
systems.47–54 Our analysis reveals that an intrinsic instability
of the canonical ensemble to a negative slope region in TS�E�
is a primary cause for poor acceptance for temperature tran-
sitions in ST.

Exploiting this finding and the one-to-one correspon-
dence between the sampling weight and the effective
temperature,55 an inverse mapping strategy is proposed to
design optimally parametrized non-Boltzmann sampling
weights. It is shown that a set of linear effective temperatures
with a proper negative slope yields optimal Tsallis-weight
ensembles,56 avoiding an instability of the canonical en-
semble for the backbending region in TS�E� and transforming
unstable or metastable energy states of canonical ensembles
into stables ones with successive unimodal energy distribu-
tions.

Another key ingredient of our method is an adaptive
update scheme for the biasing weight in parameter space. A
semianalytic expression for the biasing weight is derived by
identifying the average guide35 for a newly designed Tsallis
weight. Faster determination of the biasing weight and an
optimal selection of Tsallis parameters via the inverse map-
ping enables a comprehensive sampling for phase-coexistent
states with a significant acceleration of tunneling transitions
between two macroscopic phases as exemplified in Potts
model.57 Illustrative simulations for 256�256 Ising model
demonstrate that our method is equally effective in exploring
strong phase transition systems associated with nonback-
bending behavior in TS�E�.

The effectiveness of our method in treating continuum
systems has been further explored in a 147 atom Lennard-
Jones cluster �LJ147� subject to strong hysteresis character-
ized by a severe backbending in TS�E�.47,48 It is shown that
coupling the GST walker to independent Tsallis-weight runs
via unconditional configurational swaps greatly shortens the
weight determination process and facilitates tunneling tran-
sitions without disturbing detailed balance. The underlying
mechanism of accelerated tunneling transitions in the GST
coupled to Tsallis-weight runs is discussed in detail.

The paper is organized as follows. A general formulation
of the ST and GST is outlined in Sec. II. The failure of the
ST in sampling metastable, mixed states with the backbend-
ing region in TS�E� is analyzed in Sec. III. The inverse map-
ping strategy for designing optimal noncanonical ensemble
weights is presented with a summary of simulation protocols
for the GST in Sec. IV. The performance of our method is
examined and quantitatively compared with Wang–Landau
sampling20 and the tREM for Potts and Ising models in Sec.
V and the LJ147 cluster in Sec. VI. Our conclusions are pre-
sented in Sec. VII.

II. THEORETICAL BACKGROUND

A. Simulated tempering

The ST algorithm8–10 combines several canonical en-
semble runs with an additional Markov process on a set of

reciprocal temperatures � j = �kBTj�−1 �j=1, . . . ,M�, kB being
the Boltzmann constant. Here j represents a subensemble
index and M is the number of subensembles.

Two types of Markov moves are alternatively performed
during the ST simulation: �1� a configurational move sam-
pling the Gibbs–Boltzmann weight WGB=exp�−�E�x��, E�x�
being the potential energy, which is accepted with the Me-
tropolis criterion

AST
intra�x → x�;�� = min�1,e−��E�−E�� , �1�

E=E�x� and E�=E�x��, and �2� an infrequent temperature
transition subject to the acceptance probability

AST
inter�� → ��;x� = min�1,G����/G���e−���−��E� , �2�

G��� being the unknown temperature weight biasing transi-
tions in � space. The ultimate goal of ST is to perform a
random walk in � space with a proper G���, providing an
effective means for escaping from trapped states and over-
coming undesirable broken ergodicity at low temperatures.

B. Generalized simulated tempering

The basic idea of ST is naturally extended to non-
Boltzmann weights �GST�,35,61 in which a configurational
space is sampled by an optimally designed generalized en-
semble weight WGST=exp�−w�E ;���, w�E ;�� being the ef-
fective potential. Here the parameter � plays a similar role to
� in ST. The dynamic range of � should cover low and high
energy regions and WGST is usually selected to produce a
delocalized energy distribution.

In GST, configurational moves are accepted with prob-
ability

AGST
intra�x → x�;�� = min�1,e−w�E�,��+w�E,��� , �3�

and trial moves in � space are accepted with probability

AGST
inter�� → ��;x� = min�1,G����/G���ew�E;��−w�E;���� , �4�

G���=exp�G���� being a biasing weight in � space. The ef-
fective free energy G��� is a key quantity in facilitating tran-
sitions and realizing a random walk in � space.

The probability density function �PDF� in � space P���
is proportional to Z���G��� /N in GST, Z���
=�WGST�x ;��dx being a partition function for the suben-
semble � and N being a normalization constant. A random
walk in � space is accomplished by determining an ideal
effective free energy,

Gid��� = − ln Z��� , �5�

which reduces to �f��� in ST, f��� being the Helmholtz free
energy.

C. Average guide for �Gid /��

The bottleneck in both ST and GST is the determination
of the unknown effective free energy G��� or G���. Recently,
this determination has been significantly facilitated by iden-
tifying the average guide for the derivative of the effective
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free energy.31,35 The average guide for �id���=�Gid /�� natu-
rally emerges from differentiating both sides of Eq. �5� with
respect to � as

�id��� = 	��E;��
� = �̄��� , �6�

��E ;��=�w�E ;�� /��, and 	A
� indicates a subensemble av-
erage �dEP��E�A, P��E� being the generalized probability
density function �GPDF� at �.

The most promising feature exploiting the average guide
is that G��� is adaptively determined during the simulation
by integrating �̄���, which is obtained as a subensemble av-
erage for ��E ;�� over running trajectories. �̄��� reduces to
the internal energy U���= 	E
� in the conventional ST with
Gid���=�f���. Once the analytic form of w�E ;�� is known,
�̄��� in GST is uniquely determined. In some cases, per-
forming ST in temperature T rather than � is more conve-
nient employing the average guide �̄�T�=−	E
T /T2

=−U�T� /T2.31

III. SIMULATED TEMPERING AROUND FIRST-ORDER
PHASE TRANSITIONS

A. Backbending in TS„E…

The weight determination is significantly accelerated
with the average guide31 or other clever methods.30,32–34

However, ST still struggles to attain its maximum power for
strong phase transitions. The situation becomes more acute
in the vicinity of first-order phase transitions, in which a
large energy gap involving the latent heat intervenes between
P���c

�E� and P���c
�E�, �c being the transition temperature.

This difficulty is associated with an onset of a convex
region ��2S /�E2�0� in the microcanonical entropy S�E�, as
sketched in Fig. 1�a�.47–49 The convex “intruder” in S�E�
gives rise to an intriguing negative slope region in the statis-
tical temperature in Fig. 1�b�,

TS�E� = ��S/�E�−1, �7�

so called “backbending” or S-loop behavior.47–54

The backbending in TS�E� manifests an inherent instabil-
ity of the canonical ensemble to phase-coexistent states,
which invokes a bimodal structure in the canonical PDF
P��E�=e−FST�E;�� /Z���, FST�E ;��=E−TS�E� being the
Helmholtz free energy density. Noting that FST�E ;�c� has
three extrema at energies satisfying TS�Ei

��=Tc �E1
��E2

�

�E3
��, P�c

�E� becomes double peaked at stable crossing
points E1

� and E3
� with a local minimum at the unstable cross-

ing point E2
�.54 Identifying �FST� �E�=�2TS��E�, the prime be-

ing the differentiation with respect to E, reveals that the in-
termediate energy states between Eu

1 and Eu
2 are intrinsically

unstable for the canonical ensemble.
When the system size L is small, both free energy

minima at E1
� and E3

� can be sampled across a free energy
barrier at E2

� �see Fig. 1�c��. However, as L grows the back-
bending region becomes inaccessible due to a high free en-
ergy barrier. “Tunneling transitions” between the two macro-
scopic phases become rare, resulting in a localized P��E�
around E1

� or E3
�, depending on whether ���c or not.

B. Temperature transitions near �c

To illustrate how ST fails in sampling across the back-
bending, consider a typical temperature transition between �l

���c� and �h ���c�, close to �c, at which P�l
�E� and P�h

�E�
are sharply peaked at E1

� and E3
�, respectively. Assuming that

�id���=U��� is known, the acceptance probability in Eq. �2�
transforms into min�1,eh��l,�h;E�� where

h��l,�h� = �
�l

�h

��id��� − E�d� = �U� − E���h − �l� , �8�

and U�=U���� for �h�����l. As U��� smoothly varies
across the transition region, we apply the mean-value theo-
rem for ��l

�h�id���d�=�id������h−�l�. By taking a linear ap-
proximation for U����E1

�+ �	E� /	����−�l�, 	E�=E3
�−E1

�,
and 	�=�h−�l, we identify U���E1

�+E3
�� /2. For the

sharply peaked P�l
�E� at E1

�, h��l ,�h ;E��	E�	� /2�0
since 	��0 and 	E��0, implying that transitions from �l

to �h are exponentially suppressed. The same situation oc-
curs for the reverse transition from �h to �l with
h��h ,�l ;E��	E�	� /2 due to the sharply peaked P�h

�E� at
E3

�.
This analysis demonstrates that regardless of the current

energy states, the acceptance for temperature transitions
crossing �c diminishes exponentially as

AST
inter�� → ��;E� � min�1,e−
	E����−��
/2� . �9�

Note that the acceptance for temperature transitions in ST is
always greater than the acceptance for replica exchanges
near �c in the tREM, which varies as min�1,e−
	E����−��
�,58

as has been proven for the general case.39
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FIG. 1. �a� Convex regions �dashed line� in S�E� between Eu
1 and Eu

2, �b� the
backbending �S-loop� in TS�E� and effective temperatures T�E ;���=Tc

+
��E−E2
��, 
�=T��E2

� ;���, and TS�Ei
��=Tc �E1
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��, and �c�
FST�E ;�c�=E−TcS�E�. In �b�, unstable energy states around E2

� in the ca-
nonical ensemble 
�=0 become stable in the generalized ensemble of Eq.
�16� with 
��
S

min=TS��E2
��. Marginal corresponds to 
�=
S

min.
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IV. GENERALIZED SIMULATED TEMPERING FOR
FIRST-ORDER PHASE TRANSITIONS

A. Inverse mapping

Our analysis reveals that the canonical ensemble is not
an optimal distribution for ST when challenged to sample
across a backbending region because of its intrinsic instabil-
ity. Is it possible to construct a noncanonical ensemble, trans-
forming unstable or metastable states of the canonical en-
semble into stable ones, with a unimodal energy distribution?
The Gaussian ensemble approach59 and its parallel verstion60

accomplish this goal by multiplying the Boltzmann factor by
a Gaussian in energy.

The challenge in our study is to construct a set of gen-
eralized ensemble weights, WGST�E ;��� ��=1, . . . ,M�,
which, as the parameter �� varies, successively samples un-
stable or metastable energy states for the backbending region
in TS�E�. A key relationship in designing such an optimal
weight is an inverse mapping between the sampling weight
and its effective temperature,

T�E;��� = � �w�E;���
�E

�−1

. �10�

A necessary and sufficient condition for T�E ;���, yielding a
unimodal PDF for the negative slope region in TS�E�, is de-
rived by identifying a stability condition of an extremum E�

�

of the generalized PDF. If P��E�=e−FGST�E;��� /Z����, FGST

=w�E ;���−S�E� being a generalized free energy density, the
extremum of FGST� �E�

��=0 is determined by

T�E�
� ;��� = TS�E�

�� = T�
� , �11�

and its stability is identified by

FGST� �E�
�� = �
S − 
��/T�

�2, �12�


S=TS��E�
��, and 
�=T��E�

� ;���. Here the prime denotes a
differentiation with respect to E.

The key finding in both Eqs. �11� and �12� is that a
unimodal P��E� can arise from forming the unique crossing
point E�

� between TS�E� and T�E ;��� subject to 
��
S. In-
deed, a second order expansion of P��E� at E�

� verifies

P��E� � e−�E − E�
� �2/2��, �13�

��=T�
�2 / �
S−
��, illustrating that the “stable” in Fig. 1�b�,

with 
��
S, generates a Gaussian PDF centered at E�
� with

the positive �� even for a negative 
S. The GPDF ap-
proaches ��E−E�

��, with 
�→−
, corresponding to the mi-
crocanonical ensemble, and becomes locally flat around E�

� ,
with 
�=
S �“marginal” in Fig. 1�b��. The crossing point E�

�

is unstable for 
��
S as in the canonical ensemble.

B. Linear effective temperature—Tsallis weight

The simplest choice for the effective temperature is a
linear one

T�E;��� = �� + 
0�E − E0� , �14�

the control parameter �� being the T-intercept at an arbitrary
E0 in two-dimensional �E ,T� space and 
0 being a linear
slope. As illustrated in Fig. 2�a�, a set of linear effective

temperatures with a negative slope 
0�
S
min, 
S

min being the
minimum value of 
S, forms successive stable crossing
points with TS�E� across the backbending region, forming
Gaussians centered at �E�

��.
Since TS�E� monotonically increases outside the transi-

tion region, the optimal 
0 is easily guessed from the ap-

proximate TS�E� by connecting points �Ũ�= Ũ�T�� ,T��,
Ũ�T�� being an average energy derived from a short canoni-
cal run at T�. For example, 
0 can be safely chosen as 
L

= �T1−TM� / �ŨM − Ũ1�. Once 
0 is fixed the dynamic range of

�� is determined between �1=T1 and �M =TM −
0�ŨM − Ũ1�
with E0= Ũ1. Notice that the first and Mth effective tempera-

tures are constructed to cross �Ũ1 ,T1� and �ŨM ,TM�, respec-
tively. Intermediate �� ��=2, . . . ,M −1� are chosen by
equally dividing � space as

�� = �1 + �� − 1�	� , �15�

	�= ���M −�1�� / �M −1�.
The linear effective temperature of Eq. �14� produces a

generic form of the Tsallis weight56 proposed in nonexten-
sive statistical mechanics as

WTS � ��� + 
0�E − E0��−1/
0 = T�E;���−1/
0, �16�

implying that the GST exploiting Eq. �14� is equivalent to
the Tsallis-weight based ST.35,61 However, note that the pa-
rametrized Tsallis weights with 
0�
S

min in the GST are in-
troduced to transform unstable energy states of the canonical
ensemble into stable ones rather than simply producing more
delocalized P��E� in other variants.35,61–65
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C. Average guide �„��…

Denoting

��E;��� =
�wTS

���

=
1


0

1

�� + 
0�E − E0�
, �17�

wTS=−ln WTS, the average guide associated with Eq. �16� is
obtained as

�̄���� =
1


0
� 1

T�E;�����

. �18�

For a sufficiently small 
0 ��
S
min�, yielding a sharply

peaked P��E� at E�
� , the subensemble average in Eq. �18�

mostly arises from the neighborhood of E�
� , resulting in

�̄���� � �̄max���� =
1


0

1

T�
� , �19�

T�
� =T�E�

� ;���=��+
0�E�
� −E0�. Throughout this work we

utilize Eq. �19� for the average guide by identifying the most
probable energy set �E�

�� in P��E�.

D. Effective free energy G„��…

Integrating the average guide �̄��� with respect to �
gives rise to the effective free energy,

G���� = 
0
−1�

�1

��

1/T�E�
� ;��d� , �20�

E�
� being the most probable energy in P��E�. Interpolating

��� ,T�
�� as T�E�

� ;��=T�
� +����−��� for �� ��� ,��+1�, ��

= �T�+1
� −T�

�� / ���+1−���, and integrating Eq. �20� yields a
semianalytic effective free energy,

G��m� = �
�=1

m−1

	G�
+�
0� = �

�=1

m−1
1


0��

ln�T�+1
� /T�

�� , �21�

	G�
+�
0�=G���+1�−G����, which is completely determined

by identifying �E�
��.

Accordingly, subensemble transitions in GST proceed
with

AGST
inter�� → � � 1;E� = min�1,e	�

��
0�� , �22�

where 	�
��
0�=	G�

��
0�−	w�
��
0�, 	G�

−�
0�=−	G�−1
+ �
0�,

and 	w�
��
0�=wTS�E ;���1�−wTS�E ;���. In the asymptotic

limit of 
0→0, GST reduces to conventional ST associated
with WGB�e−�E−E0�/��, �� being equally distributed tempera-
tures between T1 and TM. As demonstrated in the Appendix,
the analytic continuation of 
0→0 in Eq. �21� recovers the
effective free energy GST�T�� of Eq. �A1� in conventional ST.

E. Detailed simulation protocol

�1� Run short canonical runs at T1 and TM to determine

approximate average energies Ũ1 and ŨM, respectively.

Select a proper 
0 based on 
L= �T1−TM� / �ŨM − Ũ1�
and determine �� using Eq. �15� between �1=T1 and

�M =TM +
0�ŨM − Ũ1� with E0= Ũ1. The initial G0����
is guessed from �E�

� ,T�
�� obtained by short Tsallis-

weight runs.
�2� Run GST with Eqs. �3� and �22�. Update Gn���� regu-

larly by identifying �E�
�� from the accumulated P��E�.

The subscript n in Gn���� denotes the number of up-
dates.

�3� Complete a production run with a frozen Gn���� and

compute the entropy estimate S̃�E� by joining suben-
semble runs with the weighted histogram analysis
method.7 All canonical thermodynamic properties can

be calculated at arbitrary temperature with S̃�E�.

V. APPLICATIONS TO DISCRETE SYSTEMS

A. Potts model

To illustrate how effectively GST performs around a
typical first-order phase transition, we have examined eight
state Potts model as a benchmark. The energy is determined
as E=−�	ij
��Si ,Sj�,

57 where the sum runs over the nearest-
neighbor spins on the L�L square lattice and Kronecker �
takes the value 1 if Si=Sj and 0 otherwise. Here Si=1,2 , . . .,
Q=8 are spin variables.

To determine 
0 and a dynamic range of ��, we first
performed short canonical runs for 2�104 MC sweeps

�MCSs� at T1=0.7 and TM =0.8, yielding Ũ1�−7507.8 and

ŨM �−3438.7. One MCS means L2 MC trial moves for all
spins. Based on 
L�−2.5�10−5, several GST simulations
were performed with varying 
0 for L=64 as summarized in
Table I. G0���� was determined from �E�

� ,T�
�� guessed by

Tsallis-weight runs for each 2�104 MCS, and Gn���� was
updated every 105 MCS with subensemble transitions every
MCS.

Since the effective temperatures T�E ;��� in Fig. 2�a� are
designed to produce narrow P��E� with 
0�
L, the most
probable set �E�

� ,T�
�� quickly converges toward a locus of

TS�E�. Indeed, the profile of �E�
� ,T�

�� determined from the
GST1 in Table I for 2�108 MCS shows a perfect coinci-
dence with TS�E� determined from the statistical temperature
Monte Carlo �STMC� simulation, and �E�

�� exactly corre-
spond to the crossing points between TS�E� and T�E ;��� in
Fig. 2�a�. The backbending in TS�E� is apparent between
Eu

1�−1.6L2 and Eu
2�−1.15L2, and unimodal energy distri-

butions P��E� centered at �E�
�� smoothly join ordered and

disordered phases in Fig. 2�b�. The superimposed energy dis-
tribution PT�E�=1 /�N���N�P��E�, N� being the number of
sampled configurations at ��, is fairly uniform across the
backbending region with a characteristic structure stemming
from narrow peaks in P��E�.

Due to the adaptive refinement of Gn����, transitions in �
space do not satisfy a rigorous detailed balance at the begin-
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ning of the simulation. However, as the most probable ener-
gies �E�

�� converge to crossing points between T�E ;��� and
TS�E�, Gn���� becomes effectively frozen and detailed bal-
ance is recovered. Notice that energies �E�

�� at 5�106 MCS
already coincide with those converged at 2�108 MCS in
Fig. 3�a�. Also, �̄max���� in Eq. �18� becomes indistinguish-
able from Eq. �19� after 5�107 MCS in Fig. 3�b�. We found

Gn�100����−G
����
�10−2 for all �, G
 being Gn at 2
�108 MCS, implying that the biasing weight in parameter
space is practically frozen after 107 MCS. A production run
was performed with the frozen G500����.

Typical random walks in both E and � space show nu-
merous transitions in Figs. 4�a� and 4�b�, respectively. Indi-
vidual energy trajectories of each subensemble in Fig. 4�c�

illustrate that localized energy distributions centered at �E�
��

smoothly bridge between ordered and disordered phases
across the backbending region. For comparison, we per-
formed the tREM simulation with M =30, in which tempera-
tures are evenly distributed between 0.7 and 0.8, and replica
exchanges were attempted every MCS per replica. Two ef-
fectively disjointed sampling domains with no replica ex-
change are apparent in Fig. 4�d�. We also performed the en-
tropic version of Wang–Landau �WL� sampling for the same

energy range. In WL sampling, the entropy estimate S̃�E� is

dynamically refined as S̃�E�= S̃�E�+ln f for a visit to E. The

TABLE I. Simulation details of GST and WL simulations for Potts model with L=64 and 128 and Ising model
with L=256. �E and tS denote mean tunneling times and total simulation times, respectively. The asterisk � in
GSTn

� indicates that the GST simulation is performed with new effective temperatures, Eq. �23�, exploiting
�E�

� ,T�
�� determined from the GSTn simulation.

System Method L M 
0 �E �MCS� tS �MCS�

Potts GST1 64 30 �0.000 1 3.03�105 1.5�108

GST2 64 30 �0.000 05 3.19�105 1.5�108

GST3 64 30 �0.000 01 6.12�105 1.5�108

GST4 64 20 �0.000 05 3.43�105 1.5�108

GST1
� 64 30 �0.000 01 2.13�104 1.5�108

WL 64 2.34�105 1.5�108

GST5 128 50 −1.87�10−4 2.67�106 2.0�108

GST5
� 128 50 −1.87�10−5 1.31�106 2.0�108

WL 128 1.81�106 3.2�108

Ising GST6 256 60 �0.000 1 5.32�105 2.5�107

GST6
� 256 60 4.5�10−6 2.81�105 1.5�108

GST7
� 256 30 4.5�10−6 2.42�105 1.0�108

GST8
� 256 90 4.5�10−6 4.04�105 1.0�108

WL 256 2.38�105 1.5�108
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modification factor f reduces to �f starting from 1.01 once


H�E�− H̄
 / H̄�0.2, H̄ being the average histogram. S̃�E� was
refined down to fd= f −1=10−9 for 1.5�108 MCS.

To systematically quantify the global convergence of
simulations, accumulated tunneling transitions NE �Refs. 12,
67, and 68� were computed between −1.80L2 and −0.85L2,
approximately corresponding to E1

� and EM
� , respectively. The

accumulated transitions NE in Fig. 5�a� increase linearly with
respect to MCS, implying that barrier crossing rates are al-
most constant throughout simulations. It is found that NE in
the GST1 and GST2 with 
0=−0.0001 and �0.000 05, re-
spectively, are slightly less than NE corresponding to the WL
computed for additional 108 MCS. A drop of NE in GST3

with further increasing 
0=−0.000 01 is attributed to less
efficient sampling for the transition region stemming from
less formation of E�

� in the backbending region with the bi-
ased PT�E� in Fig. 5�b�. On the other hand, NE remains
nearly constant with much fewer subensembles of M =20 in
GST4 with a proper 
0=−0.000 05.

Tunneling is facilitated by unimodal PDFs located in the
backbending region. Forming more crossing points in the
transition region is crucial for an optimal performance of the
GST. To investigate how a distribution of �E�

�� affects NE, the
GST� simulations in Table I were performed with a set of
new effective temperatures,

T��E;��
�� = ��

� + 
0�E − E0� , �23�

��
� =T�

� −
0�E�
� −E0�. Notice that T��E ;��

�� are selected to
cross �E�

� ,T�
�� regardless of 
0. We used the most probable

data set �E�
� ,T�

�� of the GST1. Due to a dense distribution of
�E�

�� in the transition region, the GST1
� gives rise to three

times more NE in Fig. 5�a�, and a more delocalized PT�E� in
Fig. 5�c�, even for the same 
0=−0.000 01 in comparison to
the GST3.

Average acceptance probabilities pacc
� ��� from � to ��1

show a nonmonotonous 
0 dependence in Figs. 6�a� and
6�b�. Both pacc

� ��� in GST3 exhibit a minimum dip around
�=15. In forming a more dense distribution of �E�

�� upon
decreasing 
0 to �0.000 05, pacc

� ��� increases gradually for
the transition region, but declines in ordered and disordered
phases due to a narrowing of P��E�. As 
0 is further de-
creased to �0.0001 in GST1, narrowed P��E� cause an over-
all decrease in pacc

� ���, but a compact distribution of �E�
��

produces a more uniform pacc
� ���. A dramatic enhancement

of pacc
� ��� in the transition region is observed for GST1

�, giv-
ing rise to the highest NE in Fig. 5�a� by maintaining a dense
distribution of �E�

�� with more delocalized P��E�.
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To mark a departure from a random walk in � space we
compared the ratio Racc���= pacc

+ ��� / pacc
− ���−1 in Fig. 6�c�.

A perfect random walk corresponds to Racc���=0. Racc��� in
GST3 in Fig. 6�c� exhibits a large deviation from zero at �
=14 and 16, indicating a biased flux toward ordered and
disordered phases in subensemble transitions. On the other
hand, Racc����0 throughout � in both GST1 and GST2 sig-
nifies a random walk in parameter space, yielding a nearly
flat P��� in Fig. 6�d�. A drop of P��� at �=1 and 30 in Fig.
6�d� is due to restricted trial moves in ��. Of particular in-
terest is that the profile of Racc��� in GST1

� is opposite to that
of GST3, implying that �� transitions are biased toward the
phase transition region, and the peaked P��� around �=15 in
GST1

� stems from a centralized flux into the transition region,
while the peak in GST3 at �=15 is due to trapping.

Our analysis reveals that an optimal way to maximize
performance of the GST is to first determine a dense distri-
bution of �E�

�� for the transition region and then switch to a
production run with Eq. �23� for a new 
0�
S

min. We applied
this strategy to Potts model with L=128. A dense distribution
of �E�

�� is determined by the GST5 simulation for 5�107

MCS. The parameter 
0=−1.87�10−4�
L=−6.2�10−6 is
set by short canonical runs at T1=0.7 and TM =0.8. Two pro-
duction runs with different 
0 �see Table I� were performed
for each 2�108 MCS with the fixed G���� in Eq. �21�. We

also performed WL sampling by refining S̃�E� down to fd

=10−9 for 3.2�108 MCS for the energy range between
−1.83L2 and −0.85L2. The reduction of f is quick in the
beginning, but slows down as fd approaches zero.

Even with a much shorter time for the weight refinement
�5�107 MCS for the GST5

� and 3.2�108 MCS for the WL�,
NE of the GST5

� is higher than that of the WL simulation in
Fig. 7�a�. A faithful sampling for the transition region results
in the uniform PT�E� via compact assignment of GPDFs in
Fig. 7�b�. Heat capacities Cv determined by the reweighting
in Fig. 7�c� for L=64 collapse into a single line regardless of
simulation conditions, while Cv of WL simulation exhibits a
small deviation from those of the GST simulations due to a

residual error in the refinement of S̃�E�. The corrected Cv
computed through multicanonical sampling for an additional
108 MCS �Ref. 69�, denoted as WL�, shows perfect agree-
ment with that of the GST. On the other hand, heat capacities
of both GST and WL for L=128 are in good agreement in
Fig. 7�d�.

B. Ising model

To examine how efficiently the GST algorithm explores
a phase transition associated with a nonbackbending TS�E�,
the GST method is applied to Ising model with L=256.

Based on Ũ1�−1.75L2 and ŨM=60�−1.03L2 at T1=2.0 and
TM =2.6, respectively, we first performed the GST6 simula-
tion for 2.5�107 MCS with 
0=−0.0001 to determine a
dense distribution of �E�

�� in Fig. 8�a�.
In contrast to Potts model, TS�E� traced by �E�

� ,T�
��

monotonically increases with a characteristic slope variation
near Tc�2.27. Based on �E�

� ,T�
�� of GST6, we performed the

GST6
� simulation with 
0=4.55�10−6�
S

min. In the case of a
nonbackbending TS�E�, 
0 is not necessarily negative be-

cause stable crossing points can be formed as long as 
0

�
S
min. Here we determined 
0 as the minimum value among

the linear slopes connecting �E�
� ,T�

�� to produce more delo-
calized P��E�.

As illustrated in Fig. 8�b�, the GPDFs, P��E�, in low and
high energy regions are almost Gaussians centered at E�

� ,
while P30�E� associated with T��E ;�30

� �, tangential to TS�E�
around E30

� , exhibits a much broader distribution in Fig. 8�b�.
A faithful sampling in the transition region with a compact
distribution of �E�

�� is marked by PT�E� peaked around E�
−1.42L2. In comparison to GST6, NE computed between
−1.68L2 and −1.07L2 in Fig. 8�c� is doubled in GST6

�, with �E

comparable to that of the WL simulation in which S̃�E� was
refined for 1.5�108 MCS down to fd=1.8�10−11.

To investigate M-dependence of NE two additional simu-
lations of GST7

� and GST8
� were performed for each 108 MCS

with M =30 and 90, respectively. The compact data set
�E�

� ,T�
�� was determined for 2.5�107 MCS with 
0=

−0.0001. In comparison to GST6
�, NE becomes more acceler-

ated in GST7
� with M =30, resulting in the essentially same �E

as WL, while GST9
� with M =90 shows a much longer �E for

the same 
0=4.55�10−6. This means that adding more sub-
ensembles does not always lead to an enhancement of tun-
neling transitions especially if sufficient energy overlaps be-
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tween neighboring subensembles already form in the
transition region with broader GPDFs. Actually, increasing
M requires more subensemble transitions for a tunneling,
leading to an increase of �E as demonstrated in GST8

�.
A comprehensive sampling for the phase transition re-

gion with a comparable �E to WL, while requiring a much
smaller time for weight refinement, demonstrates that GST
method with an optimal parameter set is more efficient than
the WL algorithm for phase transitions with a nonbackbend-
ing TS�E�.

VI. APPLICATIONS TO CONTINUUM SYSTEMS

The 147 atom Lennard-Jones cluster LJ147 is an ideal
benchmark to test the effectiveness of our method in con-

tinuum systems. A solid-liquid transition is associated with a
severe backbending in TS�E� �Refs. 47 and 48� and a strong
hysteresis significantly hampers the weight refinement in
various generalized ensemble methods.68 The tREM or PT
approach is known to be most effective as it employs a
known sampling weight and a long relaxation process to the
global minimum is greatly shortened via configurational
swaps with low temperature replicas that typically explore
the global minimum basin throughout the simulation.

Due to the adaptive refinement of G����, GST experi-
ences difficulty in effective sampling arising from strong
hysteresis. To alleviate this problem, we coupled the GST
walker to separate Tsallis-weight runs with the weight
WTS�E ;���, denoted by TW� ��=1, . . . ,M�, via additional
Markov moves swapping configurations between the GST
walker and the TW�. The configuration x at the current sub-
ensemble � in the GST walker is regularly swapped with the
configuration x� in the TW�. Since both configurations x and
x� are sampled by the same WTS�E ;���, these configurational
swaps are unconditionally accepted without disturbing de-
tailed balance.

The purpose of these configurational swaps is twofold.
First, as in the tREM or PT, configurational swaps with low
energy TW� runs allow the GST walker to easily access the
global minimum basin facilitating weight determination.
Second, coupling the GST walker to intermediate TW� runs
around the phase transition region, constantly sampling
phase-coexistent states, facilitates tunneling transitions by
avoiding an intrinsic time scale for phase-coexistent states.

All GST simulations in Table II were performed with the
same 
0=−0.01 and M =30. �ex was varied to examine how
configurational swaps between GST and the TW� affect the
weight determination and NE. Here �ex represents a time in-
terval for configurational swaps, which varies from one MCS
to 
 corresponding to no configurational swaps, and deter-
mines the extent of synchronization between sampling pro-
cesses. The global minimum structure was taken to be the
initial configuration with a spherical wall at the radius Rc

=4.0. To minimize the extra computational burden, the total
simulation time for TW� runs was adjusted to be approxi-
mately one tenth of that in the GST by propagating TW�

runs for �15�M� MC moves during �N�M� MC moves in
the GST walker. The initial guess for G0���� was determined
by TW� runs for 104 MCS.

The difficulty of the weight determination in the pres-
ence of strong hysteresis is clearly demonstrated in Figs. 9�a�
and 9�b�, in which E and �E�

� ,T�
�� in the GST4 ��ex=
� are

plotted as a function of progress in the simulation. Even
though the simulation was started from the global minimum,
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FIG. 8. �a� T��E ;��
�� and �b� P��E� in GST6

�, and �c� NE in GST and WL
simulations for Ising model with L=256. �=1, 10, 20, 30, 40, 50, and 60
from bottom to top in �a� and from left to right in �b�. In �c�, WL shows a

very steep increase of NE in the beginning due to a strong bias in S̃�E�, but
starts to develop a linear increase of NE as fd→0. Notice that �E of WL was
determined from a linear regime of NE, shifted down by 500 for comparison.

TABLE II. Simulation details and mean tunneling times �E for GST and tREM simulations for LJ147. �ex

denotes a time interval for configurational swaps between the GST and TW� runs.

Method N M 
0 �ex �MCS� �E �MCS� tS �MCS�

GST1 147 30 �0.01 1 4.16�104 2.5�108

GST2 147 30 �0.01 30 4.51�104 2.5�108

GST3 147 30 �0.01 300 6.83�104 2.5�108

GST4 147 30 �0.01 
 9.30�106 2.5�108

tREM 147 30 3.84�106 5.0�108
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the poorly estimated G0���� causes an immediate transition
to liquid states in Fig. 9�a�. Note that a locus of �E�

� ,T�
�� at

3�105 MCS significantly deviates from the converged TS�E�
determined by replica exchange statistical temperature
Monte Carlo �RESTMC� �Ref. 66� in Fig. 9�b�. Once the
system makes a transition to liquid states, sampling the glo-
bal minimum basin is significantly hindered. Transient trap-
ping in supercooled states is characterized by the stepwise
variation of �E�

� ,T�
�� at 3�107 MCS in Fig. 9�b�.

On the other hand, GST1 with �ex=1 effectively avoids
trapping in metastable states and reaches the global mini-
mum basin after 5�106 MCS via configurational swaps to
low temperature TW� runs, as seen in Fig. 10�a�. The pro-
files of �E�

� ,T�
�� in the GST1 are smoothly varying and con-

verge to TS�E� at 1.2�108 MCS in Fig. 10�b� even for the
backbending region. Frequent solid-liquid transitions are ob-
served in Fig. 10�c� with frozen Gn���� beyond 1.2�108

MCS across a unimodal P��E� peaked at stable crossing
points �E�

��, resulting in a uniform PT�E�.
Once Gn���� becomes effectively frozen in both GST1

and GST2 after 2.5�107 MCS and 108 MCS, respectively,
NE develops a linear relationship in Fig. 11�a�. More frequent
configurational swaps between the GST walker and the TW�

accelerate the weight determination with an early onset of a
linear increase in NE in the GST1 ��ex=1�. To examine the
effect of �ex on NE, we also performed the GST3 simulation
��ex=300� with well-equilibrated initial configurations. A lin-
ear increase in NE is observed in Fig. 11�a� with a slightly
increased �E in Table II. The weak dependence of �E upon
variation of �ex implies that the main factor accelerating NE

is coupling between the GST walker and TW� runs. The
speed-up of NE measured by R�=�tREM /�GST is about
102-fold.
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FIG. 11. �a� NE in GST simulations with varying �ex in Table II and �b�
reweighted heat capacities in GST, RESTMC, and tREM simulations for
LJ147.
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What is the underlying mechanism for additional accel-
erations of NE in GST coupled to the TW�? In a single rep-
lica simulation, forming mixed-phase configurations from or-
dered or disordered states is sequential and cumulative. �E is
mainly restricted by an intrinsic time scale of a diffusive
search for mixed-phase states �as in the 102 order longer �E

in the GST4 with �ex=
�. On the other hand, some of inter-
mediate TW� runs located in the phase transition regions
retain phase-mixed configurations. As such, configurational
swaps between the GST walker and these intermediate TW�

runs provide a nonphysical route for a tunneling.
Reweighted canonical heat capacities of various GST

simulations collapse onto a single line demonstrating perfect
agreement with those of RESTMC in Fig. 11�b�, while the
tREM shows a minor difference around Tc�0.36 even for
longer simulation time.

VII. CONCLUSIONS

An efficient GST method particularly suited to first-order
phase transition systems has been proposed. Optimally pa-
rametrized Tsallis-weight ensemble simulations, in which un-
stable or metastable states of the canonical ensemble in the
negative slope region of TS�E� transform into stable states
forming successive unimodal energy distributions, are sys-
tematically combined via a guided Markov process in an
auxiliary parameter space.

The inverse mapping between the effective temperature
and the sampling weight enables a systematic selection of
relevant Tsallis parameters. The resulting distributions
smoothly bridge between ordered and disordered phases, al-
lowing for a comprehensive sampling of phase-coexistent
states. The determination of the weight in parameter space is
greatly accelerated from the adaptive update scheme for the
semianalytic effective free energy. The analytic continuation
of the GST to the conventional ST in the asymptotic limit of

0→0 is explicitly demonstrated.

The effectiveness of our method has been demonstrated
in discrete spin systems with varying system size L and
simulation conditions. The quantitative comparison between
the GST and the WL algorithms in Potts spin systems with
L=64 and 128 reveals that our method with optimal param-
eters exhibits more frequent tunneling transitions than in WL
simulations. In comparison to the WL, requiring a long
weight refinement with increasing L, our method enables the
accurate calculation of thermodynamic averages with a
shorter time for weight refinement. It is also shown that GST
is equally effective in the simulation of strong phase transi-
tions with nonbackbending TS�E�, as exemplified in Ising
spin system with L=256.

The performance of our method in continuum systems is
examined in a 147 atom Lennard-Jones cluster associated
with a severe backbending in TS�E�. We have shown that
strong hysteresis and trapping in metastable states in the
weight refinement of the GST is significantly suppressed by
coupling the GST walker to separate Tsallis-weight runs via
unconditional configurational swaps, while maintaining a de-
tailed balance. Faster weight determination and considerable

acceleration of tunneling transitions were explicitly demon-
strated through coupling of the GST walker and Tsallis-
weight runs.

Finally, it should be noted that the performance of GST
can be further improved with an optimal allocation scheme
for ��. Here we used an equal �� allocation for simplicity.
Various adaptive temperature allocation schemes are devel-
oped to maintain uniform acceptance ratios based on average
energy differences of neighboring replicas in conventional
tREM.70–72 Since GST can locate E�

� very quickly, the same
strategy can be applied to produce a uniform acceptance by
adaptively modifying a distribution of ��. Recently, an effi-
cient feedback algorithm for the temperature allocation in
tREM has been developed to maximize NE for systems asso-
ciated with a peaked Cv.23 By analyzing a current of suben-
semble transitions on � space in GST, this feedback algo-
rithm can be implemented to optimize a distribution of ��

more systematically.
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APPENDIX: GST AS �0\0

The effective free energy GST�T�� in conventional ST
running at temperatures T� is determined as

GST�T�� = �
T1

T�

�̄�T�dT , �A1�

�̄�T�=−U�T� /T2, U�T� being the internal energy. Inter-
polating �T� ,U�� as U�T�=U�+���T−T�� for T� �T� ,T�+1�,
��= �U�+1−U�� / �T�+1−T��, and integrating Eq. �A1� yields

GST�Tm� = �
�=1

m−1

	G�,ST
+ , �A2�

where

	G�,ST
+ = −

U�+1 − U�

T�+1 − T�

ln
T�+1

T�

+
U�+1

T�+1
−

U�

T�

. �A3�

To investigate an asymptotic behavior of G���� in GST
as 
0→0, we decompose 	G�

+�
0� in Eq. �21� into

	G�
0�
0� + 	G�

d�
0� , �A4�

where

	G�
0�
0� = −

E�+1
� − E�

�

T�+1
� − T�

� ln�T�+1
� /T�

�� �A5�

and 	G�
d�
0�=
0

−1 ln�T�+1
� /T�

��. Here we used the identity
��

−1= �1−
0�E�+1
� −E�� / �T�+1

� −T�
���. Note that the divergence

in 	G�
d�
0� prevents an analytic continuation of Eq. �A4� in

the limit of 
0→0. However, this catastrophic situation is
alleviated as 	G�

d�
0� cancels out by the same divergent term
in 	w�

+�
0� as
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	w�
+�
0� =

1


0
ln

T�E;��+1�
T�E;���

= 	w�
0�
0� + 	G�

d�
0� , �A6�

where

	w�
0 =

1


0
ln

1 + 
0/T�+1
� �E − E�+1

� �
1 + 
0/T�

��E − E�
��

. �A7�

Here we use the identity T�E ;���=T�
� +
0�E−E�

�� since
T�E ;��� crosses �E�

� ,T�
��.

Subtracting Eq. �A6� from Eq. �A4� results in the can-
cellation of 	G�

d�
0�, yielding

	�
+�
0� = 	G�

0�
0� − 	w�
0�
0� , �A8�

which is always finite and well-defined for all 
0. In the limit
of 
0→0, Eq. �A8� reduces to

	�
+�0� = 	G�

+�0� − � E

T�+1
� −

E

T�
� � , �A9�

where

	G�
+�0� = −

E�+1
� − E�

�

T�+1
� − T�

� ln
T�+1

�

T�
� +

E�+1
�

T�+1
� −

E�
�

T�
� .

Since T�=T�
� and U�=E�

� at 
0=0, 	G�
+�0� becomes identical

to 	G�,ST
+ and the second term in Eq. �A9� reduces to

	w�
+�0�=wGB�E ;T�+1�−wGB�E ;T��, illustrating that conven-

tional ST is recovered via the analytic continuation of 
0

→0 in GST.
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