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A unified framework integrating the generalized ensemble sampling associated with the Tsallis
weight �C. Tsallis, J. Stat. Phys. 52, 479 �1988�� and the replica exchange method �REM� has been
proposed to accelerate the convergence of the conventional temperature REM �t-REM�. Using the
effective temperature formulation of the Tsallis weight sampling, it is shown that the average
acceptance probability for configurational swaps between neighboring replicas in the combination
of Tsallis weight sampling and REM �Tsallis-REM� is directly proportional to an overlap integral of
the energy distributions of neighboring replicas as in the t-REM. Based on this observation, we
suggest a robust method to select optimal Tsallis parameters in the conventional parametrization
scheme and present new parametrization schemes for the Tsallis-REM, which significantly improves
the acceptance of configurational swaps by systematically modulating energy overlaps between
neighboring replicas. The distinguished feature of our method is that all relevant parameters in the
Tsallis-REM are automatically determined from the equilibrium phase simulation using the t-REM.
The overall performance of our method is explicitly demonstrated for various simulation conditions
for the Lennard-Jones 31 atom clusters, exhibiting a double-funneled energy landscape. © 2009
American Institute of Physics. �DOI: 10.1063/1.3108523�

I. INTRODUCTION

The replica exchange method �REM� or parallel temper-
ing �PT�1,2 has become a standard tool nowadays to investi-
gate equilibrium properties of diverse complex systems such
as biomolecules,3–6 supercooled liquids,7–9 and atomic
clusters,10–12 in which conventional canonical ensemble sam-
pling suffers from broken ergodicity due to a rugged energy
landscape.13 A key element of the REM is to run multiple
Markov chains in parallel and swap configurations between
neighboring replicas subject to detailed balance.14,15 In the
standard temperature REM �t-REM�, each replica samples a
canonical ensemble with the Gibbs–Boltzmann weight at a
desired temperature. A broken ergodicity of low temperature
replicas is significantly diminished and the convergence of
simulations is greatly accelerated via configurational ex-
changes between low and high temperature replicas, which
can easily access the relevant configurational space without
trapping.

In the conventional t-REM, the acceptance of configura-
tional swaps between adjacent replicas is determined by an
overlap of energy distributions of nearby replicas. However,
as the system size expands, energy overlaps between neigh-
boring replicas rapidly diminish. To maintain a nonvanishing
acceptance probability, the average energy separation �U
=Cv�T��T, with Cv and �T as the heat capacity and the
temperature separation of neighboring replicas, respectively,
must be comparable to the energy fluctuation �U=T�Cv of
each replica, i.e., �U /�U= ��T /T��Cv�1. Since Cv in-
creases in proportion to f , with f as the number of degrees of
freedom, �T must decrease in proportion to 1 /�f .16 To keep

an appreciable acceptance probability, it is necessary to in-
crease the number of replicas in an intermediate temperature
region. The growth as �f of the number of replicas requires
more configurational swaps to sample the relevant tempera-
ture space and leads to a considerable slowing down in the
convergence of simulation averages.

During the past decade, several sophisticated REM vari-
ants have been developed to resolve the system size depen-
dence of the t-REM.17–28 One effective way to circumvent a
scalability problem of the t-REM is to exploit the generalized
ensemble method �GEM�29–32 in each replica. The use of
non-Boltzmann sampling weights of the GEM, yielding a
delocalized energy distribution compared to a localized
Gaussian of the canonical ensemble, can maintain energy
overlaps with fewer replicas and accelerate the convergence
of simulation averages via enhanced configurational swaps
for an expanded dynamic sampling range. In previous
studies,33–36 multicanonical sampling �MUCA� has been em-
ployed to combine the GEM and the REM, but a prior
weight determination in MUCA, which is often nontrivial
and requires a long iterative process as the system size in-
creases, limited its practical applicability.

An alternative means of avoiding prior weight determi-
nation is to use sampling weights known a priori. In this
sense, the Tsallis weight originally proposed in nonextensive
statistical mechanics37 is an effective workhorse for the com-
bination of the GEM and the REM since the Tsallis weight is
fully characterized by a few adjustable parameters and al-
lows a delocalized energy distribution with a proper choice
of parameters. Inspired by its initial application for the simu-
lation of atomic clusters,38,39 the Tsallis weight sampling has
been applied to a variety of complex systems including pro-
tein folding,31,40–42 molecular docking,43 and atomic
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clusters.10 Inventive use of the Tsallis weight has been fur-
ther extended to incorporate the REM in the form of the
generalized PT �GPT� �Ref. 17� or q-REM.18

The basic idea of the combination of the Tsallis weight
sampling and the REM �Tsallis-REM� is to accelerate the
configurational sampling of the original potential energy sur-
face by coupling it to the configurational sampling of the
modified potential energy surfaces associated with the pa-
rametrized Tsallis weights, which are designed to reduce po-
tential barriers and avoid trapping. However, the main chal-
lenge in realizing the potential of this hybrid method is that
the overall performance shows a very subtle dependence on
the parameter selection intrinsic to the Tsallis weight. The
absence of a systematic approach in choosing the optimal
Tsallis parameter has limited the use of this novel sampling
method. A few attempts have been made to determine opti-
mal Tsallis parameters in a single Tsallis weight sampling by
relying on the harmonic approximation for the density of
states31 or the effective temperature formulation of the Tsallis
weight sampling.44 However, the validity of these methods
has not been rigorously examined in connection with the
REM and the detailed study on the optimal selection of the
Tsallis parameters in the Tsallis-REM has not been fully ad-
dressed.

In the present paper, we present a unified theoretical
framework integrating the generalized ensemble sampling
associated with the Tsallis weight and the REM via the ef-
fective temperature formulation of the Tsallis weight sam-
pling. A key finding is that the average acceptance probabil-
ity for configurational swaps in the Tsallis-REM is solely
determined by an overlap integral of the energy distributions
of neighboring replicas due to the linear potential energy
dependence of the Tsallis effective temperature. This finding
leads to the development of a robust method to determine
optimal Tsallis parameters in the conventional parametriza-
tion scheme of the Tsallis-REM. The acceptance of configu-
rational swaps is significantly improved through the system-
atic modulation of energy overlaps between neighboring
replicas.

Using the one-to-one correspondence between the Tsallis
weight and its effective temperature, we also present new
parametrization schemes for the Tsallis-REM in which all
relevant Tsallis parameters are optimally chosen from the
equilibrium phase simulation in the t-REM to maximize the
acceptance of configurational swaps. We demonstrate the su-
perior performance of our algorithm relative to the conven-
tional t-REM by analyzing thermodynamic properties and
tunneling events in replica and energy space in Lennard-
Jones �LJ� 31 atomic clusters, exhibiting a double-funneled
energy landscape.

In Sec. II, a theoretical formulation of the Tsallis-REM is
presented with an optimal performance condition, maximiz-
ing the acceptance of replica exchanges. In Sec. III, applying
the effective temperature formulation of the Tsallis weight
sampling, a novel method to determine optimal Tsallis pa-
rameters is suggested in three different parametrization
schemes. In Sec. IV, the global convergence of the Tsallis-
REM has been examined and quantitatively compared to that

of the standard t-REM in applications to the 31 atom LJ
cluster in various simulation conditions. A conclusion and
brief summary are presented in Sec. V.

II. TSALLIS-REM

A. Configurational sampling in each replica

Let us start by considering the most general form of the
Tsallis weight38,39 for a given configuration x as

W��x� = ���
−1 − �1 − q���U�x� − U���1/�1−q��, �1�

where U�x� is the original potential energy function, �� is
the inverse temperature �kBT��−1 �kB=1�, q� is the Tsallis
entropy index, and U� is the reference energy to guarantee
W��0. The subscript � represents the replica index. Notice
that W��x� reduces to the Gibbs–Boltzmann weight
WGB�x��exp�−���U−U��� in the limit of q�→1. In the
usual implementation of the Tsallis-REM �GPT or q-REM�,
the reference replica samples the original potential energy
surface with q�=1 at the fixed �� and U�, and other replicas
sample the deformed potential energy surfaces associated
with the Tsallis weights with q���1 ������. The coupling
or configurational mixing between the reference replica and
other replicas via the configurational swaps offers an “escap-
ing route” for the reference replica from trapped states and
enables an accelerated configurational sampling.

In the Tsallis-REM, a trial move from x to x� in �th
replica is accepted by the standard Metropolis criterion

Aintra�x → x�� = min�1, exp�w��x� − w��x���� , �2�

where w��x� is the Tsallis effective potential defined as

w��x� = − ln W��x�

=
1

�q� − 1�
ln���

−1 + �q� − 1��U�x� − U��� . �3�

The mathematical transformation �Eq. �3�� with a proper
choice of Tsallis parameters facilitates a configurational sam-
pling by smoothing the original potential energy surface.39

The underlying mechanism of potential smoothing is appar-

ent in the approximate acceptance probability Ãintra�x→x��
of Eq. �2� as

Ãintra�x → x�� 	 min�1, exp�− �̃��U��U� − U��� , �4�

where U�=U�x�� and �̃��U�= ��w� /�U�U
−1 is the inverse

Tsallis effective temperature. In Eq. �4� we used the linear

expansion of w��U��=w��U�+ �̃��U��U�−U� by assuming
that 
U�−U
�1, which obeys in most local trial moves. No-

tice that the inverse Tsallis effective temperature �̃��U� re-
duces to the physical inverse temperature �� in the Gibbs–
Boltzmann limit with q�→1. Based on the asymptotic

correspondence between �̃��U� and ��, we define the Tsallis

effective temperature T̃��U�= ��̃��U��−1 as

T̃��U� = T� + �q� − 1��U − U�� �5�

so that the approximate acceptance in the Tsallis weight sam-
pling is simply
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Ãintra�x → x�� 	 min�1, exp�− ���U����U� − U��� , �6�

where ���U�=T� / T̃��U� is the energy-dependent scaling fac-
tor.

Equation �6� reveals that the Tsallis weight sampling on
the deformed potential energy surface w��x� is equivalent to
a Metropolis sampling combined with the energy-dependent

temperature T̃��U� on the original potential energy surface
U�x�. Of particular importance is that ���U� can be made to
be less than unity throughout the configurational space with
the choice of q��1 and U�=Umin, the global minimum en-

ergy. Choosing q��1 and U��Umin makes Ãintra�x→x�� al-
ways greater than the Metropolis acceptance, i.e.,
min�1,exp�−���U�−U��� in a canonical ensemble for
energy-increasing trial moves. This property allows the sys-
tem to escape from trapped states more easily with a more
frequent visit to a higher energy region, while preserving the
acceptance of energy-decreasing moves as in the Gibbs–
Boltzmann sampling.

The concept of the effective temperature plays a key role
in the understanding of the Tsallis weight sampling. It also
provides a convenient framework to analyze the sampling
dynamics of variants of the GEM such as MUCA45,46 and
simulated tempering.47,48 As will be discussed, many essen-
tial properties of the Tsallis weight sampling originate in the
linear dependence of the Tsallis effective temperature with
respect to the potential energy U in Eq. �5�.

B. Configurational swaps between neighboring
replicas

A trial configurational swap �or replica exchange� be-
tween neighboring Tsallis sampling runs is accepted with
probability

Ainter��;xx�� = min�1, exp����� , �7�

where ��=w�+1�U��−w�+1�U�+w��U�−w��U��. In terms of
the Tsallis effective temperature, the exponent in Eq. �7� fur-
ther transforms to

���U,U�� = �
U

U�
��̃�+1�z� − �̃��z��dz . �8�

The overall performance of the REM is intimately con-
nected to the success rate of replica exchanges. This rate is
often quantified by the average acceptance probability
pacc���=Naccept /Ntrial, with Naccept and Ntrial as the number of
accepted and attempted replica exchanges of the �th replica.
Assuming that the normalized probability density function
�PDF� of the Tsallis weight sampling is known, pacc��� is
determined as

pacc��� =� dUdU�J�U,U��min�1, exp����� , �9�

where J�U ,U��= P��U�P�+1�U�� is the joint probability that
neighboring replicas have the energies U and U�. Applying
the formal relationship P��U�=	�U�W��U�, with 	�U� as
the density of states, and algebraic operations yield

pacc��� =� dUdU�
����P��U�P�+1�U��

+� dUdU�
�− ���P��U��P�+1�U� , �10�

where 
�z� is the Heaviside step function defined as one for
z�0 and zero for otherwise. Denoting ���U ,U��=
−���U� ,U� in Eq. �8� yields

pacc��� = 2� dUdU�P��U�P�+1�U��
���� . �11�

In the Gibbs–Boltzmann limit q�→1, 
����=
�U−U��
since �̃�+1�U�=��+1��̃��U�=��, and Eq. �11� becomes an
overlap integral of canonical PDFs49,50 as

pacc
GB��� = 2�

−�

�

dUP��U��
−�

U

dU�P�+1�U�� . �12�

A key observation in Eq. �11� is that pacc��� is solely
represented in terms of the effective temperatures of neigh-
boring replicas through Eq. �8� and the formal expression

P��U� � exp��U  1

TS�z�
−

1

T̃��z�
�dz� , �13�

where TS�U�= ��S /�U�−1 is the statistical temperature,51 with
S�U�=ln 	�U� as the microcanonical entropy. This implies
that pacc��� in the Tsallis-REM can be systematically im-

proved by adjusting Tsallis parameters in T̃��U�. Note that all

relevant Tsallis parameters are contained in T̃��U�.
The strategy to determine optimal weight parameters

maximizing pacc��� is facilitated by using Tallis weight sam-
pling. The Tsallis effective temperature is a simple linear
function of U, which simplifies 
����. In the conventional
GPT �Ref. 17� or q-REM �Ref. 18� employing the Tsallis
entropy index q� as a control parameter at the fixed T�=T0

and U�=U0, one of the q values �for example, �=1� is set to
unity to sample the canonical ensemble at the temperature
T0. A range of q� ��=2, . . . ,M� values are assigned in an
ascending order �q1=1�q2� ¯ �qM� for other replicas,
with M as the number of replicas. In this parametrization
scheme, ���U ,U�� in Eq. �8� simply reduces to 
�U−U�� by
identifying that �q�−1� is the slope of the linear effective

temperature since T̃�+1�U�� T̃��U� for all U with U0�Umin.
The overlap integral �Eq. �12�� determines pacc��� in the
Tsallis-REM, exactly as in the t-REM. As a result, the opti-
mal performance condition in the Tsallis-REM maximizing
pacc��� reduces to choosing proper Tsallis parameters that
optimize overlap integrals between neighboring energy dis-
tributions, which is achieved through more delocalized Tsal-
lis PDFs.

C. Parameter dependence of a Tsallis PDF

As the optimal pacc��� is achieved by maximizing over-
lap integrals of neighboring Tsallis PDFs, it is essential to
understand how each P��U� varies with changing relevant
parameters. The approximate form of P��U� and its param-
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eter dependence can be analyzed by using a local expansion
of Eq. �13� in the vicinity of the stationary point U� satisfy-
ing � ln P��U��=0 as

ln P��U� 	 ln P��U�� −
1

2q
�U − U��2 + ¯ , �14�

where U� is the crossing point between the statistical tem-

perature and the Tsallis effective temperature, i.e., T̃��U��
=TS�U��=T�, and q is the Gaussian width of the Tsallis
PDF defined as

q�U�� = TS��U�
TS

2�U�
−

T̃���U�

T̃�
2�U�

�
U=U�

−1

, �15�

where TS��U�=�TS /�U and T̃���U�=�T̃� /�U. When TS�U� is
well approximated by a linear function around U�, the
equivalence between the canonical and microcanonical en-
sembles yields TS��U

��=1 /Cv�T�� and the q�-dependent
Gaussian width further reduces to

q�U�� = 0/�1 − �� , �16�

where �= �q�−1� /TS��U
�� and 0=T�2 /TS��U

�� is the Gauss-
ian width of the canonical PDF at the temperature T�. In Eq.
�16�, q→0 in the Gibbs–Boltzmann limit of q�→1.

Equations �14� and �16� expose an interesting depen-
dence of the Tsallis PDF on q�. For 1�q��1+qc, qc

=TS��U
��, P��U� becomes much broader than the canonical

PDF at the temperature T� since q�0, while its distribu-
tion becomes narrower for q��1. In both cases, the maxi-
mum of the Tsallis PDF is centered at the stable crossing
point U�. For the case of q�=1+qc, in which the Tsallis
effective temperature is tangential to TS�U� at U�, P��U�
becomes locally flat around U�, which indicates a case of
marginal stability. Choosing q�=1+qc produces the most de-
localized Tsallis PDF in a single Tsallis weight sampling.44

As q� exceeds qc, the local expansion analysis breaks down
and U� makes an unstable crossing point corresponding to a
local minimum of P��U�.

D. Reweighting

After a long production run with properly chosen Tsallis
parameters, the weighted histogram method52 is applied to
join multiple Tsallis weight samplings and determine the
density of states estimate as

	̃�U� =
��=1

M
N�P��U�

��=1

M
N�Z�

−1e−w��U�
, �17�

where P��U� is the Tsallis PDF and N� is the number of data
samples in the �th replica. The relative partition function Z�

is calculated self-consistently using

Z�� = �
U

��=1

M
N�P��U�

��=1

M
N�Z�

−1e−�w��U�−w���U��
. �18�

Once the density of states is computed, all canonical thermo-
dynamic properties can be calculated at an arbitrary tempera-
ture.

III. EFFECTIVE TEMPERATURE SCHEMES TO
DETERMINE OPTIMAL TSALLIS PARAMETERS

Based on the key finding that the Tsallis PDF of each
replica is a delocalized Gaussian, centered at the stable cross-

ing point U� between TS�U� and T̃��U� for 1� q̃�=q�−1
�qc, the overlap integral in Eq. �11� can be systematically
improved by modulating relevant Tsallis parameters to en-

sure that T̃��U� forms stable crossing points with TS�U� in
�U ,T� space. Notice that the Tsallis PDF becomes more and
more delocalized as q̃� approaches qc=TS��U

��. Exploiting

the fact that T̃��U� is a linear function of U, several param-
etrization schemes can be designed to maximize energy over-
laps of the Tsallis PDFs.

A. Parametrization scheme I in GPT or q-REM

In the conventional GPT or q-REM, the Tsallis entropy
index q� is a control parameter characterizing the sampling
weight in each replica with fixed T�=T0 and U�=U0. In this
case, all Tsallis effective temperatures cross the common
fixed point �U0 ,T0�, as shown in Fig. 1�a�, regardless of the
value of q̃� with

T̃�
I �U� = T0 + q̃��U − U0� , �19�

where the superscript I in T̃�
I �U� denotes the first parametri-

zation scheme. In scheme I, the location of �U0 ,T0� plays an
important role in determining the parameter range of q̃� and

should be carefully chosen to make T̃��U� form stable cross-
ing points with TS�U�. To determine an optimal q̃�, the ap-
proximate form of TS�U� should be guessed before the simu-
lation. We applied the linear approximation for TS�U� �Refs.
45 and 46� as

T̃S�U� 	 q̃LH�U − UL� + TL, �20�

where q̃LH= �TH−TL� / �ŨH− ŨL� is the slope connecting two

thermodynamic points of �ŨL ,TL� and �ŨH ,TH�, with ŨL and

ŨH as the approximate average energies at the lowest and
highest temperatures of TL and TH, respectively. The linear
approximation in Eq. �20� is fairly effective except for the
phase transition regions associated with the van der Waals
loop or S-loop53,54 in the statistical temperature.

The process followed in selecting the optimal q̃� in the
conventional GPT or q-REM consists of three steps.

�i� Identify the temperature range of interest �TL ,TH� and
allocate the sampling temperatures t� between TL and
TH. The intermediate temperatures t� ��=2, . . . ,M
−1� are sequentially distributed in ascending order
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employing the geometric or equidistant temperature
scheme as t�=TL�TH /TL���−1�/�M−1� and t�=TL+ ��
−1��TH−TL� / �M −1�, respectively.

�ii� Locate the common fixed point �U0 ,T0� at an appro-
priate region in �U ,T� space to form stable crossing

points between T̃��U� and T̃S�U�. One reasonable op-

tion is T0=TL with U0� ŨL, as depicted in Fig. 1�a�.
In this case, the lowest replica samples the original
potential energy surface with q̃1=0 at TL and other
replicas sample higher energy regions on the de-
formed potential surfaces with q̃��0 ��=2, . . . ,M�.
The parameter q̃� ranges from zero to q̃M, q̃M = �TH

−T0� / �ŨH−U0�. The other option is T0=TH with U0

� ŨH, as depicted in Fig. 1�b�, in which the highest
replica samples the original potential energy surface
with q̃M =0 at TH and other replicas sample lower en-
ergy regions with q̃��0 ��=1, . . . ,M −1�. The pa-

rameter q̃� ranges from q1 to zero, q̃1= �TL−T0� / �ŨL

−U0�. The first option for �U0 ,T0� is useful when the
canonical ensemble sampling at the temperature TL is
of greatest interest. The second option is suitable for
extensive sampling of low energy regions since the
increased q̃� creates a more delocalized Tsallis PDF at
lower energy regions.

�iii� The choice of intermediate q̃� values between q̃1 and

q̃M is crucial for the optimal performance of the
Tsallis-REM. The intermediate values of q̃� �2��
�M −1� are automatically determined to make each

T̃��U� cross TS�U� at the approximate average energy

�Ũ� , t��, determined by taking an average of the ca-
nonical ensemble data at each t� in the equilibrium
phase of a t-REM simulation as

q̃� = �t� − T0�/�Ũ� − U0� . �21�

Note that once the common fixed point �U0 ,T0� is
determined, all relevant Tsallis parameters q̃� are au-
tomatically determined from the equilibrium phase

t-REM with the input parameters �ŨL ,TL� and

�ŨH ,TH�, which can be computed using short canoni-
cal runs at TL and TH, respectively.

B. Parametrization scheme II

The one-to-one mapping between the effective tempera-
ture and the sampling weight

W��x;�� � exp�− �U

T̃�
−1�z;��dz� �22�

allows for new parametrization schemes in the Tsallis-REM.
Once the effective temperature is properly defined as a func-
tion of U with a set of parameters ��1 ,�2 , . . .�, the generalized
sampling weight is uniquely determined.

The second parametrization scheme utilizes T� in Eq. �1�
as a control parameter with fixed q̃�=q0 and U�=0 �as op-
posed to q̃� in scheme I�. As seen in Fig. 2�a�, the Tsallis
effective temperatures are parallel to each other in �U ,T�
space with different T-intercepts and the same slopes q̃0

=q0−1 since

T̃�
II�U� = T� + q̃0U . �23�

The slope q̃0 should be properly chosen to make T̃��U� form

stable crossing points with T̃S�U� at �Ũ� , t��. Once q̃0 is de-

termined, the control parameter T� is identified as t�− q̃0Ũ�.
One criterion for q̃0 is that it should be smaller than the slope

q̃LH= �TH−TL� / �ŨH− ŨL� connecting �ŨL ,TL� and �ŨH ,TH�
because q̃0� q̃LH may create unstable crossing points at in-

termediate �Ũ� , t��. This scheme is most effective when
TS�U� is well approximated by a linear function, in which the
Tsallis PDFs are nearly identical Gaussians with the width
q=0 / �1− q̃0 / q̃LH� regardless of �.

C. Parametrization scheme III

In contrast to parametriztion schemes I and II, which
employ a single parameter q� or T� for characterizing the
sampling weight, respectively, a set of parameters

�q̃� ,U� ,T�� can be utilized to ensure that each T̃��U� forms

a stable crossing point with TS�U� at �Ũ� , t�� as

TH

tα

TL=T0

U~HU~αU~L
U0

T
em

pe
ra

tu
re

T

(a)

TS(U)
T~1(U) with q~1=0

T~α(U) with q~α
T~M(U) with q~M

TH=T0

tα

TL

U~HU~αU~L
U0

T
em

pe
ra

tu
re

T

Potential Energy U

(b)

TS(U)
T~M(U) with q~M=0

T~α(U) with q~α
T~1(U) with q~1

FIG. 1. �Color online� Statistical temperature TS�U� and Tsallis effective

temperatures T̃��U� in �a� parametrization scheme I with �U0� ŨL ,T0=TL�
and �b� �U0� ŨH ,T0=TH�. Here TS�U� is assumed to be a linear function of

U. The intermediate points of �Ũ� , t�� �1���M� are determined from the
equilibrium phase in the conventional t-REM.
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T�
III�U� = t� + q̃��U − Ũ�� , �24�

where the replica-dependent slope q̃� is chosen as �q̃�
min,

with q̃�
min as the minimum value of all possible slopes con-

necting �Ũ� , t�� and �Ũ�� , t��� ������ i.e., min�q̃����, q̃���
= �t��− t�� / �Ũ��− Ũ��. Here we have introduced the extra

scaling factor � �0���1� to scale down q̃�
min so that T̃��U�

forms a unique stable crossing point with TS�U� at �Ũ� , t��.
Typically, � is chosen to be less than unity to address a

possible uncertainty in Ũ��t�� caused by a too short equili-
bration time in the preceding t-REM simulation.

In comparison to scheme II, the adjustable slope q̃� al-

lows a fine tuning for T̃��U� so that each effective tempera-

ture can be made to be more tangential to TS�U� at �Ũ� , t��,
as seen in Fig. 2�b�. With prefixed �, all Tsallis parameters
are determined in an automatic fashion from the equilibrium
phase of the t-REM simulation without prior knowledge on
TS�U�. This scheme is effective for both linear and curved
TS�U�. When TS�U� is a linear function of U, scheme III
becomes equivalent to scheme II by setting q̃0=�q̃LH since
q̃�

min	 q̃LH.

IV. APPLICATIONS: LJ 31 ATOM CLUSTERS

The performance of our proposed method has been ex-
amined for the case of LJ clusters with N=31 �LJ31�. LJ

atomic clusters have long been used as benchmark systems
in the evaluation of several enhanced sampling
algorithms.10,12,23,38,44,48 The potential energy of N-atom LJ
clusters is given by E=4��i�j

N �� /rij�12− � /rij�6�, with �
and  as units of energy and length, respectively.

Due to the double-funneled energy landscape of LJ31,
associated with the Mackay→anti-Mackay transition, the
heat capacity displays a narrow peak around T	0.027 be-
sides a core melting peak around T	0.32. This solid-solid
transition is very sensitive to the convergence of
simulations,11,12,23,55 which makes LJ31 a good benchmark
for newly developed sampling algorithms in a rugged energy
landscape. A recent study12 reported that a single replica en-
hanced sampling employing the Wang–Landau56 or the mul-
ticanonical algorithm29 failed to capture a correct thermody-
namics of the solid-solid transition. The reference
thermodynamic data for LJ31 have been determined by the
conventional t-REM using 35 replicas for 1010 Monte Carlo
�MC� cycles in the temperature range of 0.01�T�0.4. In
both t-REM and Tsallis-REM simulations, the geometric
temperature allocation was applied with a reflecting wall im-
posed at the radius of Rc=2.5. Replica exchange was at-
tempted every 35 MC cycles.

A. Parametrization scheme I

We first performed short canonical runs for 106 MC
cycles at TL=0.01 and TH=0.4. That data provided an esti-

mate of T̃S�U� as a linear function connecting �ŨL ,TL�
= �0.01,−133.15� and �ŨH ,TH�= �0.4,−102.12�. Based on the

estimated T̃S�U�, four independent Tsallis-REM simulations
were performed with four different fixed points �U0 ,T0�
taken to be ��200,0.0098�, ��90,0.401�, ��200,�0.35�, and
��80,0.52�, as described in Sec. III A.

Through equilibrium phase t-REM simulations, interme-

diate crossing points �Ũ� , t�� are determined by averaging
the canonical simulation data at each temperature t� for 106

MC cycles per replica. Once the slope q̃� in T̃�
I �U� is deter-

mined using Eq. �21�, the t-REM was switched to the Tsallis-
REM.

As seen in Tsallis-REM employing �U0 ,T0=

−200,0.0098� in Fig. 3�a�, the crossing points �Ũ� , t�� be-

tween T̃��U� and TS�U�= Ū−1�U� exactly correspond to the
maxima of the Tsallis PDFs P��U� in Fig. 3�b�. The average

energy Ū�T� was calculated from the t-REM for 1010 MC
cycles. The comparison of Tsallis PDFs �line points� with the
reweighted canonical PDFs �lines� at t� in Fig. 3�b� reveals
that lower replicas ���20� sample essentially the same en-
ergy range as the canonical ensemble with q̃�	0, while
higher replicas ���20� sample more delocalized energy dis-
tributions as q̃� increases from zero. The enhancement of
energy overlaps is more dramatic in the Tsallis-REM with
�U0 ,T0=−80,0.52� in Fig. 4�a�. The Tsallis PDFs �line
points� are much broader than the reweighted canonical
PDFs �lines� for even low temperature replicas and display a
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FIG. 2. �Color online� Statistical temperature TS�U� and Tsallis effective

temperatures T̃��U� in �a� parametrization scheme II with the constant slope
q̃0 and different T�, and �b� scheme III with a set of multiple parameters
�q̃� ,U� ,T��. For a linear TS�U� both schemes II and III become equivalent
when setting q̃0=�q̃LH. However, in a curved TS�U�, scheme III is more
effective than scheme II.
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long tail in the high energy region ��=30� in Fig. 4�b�, in

which the linear effective temperature T̃30�U� provides a

good approximation to T̃S�U� in Fig. 4�a�.
The increased energy overlaps due to the delocalized

energy distributions in the Tsallis-REM lead to the accelera-
tion of replica exchanges, as seen in Fig. 5�a�. The accep-

tance probability of the Tsallis-REM is always higher than
that of the t-REM for all replicas irrespective of �U0 ,T0�. As
predicted by the “incomplete beta-function law,”49,50 pacc���
in the t-REM in Fig. 5�a� is almost uniform for temperatures
where the heat capacity is slowly varying �see Fig. 10�a��.
However, pacc��� drops rapidly in the solid-solid ��=11� and
the solid-liquid ��=33� transition regions. A similar trend is
observed in the Tsallis-REM with a minimum dip around the
solid-solid transition region. However, the overall enhance-
ment is apparent for all replicas and most dramatically dem-
onstrated for �U0 ,T0�= �−80,0.52� and �90,0.401�. In all
Tsallis-REM simulations, pacc��� approaches that of the
t-REM as q̃�→0 as found in low temperature replicas of

�Ũ0 ,T0=−200,0.0098� and high temperature replicas of

�Ũ0 ,T0=−90,0.401�.
The convergence of simulations of LJ31 is very

slow,12,23,55 which makes it difficult to evaluate the perfor-
mance in terms of thermodynamic observables. We carried
out a systematic evaluation of performance by counting tun-
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neling events in both replica and energy spaces.12,29,57 The
accumulated tunneling events in replica and energy spaces,
N�R and N�U, respectively, quantify how often all replicas
sweep the temperature and energy space, from one end to the
other, during the simulation. A tunneling event in tempera-
ture space occurs when each replica makes a transition from
1 to M or M to 1, while a tunneling in energy space is
counted when a replica travels between the two boundary
energies of �133 and �105. Since the convergence of simu-
lations is directly proportional to a diffusivity in replica and
energy spaces, both N�R and N�U provide an effective mea-
sure of global convergence of the simulations.

The tunneling events in the Tsallis-REM are significantly
higher than observed for t-REM regardless of �U0 ,T0�, as
depicted in both Figs. 5�b� and 5�c�. Tunneling events are
accelerated by a factor of 2 except for �U0 ,T0=
−200,0.0098� even in the case with a noticeable difference
in pacc��� in the high energy region. This implies that the
global convergence of simulations of LJ31 is primarily deter-
mined by the sampling efficiency around the solid-solid tran-
sition region. A modest increase in tunneling events in the
case of �U0 ,T0=−200,0.0098� is due to sampling perfor-
mance similar to the t-REM for low temperature replicas as
seen in P��U� and pacc��� in Figs. 3�b� and 5�a�, respectively.
A strong association between N�R and N�U, i.e., N�U /N�R

	1, suggests that more frequent replica exchanges are di-
rectly connected to enhanced sampling and more frequent
Mackay and anti-Mackay structural transitions.

B. Parametrization schemes II and III

Based on T̃S�U� connecting �ŨL ,TL� and ŨH ,TH�, we
have chosen q̃0=0.0075 in scheme II. Choosing q̃0 is a little
arbitrary, but the value of q̃0 should be smaller than q̃LH

= �TH−TL� / �ŨH− ŨL�=0.012 to avoid multiple crossing

points between T̃�
II�U� and TS�U�. An alternative choice of q̃0

is to set q̃0=min�q̃���� ������ for all possible combinations
of � and ��. We find that the minimum value of q̃��� is
0.0086, which is slightly larger than our choice q̃0=0.0075.
We also performed the Tsallis-REM simulation with a
smaller q̃0=0.004 to investigate the effect of q̃0 on the sam-
pling.

In parametrization scheme III, corresponding to Eq. �24�,
all relevant Tsallis parameters �q̃� ,U� , t�� are determined au-
tomatically from the equilibrium phase of a t-REM simula-
tion with predetermined �. We performed two independent
Tsallis-REM simulations with �=0.7 and 0.9. Compared to
the results for scheme I, in Figs. 3�a� and 4�a�, the effective
temperatures in the Tsallis-REM with �=0.9 shown in Fig.
6�a� are more optimally located to approximate the behavior

of TS�U�, with unique stable crossing points at �Ũ� , t��.
Due to the concave behavior of TS�U� between Ũ1 and

ŨM, q̃�
min= q̃�M for all replicas corresponding to the slope

connecting �Ũ� , t�� and �ŨM , tM�. As a result, T̃��U� is al-

most tangential to TS�U� with q̃�	0.9TS��Ũ�� for higher rep-
licas ��=30 and 35�. The resulting Tsallis PDFs in Fig. 6�b�
show broader energy distributions even in low temperature
regions when compared to the reweighted canonical PDFs,

and almost uniform energy distributions in �=30 and 35, in

which T̃�
III�U� coincides with the linearized TS�U� at �Ũ� , t��.

As seen in Fig. 7�a�, the Tsallis-REM provides higher
pacc��� for all replicas compared to the t-REM even with
q̃0=0.004 in scheme II. The enhancement of pacc��� is more
significant with increasing q̃0 and � in both schemes II and
III due to the increased energy overlaps between neighboring
replicas. This is a direct result of delocalized Tsallis PDFs.
As demonstrated in Figs. 7�b� and 7�c�, parametrization
scheme III gives the best acceptance of replica exchanges
with the most frequent tunneling events in both energy and
replica spaces. Compared to the t-REM, the Tsallis-REM
with �=0.9 shows 2.5 and 2.2 times more frequent tunneling
events in both replica and energy spaces, respectively. The
better performance of scheme III can be attributed to the fine

tuning of T̃��U� via the optimal determination of q̃�, allow-
ing for a more delocalized Tsallis PDF in each replica.

The correlation between tunneling events in replica and
energy space, quantified by N�R /N�U	1, falls to 0.9 with
increasing � from 0.7 to 0.9 in scheme III. This implies that
a speed up of replica exchanges does not necessarily lead to
a direct enhancement of transition between the Mackay glo-
bal minimum and anti-Mackay isomers, especially for a large
energy overlap. This is also observed in the Tsallis-REM
employing scheme III with �=1 and M =10, as shown in Fig.
9�b�. This is attributed to the combined effects of the en-
larged sampling range of each replica and the increased at-
tempt frequency for replica swaps. When replica exchanges
are too frequent for a short time period, the swapped con-
figurations are swapped back to the original states before
they diffuse or relax to other energy regions.
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C. Tsallis-REM with a smaller M

In comparison to the t-REM, the Tsallis-REM enables
more rapid convergence employing the same number of rep-
licas with an enhancement of replica exchanges. This results
in the acceleration of tunneling events in both replica and
energy space. Our proposed method to determine the optimal
Tsallis parameters can be also utilized to mitigate the growth
in replica number as �f in the conventional t-REM.

To explore this possibility, we performed three indepen-
dent Tsallis-REM simulations with a reduced number of rep-
licas such as M =20 in scheme II with q̃0=0.0075, and M
=10 and 20 in scheme III with �=1.0. Note that we used
�=1.0 in scheme III to maximize energy overlaps and com-
pensate for a smaller M.

As seen in Fig. 8�a�, corresponding to scheme III with
M =10, the Tsallis effective temperatures are optimally
aligned to �1� form stable crossing points with TS�U� for low
temperature replicas and �2� locally coincide with TS�U� at

Ũ� for high temperature replicas. The resulting Tsallis PDFs

in Fig. 8�b� display significant energy overlap between
neighboring replicas with delocalized energy distributions,
while the overlaps between the reweighted canonical PDFs

die away. We find that both T̃9�U� and T̃10�U� have the same
q̃�

min=0.09 due to the concavity in TS�U�. In fact, they are

almost superimposed coincidentally as T̃9�U�=0.26

+0.09�U+117.4� and T̃10�U�=0.4+0.09�U+102.3�. It is re-
markable that both P9�U� and P10�U� are indistinguishable

due to the coincidence of T̃9�U� and T̃10�U�. This illustrates
that P��U� is purely determined from the relation between

TS�U� and T̃��U�, as in Eq. �13�.
The overall acceptance of replica exchanges as a func-

tion of t� in Fig. 9�a� monotonically decays with decreasing
M in both schemes II and III except for �	M. The overall
acceptance remains finite for all replicas even with M =10 in
scheme III, while pacc�t�� is essentially zero in the t-REM
with M =10 �not shown�. Due to near perfect energy overlap
between P9�U� and P10�U�, replica exchanges between �
=9 and 10 are always accepted with pacc�t9�	1.0. This is
also seen in scheme III with M =20, indicated by pacc�t20�
	1.0 in Fig. 9�a�. Of particular interest is the acceleration of
N�R for a smaller M in Fig. 9�b� even with a lower probabil-
ity of acceptance of replica exchanges. N�R in scheme III
with M =10 and 20 is about two times greater than that of
M =35, as seen in Fig. 9�b�. This trend is also seen in scheme
II, where N�R is 1.3 times larger in M =20 compared to
M =35.

The enhanced tunneling in replica space with decreasing
M results from the combined effects of finite pacc��� and
increased attempt frequency Ntrial. Notice that the condition

0.8

0.6

0.4

0.2
35302520151050

p
ac
c(
 
)

Replica Index  

(a)

t-REM: M=35
Scheme II: q~0=0.004

q~0=0.0075
Scheme III: !=0.7

!=0.9

125

100

75

50

25

0

N
"R

(b)t-REM: M=35
Scheme II: q~0=0.004

q~0=0.0075
Scheme III: !=0.7

!=0.9

125

100

75

50

25

0
403020100

N
"U

Total simulation time (10
8
MC cycles)

(c)

t-REM: M=35
Scheme II: q~0=0.004

q~0=0.0075
Scheme III: !=0.7

!=0.9

FIG. 7. �Color online� �a� pacc��� as a function of the replica index � and
accumulated tunneling events in �b� replica space and �c� energy space with
varying q̃0 in schemes II and � in scheme III. N�U has been determined for
the bounded energy region ��133,�105�.

0.4

0.3

0.2

0.1

0

T~
 
(U
)

(a)

TS(U)

-2

-4

-6
-100-105-110-115-120-125-130-135

L
o
g
P
 
(U
)

U

(b)

FIG. 8. �Color online� �a� Statistical temperature TS�U� and Tsallis effective

temperatures T̃�
III�U� with �=1.0 and M =10, and �b� Tsallis PDFs �line

points� and the reweighted canonical PDFs �solid lines�. From bottom to top

�=2, 4, 6, 8, 9, and 10 at U=−135 in �a�. In �a� T̃9�U� almost coincides with

T̃10�U�, resulting in the superimposed Tsallis PDFs in �b�.

144114-9 Tsallis-REM J. Chem. Phys. 130, 144114 �2009�

Downloaded 21 Oct 2011 to 168.122.65.166. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Naccept= pacc���Ntrial determines N�R for each replica. In the
Tsallis-REM, pacc��� seems to decrease with M� ���1�,
while Ntrial increases inversely proportional to M, resulting in
N�R�M��−1�. The fit of simulation data with varying M in
scheme III gives �	0.5.

As noted above, the speed up of replica exchanges does
not necessarily lead to the acceleration of tunneling events in
energy space. In comparison to N�U /N�R	1.0 for M =35,
smaller ratios N�U /N�R	0.38 and 0.62 are observed in
scheme III with M =10 and 20, respectively. This means that
recurring replica exchanges for a short time period will not
improve the configurational sampling.

In Fig. 10�a�, heat capacities of several Tsallis-REM
simulations employing different parametrization schemes are
compared to those of the t-REM. In both t-REM and Tsallis-
REM, an initial simulation of 5�108 MC cycles of equili-
bration was discarded. Heat capacities determined by re-
weighting for Tsallis-REM simulations for 5�109 MC
cycles are indistinguishable across the entire temperature re-
gion from the reference t-REM data for 1010 MC cycles. The
robustness of our method is further demonstrated in the mag-

nified view of heat capacities at low temperatures in Fig.
10�b�. Irrespective of the parametrization scheme and the
number of replicas, all Tsallis-REM results show good agree-
ment with the results of the t-REM including a narrow peak
in the region corresponding to the solid-solid transition.

V. CONCLUSIONS

In summary, we have developed an effective algorithm
for conformational sampling in complex molecular systems
through a combination of Tsallis weight sampling and the
REM �Tsallis-REM�. This method exploits the one-to-one
correspondence between the effective temperature and the
sampling weight. We presented new parametrization schemes
for the Tsallis-REM based on the determination of optimal
Tsallis parameters. Compared to the conventional t-REM,
our Tsallis-REM enables a considerable enhancement in the
acceptance of replica exchanges with optimally chosen Tsal-
lis parameters maximizing the energy overlaps between
neighboring replicas.

The accelerated convergence of the Tsallis-REM has
been explicitly demonstrated in various simulation condi-
tions of the LJ31 atom cluster by comparing the tunneling
events in replica and energy space. The most distinguished
feature of our method is that all relevant Tsallis parameters
are determined from the equilibrium phase of the conven-
tional t-REM in a fully automated fashion so the method can
be straightforwardly implemented into existing replica ex-
change MC or molecular dynamics simulation codes.

We have also shown that the Tsallis-REM with optimally
chosen parameters can significantly reduce the number of
replicas without degrading the sampling performance. The
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rapid growth in the number of replicas with increased system
size is one of the fundamental challenges in the effective
application of the conventional t-REM for biomolecules in
explicit solvents environments. In most explicit aqueous sys-
tems, the statistical temperature monotonically increases as a
function of the potential energy due to the dominant energy
contribution of the solvent.24 This proposed Tsallis-REM
should dramatically improve the system size dependence
relative to conventional t-REM through a proper extension to
molecular dynamics simulation.

Finally, we would like to emphasize that the effective
temperature analysis, applied in this context for the determi-
nation of optimal Tsallis parameters, is a general approach
that can be applied to the combination of any generalized
ensemble sampling and the REM. That can be accomplished
by exploiting the one-to-one mapping �Eq. �22�� between the
effective temperature and the sampling weight.
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