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Recently the authors proposed a novel sampling algorithm, “statistical temperature molecular
dynamics” (STMD) [J. Kim et al., Phys. Rev. Lett. 97, 050601 (2006)], which combines ingredients
of multicanonical molecular dynamics and Wang-Landau sampling. Exploiting the relation between
the statistical temperature and the density of states, STMD generates a flat energy distribution and
efficient sampling with a dynamic update of the statistical temperature, transforming an initial
constant estimate to the true statistical temperature T(U), with U being the potential energy. Here,
the performance of STMD is examined in the Lennard-Jones fluid with diverse simulation
conditions, and in the coarse-grained, off-lattice BLN 46-mer and 69-mer protein models, exhibiting
rugged potential energy landscapes with a high degree of frustration. STMD simulations combined
with inherent structure (IS) analysis allow an accurate determination of protein thermodynamics
down to very low temperatures, overcoming quasiergodicity, and illuminate the transitions occurring
in folding in terms of the energy landscape. It is found that a thermodynamic signature of folding
is significantly suppressed by accurate sampling, due to an incoherent contribution from low-lying
non-native IS in multifunneled landscapes. It is also shown that preferred accessibility to such IS
during the collapse transition is intimately related to misfolding or poor foldability. © 2007
American Institute of Physics. [DOI: 10.1063/1.2711812]

I. INTRODUCTION plied to problems of phase transitions in lattice spins,'
vapor-liquid equilibria of fluids,"" biomolecules,'®™"® and
Lennard-Jones' and spin glasses.'3

The basic idea of WL sampling is most similar to that of
multicanonical sampling5 in that both methods achieve a flat
energy distribution employing a weight, w(U)=1/Q(U),
which permits the system to visit otherwise rarely sampled
regions via a random walk in energy. However, the density of
states is not known a priori, so it is determined by an itera-
tive procedure.j’6 The distinguishing feature of WL sampling

The potential energy landscape (PEL) of complex sys-
tems is characterized by a multitude of local minima sepa-
rated by barriers." Thus conventional canonical simulations
using Monte Carlo (MC) or molecular dynamics (MD) algo-
rithms can fail to sample the thermally significant phase
space within a reasonable computational time, due to broken
ergodicity.z’3 To mitigate this problem, several advanced
sampling methods have been developed such as multiple his-
togram reweighting,4 multicanonical or entropic sampling,5’6
replica exchange method or parallel tempering,%9 and the
Wang-Landau (WL) random walk algorithm.'® Recently, a

is its update scheme for the running estimate Q(U). Every
time that an energy U is visited, Q(U) is multiplied by

feedback iteration algorithm has also been proposed to im-
prove the efficiency of the broad histogram method'" and
parallel tempering.12

While the various algorithms differ substantially in de-
tail, the common goal is to calculate the density of states,
Q(U), representing the degeneracy of available energy lev-
els, where U is the potential energy;all thermodynamic quan-
tities can then be calculated from the canonical partition
function, Z,o(8)=2Q(U)e™PY, B=1/kgT, kg being the
Boltzmann constant. Recently, Wang-Landau samplinglo’13
has attracted considerable interest, due to its conceptual
framework and ability to facilitate fast equilibration by gen-
erating a flat distribution in potential energy. Several modi-
fied versions, combined with the configurational
temperature14 or transition-matrix aﬂgorithm,15 have been ap-
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the modification factor f(>1), Q(U)— fQ(U). This opera-
tion biases the acceptance probability A(r—r’)
=min[1,Q(U)/Q(U")], where U=U(r) and U’'=U(r"), and
causes the system to move to less explored energy regions.
In contrast to the recursive refinements for ﬁ(U) in multica-

nonical sampling, the dynamical update of Q(U) enables a
faster exploration of configuration space and a direct esti-
mate of the true density of states in the asymptotic limit of
f—1.

In spite of many successful applications of WL sam-
pling, nontrivial modifications are required for continuum
and large systems.15’20 In particular, the discrete representa-
tion of Q(U) on an energy grid can cause an accumulation
problemzl’22 when the density of states shows a narrow en-
tropic bottleneck. This tendency becomes more severe for
large systems, where a huge number of energy bins is re-
quired to cover an increased range of (U). To resolve this
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problem the original method has been recently modified to
use a continuum density of states with a kernel function
update.23

Another obstacle is the absence of a MD algorithm ca-
pable of handling the dynamic modification of the sampling
weight. Prior implementations of WL sampling have been
based upon MC. This reduces the applicability of the method
to more complex systems where effective MC moves are not
available. One attempt17 has been made to use a short mo-
lecular dynamics simulation for the generation of trial moves
using importance sampling with the density of states esti-

mate ﬁ(U). However, this is still far from a genuine MD
algorithm generating a deterministic trajectory.

Recently, we proposed the “statistical temperature mo-
lecular dynamics” (STMD) algorithm,”* which integrates
Wang-Landau sampling'® and multicanonical MD (Ref. 25)
via the statistical temperature. STMD relies on the well-
known thermodynamic relationship between the density of
states and the statistical temperature,26

dln Q(U)]‘l

(1)

- | 2

With use of Eq. (1), a flat energy distribution is obtained via
the systematic refinement for the statistical temperature esti-

mate, 7(U), rather than the density of states estimate, QU).
Applying the basic WL idea to the finite difference form of
Eq. (1) yields a robust update scheme, transforming an ini-
tially constant T(U) to the true statistical temperature T(U).
The updating of T(U) is intrinsically nonlocal, refining Q(U)
concurrently at not only the visited state but also its neigh-
borhood, and is easily implemented into molecular dynamics
simulations through a force scaling combined with a Nose-
Hoover thermostat.”” STMD is applicable to complex sys-
tems with rough energy landscapes, overcoming the slow
convergence and the unknown weight dependence of multi-
canonical MD.

In the present paper, we first examine the performance of
STMD in the 110-particle Lennard-Jones fluid, with diverse
simulation conditions. The accuracy of STMD simulations
with a stepwise interpolation function for T(U) is tested by
comparing reweighted thermodynamic properties with the
results of conventional canonical MD. We find that the rate
of convergence of STMD can be considerably accelerated
with the use of a large energy bin, with no deterioration of
statistical accuracy.

Second, the applicability of STMD to biomolecular
simulations is explored in coarse-grained BLN 46-mer®® and
69-mer” protein models, in which a rugged potential energy
landscape hampers the computation of thermodynamic be-
havior at low temperatures. It is shown that STMD yields
accurate thermodynamic properties down to very low tem-
peratures and that the thermodynamic signatures of folding
are strongly influenced by the sampling efficiency in a mul-
tifunnel energy landscape.

The inherent structures™’ (IS) are the local minima of the
PEL and serve as discrete states for continuous systems. An
instantaneous configuration belongs to the IS to which it
maps upon minimization. STMD sampling and the IS ap-
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proach make a powerful combination for proteins. We refer
to the lowest energy IS as the ground state and to the others
as excited states; a subscript indexes the IS and their prop-
erties in order of increasing energy. Protein folding occurs
when, by some criterion, the “native state” is reached. Native
IS, including the ground state, share the structural motif of
the native state and belong to the folding funnel.

We previously found***! that the occupation probabili-
ties of individual low-lying IS become finite below the col-
lapse transition. Excited state occupation probabilities re-
main non-negligible below the previously estimated folding
temperature, blurring the folding signature with an incoher-
ent contribution of non-native IS to the thermodynamics.
There exists a temperature interval in which the occupation
of non-native IS exceeds the native occupation, and the ex-
tent of this interval strongly correlates with frustration on the
PEL. The connection between the preferred occupation of
non-native IS after collapse and poor foldability of
B-barrel-forming proteins is further explored in the follow-
ing.

The paper is organized as follows: In Sec. II, the basic
formulation and the detailed simulation protocols of STMD
are presented. The implicit connection of STMD to the origi-
nal multicanonical MD and WL samplings is also verified

through the one-to-one mapping between T(U) and Q(U)
using stochastic sampling dynamics. In Sec. III, the basic
advantages of STMD are examined for the 110-particle
Lennard-Jones fluid by varying the energy bin size. In Sec.
IV, STMD is applied to the BLN 46-mer and 69-mer model
proteins. Folding is investigated in terms of equilibrium and
inherent structure thermodynamics. The conclusion and a
brief summary are presented in Sec. V.

Il. THEORETICAL FORMULATION

A. Dynamical update method for the statistical
temperature

Our study begins with the thermodynamic relationship
between the microcanonical entropy, S(U)=In Q(U), and the
statistical inverse temperature, B(U)=1/T(U),

U
S(U) =f BU")AU". (2)

Throughout this paper we set kz=1. Since S(U) is uniquely
determined, up to a constant, as a functional of T(U), it is
natural to seek a WL-type sampling driven by an iterative
refinement of the statistical temperature, rather than the en-
tropy or the density of states.

Thus, we introduce the running estimate for the statisti-
cal temperature,

B(U) = UT(U) =[dS/aU], (3)

where S(U)=1n Q(U) is the entropy estimate. On an equally
spaced energy grid U;=G(U/A)A, with bin size A and G(x)
returning the nearest integer to x, the multiplicative WL op-
eration of ﬁjefﬁj reduces to §j—>§j+lnf for a visit to
“state” j with energy U;. Combining this algebraic operation
with the central finite difference approximation for Eq. (3),
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3uSly,= By = 1/T; = (Sj1 = 5,124, @)

we obtain the dynamic update scheme for the inverse tem-
perature,

By =Bju * O, (5)

with §f=In f/2A, and the prime denotes the updated values.

Except for phase transition regions in finite size
systems,33 the true inverse temperature B(U) monotonically
decreases to zero as the energy increases. This means that the
estimate could go negative, with consecutive subtractions by
of, when the system visits the same energy state repeatedly.
To avoid this problem, Eq. (5) is further transformed by tak-

ing the inverse and rewriting it in terms of T(U),

T;:I = ajtlzjl > (6)
where @, =1/(1F &fT}y,).

Equation (6) is very suggestive in that (i) the scaling
operations of decreasing f"j_l and increasing 7~"j +1 transform

T(U) so that it converges to the monotonically increasing

T(U), (ii) the scaling factor a;.; approaches unity at low

temperature, allowing a fine tuning of T(U) even with re-
peated visits to the same energy state due to a localized en-
ergy distribution and trapping in local minima, and (iii) the
“edge” effect®® can be avoided by restricting updates for 7
<7~"j< T}, and maintaining 7~"j=Tl and T}, beyond lower and
upper temperature bounds 7; and T, respectively. The con-
stant temperature estimates at both ends of the energy region
under study cause the system to sample canonical ensembles
with temperatures 7, and T}, respectively.

B. Implementation into molecular dynamics simulation

Since STMD updates the intensive variable 7~"(U), rather

than Q(U) ~ O(eV), it can be naturally combined with a mo-
lecular dynamics algorithm using the generalized ensemble
. . . 25 . . .
simulation technique,”™ in which a non-Boltzmann sampling
is attained by scaling the potential and maintaining the ki-
netic energy at a reference inverse temperature SBy=1/T.
Considering the generalized ensemble associated with the
weight,

w(U) = e_J-U(I/T(U’))dU’ _ e_gov(u)’ (7)

as a canonical ensemble with the effective potential v(U)
=T,S(U), MD with the effective potential plus the dynamic
modification for the temperature estimate yields STMD. The
forces are constantly adjusted by an energy dependent scal-

ing factor, y(U)= TO/T(U),

f,= UL, (8)

where f; is the force on particle i without the scaling. The
velocity distribution is maintained at the reference tempera-
ture T, using a Nose-Hoover thermostat.”” The result is a
trajectory sampling the weight w(U) in configurational
space,” with a probability density function (PDF) obeying
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P(U) ~ SW-SW) _ (fYopwhav’ )

where  9B(U)=p(U)-B(U)=6T(U)/(T(U)T(V)),
=T(U)-T(U).

Initially the force scaling factor, y(U), is changing and
the trajectory is not in equilibrium.lO Every time a flat energy
distribution is obtained with a given f, the s;mulation is re-
peated with a reduced modification factor, \Vf, starting from
the previous temperature estimate. In the asymptotic limit of
f—1 (or 8f—0), detailed balance is recovered and the run-

ST(U)

ning estimate 7(U) converges to the true 7(U), producing an
equilibrium trajectory subject to the weight in Eq. (7).

The stationary sampling dynamics leading to Eq. (9)
can’®’ be described as diffusion in energy, modeled by a
Langevin equation,

9,U = 0B(U) + (1), (10)

where 7(z) is the random force. The coincidence of T(U)
with T(U) realizes a random walk by canceling the determin-
istic force, 5B(U). For a weakly nonstationary case, where
the modification of the temperature estimate per time step is
small due to a small Jf, i.e., 5ff2(U)< 1, one may see how
the systematic bias in §B(U) allows escape from a trap. For
example, if the system gets confined in some energy region
near U}, the accumulated operations of Eq. (6) on the several
corresponding visits to U; create statistical temperature gra-
dients of 9B;_; <0 and B;,;>0, which form an outgoing
probability flux from U; and assist the system to escape.
Consequently, the system moves freely through the acces-
sible energy range.

C. Correspondence between the temperature estimate
and the entropy estimate

When the simulation has converged, thermodynamic
quantities can be calculated by determining S(U) from Eq.

(2). However, note that T(U) is only defined on the grid
points U}, while the force scaling factor y(U) requires a con-

tinuum description. Furthermore, the integrand B(U) in Eq.
(2) shows a very steep variation at low temperatures, so a

direct numerical integration for S (U) is undesirable. Here we
present two interpolation methods which provide off-grid

values of 7(U), yielding continuum entropy estimates by
analytic integration.

1. Staircase temperature estimate

We first applied the simplest staircase interpolation,

T(U)ZETie(U_ﬁi—l)e(ﬁi_U)s (11)

with 6 being the Heaviside step function and U;=(U;
+U;1)/2 denoting the energy midway between the grid
points. Since the stepwise estimate is constant for each en-
ergy bin, the entropy estimate is straightforward,
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i-1 —
oA (U-Ty
sw= [ Bwav =3 2 W20, (12)
Ul ] [ T Ti

for Ue[U,_,,U;]. Here U, is an arbitrarily defined lower

integration limit. Then, under the scaling operation for 7(U)
on the visit to U;, the entropy estimate is modified as
'

§(U)+5f(U—[_]i_2) for U e [l_]i—Z’l_]i—]]
S(U)+ (Ui = U) for U e [Ui7Ui+1]
\ S(U) otherwise.

Thus, on a visit to state i, the entropy estimate always in-
creases for the (i—1)th bin, is shifted by the constant §fA for
the ith bin, and linearly decreases towards the original value
at the (i+1)th bin, clearly demonstrating that our update

scheme, Eq. (6), is nonlocal for Q(U).

2. Linear temperature estimate

The second interpolation method is to connect succes-
sive grid points linearly,

T(U)=T;+\(U-U)), (13)

for U e [U;,U;,,], where \; —(~ ~)/A is the slope of the

linear segment connecting [U;, ,] and [U]H,T]H] Linear
interpolation is particularly appropriate at low temperatures,
where the heat capacity is nearly constant, but the sequence
of consecutive interpolations also enables a faithful represen-
tation of T(U) corresponding to a phase transition.® Equa-
tion (13) yields a continuum entropy estimate by an analytic
integration,

S()=| BWHAU' = 2 LU + L, (U), (14)

U, Jj=l+1

where i"=i—1(i)) for U, 1\U<U(U<U<U) and L;
=\ In[1+N_ (U=U; )/ Ty].
Q< S(U H’ ne Y;=exp{L(U,)}

_[T / T ]A/(TJ 710, the scaling operation of Eq. (6) upon a

Denoting

visit to state i modifies QJ by multiplying it by the nonuni-
form modification factor f; for k e [-1,2],

z+k kal+k’ (15)

where fk—H”k 10;(= Y 1Y;), with Y being evaluated at the
updated Tj. By expandlng the exponent of Y;
=exp{A/T,_;(1-A;/2T;_})} or exp{A/T;(1+4,/2T))} to first
order with respect to A;= T T 1<<1, and using TJJ,1
= ~j+1_5f [, we identified Q,_; ~ﬂT 12710, Qi

~]((T, 1/2T) Q1= 1/f(TH,1/2T) , and Q= l/f(TH,l/ZTH_z)
Since both Q,_l and Q; are always greater than 1 while both
Q;,; and Q,;,, are always less than 1, the update operation

creates an upward curvature in ﬁj’ around the visited ith
state. By taking the approximation fjr/ Tj: 1, for |j—j'|=1,
Eq. (15) is further simplified to the symmetric operation for

J. Chem. Phys. 126, 135101 (2007)

the entropy estimate, S =§j+% In f for j=i and §j+i In f for

j=i*1, demonstrating again that the update of T(U) is intrin-

sically nonlocal.

D. Reweighting

The combination of the fundamental Eq. (6) and the

mathematical mapping between T(U) and S(U) through the
smoothing of Egs. (12) and (14) allows STMD to handle
continuum systems regardless of the size, A, of the energy
bin. STMD can maintain statistical accuracy with a large A,
which is potentially very useful for systems having a large
range of (U), while multicanonical-type simulations based
on the accumulated histogram cannot afford a large energy
bin, since the determination of the sampling weight is di-
rectly influenced by the statistical accuracy of the energy
distribution, P(U). The significant slowing down of the con-
vergence of WL sampling with increasing A has been also
pointed out in Ising spins and the Lennard-Jones fluid.**
For a large A the entropy estimate can be corrected as

S"(U)=S(U) +1n P(U), (16)

and an arbitrary canonical averaged observable A(8) can be
determined as  [dUP (U, B)AU), with P, (U;B)
=exp{S(U) - BU}/ Z¢4no(B) being the normalized canonical
PDF.

Sometimes, it is more convenient to work with the raw

data themselves instead of constructing a histogram for §( U)
or P(U). This can be done by transforming the energy inte-
gral into the sum of states.**® Let us suppose that N samples
(configurations or states) having the distribution P(U) have
been generated from the simulation. The distribution is the
product of the density of states and the normalized weight of
the generalized ensemble. Then, the density of states is esti-
mated as Q(U)=Z(B,) P(U)eSY), where Z(8,) is the partition
function for the generalized ensemble with the weight from
Eq. (7). Next, by the definition, we have Z.,,(8)
=Z7(By)/N2,e5U9=FUs in which the energy sum has been
transformed to the state sum with the identity, P(U)
=(1/N)2,8(U,-U). Consequently, the canonical PDF is ob-
tained as

S(U = U,)eSW-BU
Peano(Us B) = 2, = , (17)
P 2 SWUy)-BU;

s

and the canonical ensemble average for the observable A
obeys

A(B)= 2 P(s; BA(s), (18)

where P(s; B)=e" W /3 7V where F(U,)=S(U,)-BU, is
the weighting function for state s and A(s) is the observable
value.

One potential difficulty with Eq. (18) is that the numera-
tor and denominator can become very large or very small due

to the huge ranges of U and S(U), which can cause either
numerical over-or under-flow in the computation. This prob-
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lem can be avoided by assuming that P,,,(U;B) is localized
with a Gaussian shape around the fixed point U", obeying
T(U")=T. Then, the summation in Eq. (18) can be done
without any numerical difficulty by subtracting the maxi-
mum value of F =S(U")-BU" from the exponents of both
the numerator and the denominator,

FU)-F"

MO=2 5 s

s

A(s). (19)

E. Detailed simulation protocols

Detailed simulation protocols for STMD are outlined as
follows: (i) First determine the sampling range by selecting
lower and upper temperature bounds of 7, and T, respec-
tively, and the kinetic inverse temperature S; typically, T
=T),. Choose the energy bin size A, and the initial modifica-
tion factor f,;=f—1<1, with f; measuring the deviation from
the identity scaling. (ii) Perform the simulation with a stan-
dard integrator and thermostat set to S, supplemented by the
scaling operations of Eq. (6) for the temperature estimate
every time step, with initial guess T(U)=T), until a flat en-
ergy distribution is obtained. The flatness of histogram is
determined by checking that the fluctuations are less than
20% of the average histogram H, [the histogram is the non-
normalized P(U,)] as |(H;—H,)/H;|<0.2. In the initial stage
of the simulation, the low energy end of the temperature
estimate is flattened at specified time intervals as YN"(U)
=T i for U< U, Where Tpin=T(Upin) =min{T(U)}. This
boundary flattening accelerates the convergence by allowing
the system to access an unexplored energy region very
quickly through the canonical sampling at 7,,;,. The initial
simulation data are not taken into the accumulation of histo-
gram H; until T,,;, reaches T). (iii) Starting from the current
estimate 7~"(U), repeat the same procedure, with a reduced
convergence factor w’f to obtain again a flat histogram. The
iteration is terminated when Jf is sufficiently small, e.g.,
1078, (iv) Calculate thermodynamic properties using the en-
tropy estimate, Eq. (16), or using Eq. (18).

lll. APPLICATION TO THE LENNARD-JONES FLUID

We first examined STMD in a Lennard-Jones (LJ) 110-
particle system, at reduced density p=0.88 and with the po-
tential cutoff at 2.50, from 7,=0.7 to T;,=1.8, corresponding
to a fluid region. The LJ fluid has also been used for testing
different versions of WL sampling.m’15 Three STMD simu-
lations with different energy bin sizes A=2, 4, and 16 have
been performed at Ty=T7) starting from f,;=0.00025 and
using the staircase temperature estimate of Eq. (11). As
expected, the temperature estimate in the case of A=2 in
Fig. 1(a) is dynamically modified and extended to reach T,
at 3.9X 10 MD steps, and f converges such that f,<1078
after 1.4X 107 MD steps. The corresponding energy sam-
pling in Fig. 1(b) displays a typical random walk, sweeping
the interesting energy region very frequently even with the
vanishing f,;.

J. Chem. Phys. 126, 135101 (2007)

18
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0 200 400 600 800 1000
MD steps (x 104)

FIG. 1. (a) Temperature estimate 7(U) and (b) energy U as a function of
MD steps for the initial stage of a STMD simulation of the 110-particle LJ
fluid with A=2 and initial f,=0.000 25.

During the initial stage of simulation for 7,,;,<7), the
low energy end of the temperature estimate has been flat-
tened every 2X 103 MD steps as in Fig. 2(a) by enforcing
T(U)=T,y;, for U<U,,,. The constant temperature estimate
T(U)=T,;, (recall Typi=T(Up,)=min{T(U)}) generates a
canonical sampling at T, for U<U,,;,, and assists the sys-
tem to access the low energy region very quickly through the
extrapolation of the entropy estimate, S(U)=S(Uy;,)+(U
=Upin)! Trmin» as in Fig. 2(b). The initial sampling speed
slows down by 2.5 times without the low energy flattening.
Note that the initial modification factor in STMD is very

600_ 1 i 1 I 1 1 L 1

ssof .

S

500k Convergent

1 1 1
-670 -650 -630 -610 -590 -570 -550 -530

1 1 1 L

450

U

FIG. 2. (a) Temperature estimate 7(U) and (b) corresponding entropy esti-

mate S(U) as a function of the low energy flattening every 2 X 10° MD steps
for 110-particle LJ fluid with A=2 and initial f;=0.000 25.
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FIG. 3. (a) Convergent temperature estimates 7(U) and resulting energy
histograms H(U) (inset), and (b) reweighted entropy estimates for A=2, 4,
and 16 for 110-particle LJ fluid.

close to unity due to the restricted sampling range of T(U), in
contrast to WL sampling, which usually begins with f=e

to cover a large range of Q). Accordingly, after the first

iteration (4.4X 10° MD steps), both T(U) and S(U) have
almost reached their convergent values with f,<107% (1.4
X 10" MD steps) in Fig. 2(b).

When A increases to 16, the temperature estimate T(U)
in Fig. 3(a) shows a staircase modulation due to the discrete
energy grid, which is directly reflected in the fluctuations of
the energy histogram H(U) in the inset of Fig. 3(a). How-
ever, the overall flatness of the histograms confirms that
STMD is applicable with a large energy bin. Furthermore,
the reweighting gives the same entropy estimate in Fig. 3(b)
regardless of A. The energy PDF, P(U), has been computed
by collecting the simulation data of 3 X 10® MD steps with
f4<<107°. The variation of the temperature estimates is less
than 107> with this modification factor, so we assumed that
the weight is fixed. The internal energy U, (T)=(U);, with
(-++)r being the canonical ensemble average at T, and the
heat capacity Cpy(T) in Fig. 4 show good agreement with
the canonical sampling results for 10’ MD steps. The relative
errors of the internal energy, i.e., €=|(Ue= Ucano)/ Ucanol» are
less than 0.0004.

The convergence of STMD is accelerated by two factors.
One is the low energy flattening, which increases the initial
sampling speed by allowing the system to access an unex-
plored energy region more rapidly through the canonical
sampling. The other is the continuum description of the en-
tropy estimate combined with an adjustable energy bin size.
Since the flat histogram condition can be more easily
achieved for a large A, the rate of convergence can be en-
hanced greatly without harming the statistical accuracy. We
quantified the rate of convergence by plotting log f; as a
function of the number of MD steps. The flatness of the
histogram has been checked every 10° MD steps. The time

J. Chem. Phys. 126, 135101 (2007)

) I 1 T 1 )
-540
- 140
580 .
=) £
Dg - 120 Ug
-620
-1 100
-660 -
1 1 1 I 1 1

0.7 0.9 [.1 1.3 1.5 1.7
Temperature T

FIG. 4. Reweighted average energy U,..(T) and heat capacity Cyy(T) for
A=2, 4, and 16 for 110-particle LJ fluid. For comparison, canonical en-
semble results for 107 MD steps have been plotted at T
=0.7,09,1.1,1.3,1.5,1.7.

required for the first reduction of f has been shortened from
1.5X 107 to 4.2 X 10° MD steps with the application of the
flattening with the same A=2 and f,=0.000 25 in Fig. 5(a).
The effect of an enlarged A is also notable. By increasing A
to 16, the rate of convergence is accelerated about 1.5 times
compared to A=2 with the same f.

In the asymptotic limit of f;— 0, where the dynamic

modification of T(U) is negligible, STMD reduces to the
generalized ensemble sampling with the fixed weight w(U)

=exp{—§(U)}.2’3 In this limit, the constant temperature esti-
mate for each energy bin U; produces a canonical sampling
corresponding to the temperature Ti and the resulting energy
distribution is directly influenced by the staircase behavior of
T(U) for a large A. Thus the overall PDF is obtained as a
superposition of the canonical ensemble samplings repre-
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FIG. 5. (a) log f, as a function of MD steps for various simulation condi-
tions with the same f,;,=0.000 25, and (b) temperature estimate T(U) and
distributions P(U) with A=2 and 16 for 110-particle LJ fluid. The asterisk in
(a) denotes the STMD simulation without low energy flattening. The exact
statistical temperature T(U)= U, (U) is provided for comparison.
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sented by Gaussians centered at stationary points of
5,8(U;k):0, ie., T( U?):T,-. Indeed, the energy distribution on
finer grids in the case of A=16 in Fig. 5(b) shows clear
structures and a characteristic correspondence with the varia-
tion of

ST(U) = T(U) = T(U) = T(U) = Uy (V) (20)

ave

where we identified the exact statistical temperature T(U) by
U, (U) obtained by inverting the functional relationship
U,(T)=U from the equivalence of microcanonical and ca-
nonical ensembles.*

The stationary points of P(U) correspond to the crossing
points of T(U) and T(U), satisfying (ST(U;F):O, which are
also the zeros of the deterministic force B(U) in Eq. (10).
The deterministic force simplifies to —8T(U)/ Tl-*2 around the
stationary points le and creates a biased probability current
to the energy-decreasing (-increasing) direction for 8T(U)
>0 (8T(U)<0), which is the dynamical origin of the forma-

tion of local maxima and minima in P(U) at stable and un-
stable zeros corresponding to K(U?)=((9T/ auU)/ (9T13U) Ut

<1 and >1, respectively.36 On the other hand, in the case of
A=2 in Fig. 5(b), the effect of the discrete energy grid on

T(U) is negligible and the sampling dynamics produces an
almost uniform distribution by creating more densely distrib-
uted fixed points UT

IV. APPLICATION TO COARSE-GRAINED PROTEIN
MODELS

Next, we consider the more challenging problem of pro-
tein folding. Despite recent advances,” simulations describ-
ing both the protein and the solvent remain computationally
very demanding. Thus a simplified description, incorporating
the main features of real proteins, but reducing the number of
degrees of freedom significantly through a coarse graining,
remains quite useful. In this study, we have chosen the off-
lattice Honeycutt-Thirumalai B-barrel BLN model,28 denoted
by BBLN, as a testing system for STMD, since this model
has been extensively studied and provides a good example of
a rugged energy landscape, which cannot be correctly
sampled by conventional MC or MD simulations. The pri-
mary sequence is composed of three types of beads, hydro-
phobic (B), hydrophilic (L), and neutral (N), and the poten-
tial energy is obtained by summing harmonic bond-
stretching and bond-angle terms, torsion-dihedral potentials,
and nonbonded interactions. The former three interactions
determine a local, secondary structure, and the nonbonded
interactions determine an overall tertiary structure. We used
the same potential form and parameter set as reference.*’
Dimensionless length, energy, and temperature are defined
through the collision diameter o and the well depth param-
eter € of the nonbonded attractions.

A. B-barrel 46-mer

The primary sequence of the BBLN 46-mer is
BoN(LB),N3ByN5(LB)sL with a four-stranded S-barrel glo-
bal energy minimum. It has been intensively studied?®3241-47
in terms of its kinetics, thermodynamics, and potential en-

J. Chem. Phys. 126, 135101 (2007)
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FIG. 6. (a) Convergent temperature estimates T(U) and inverse average
energy U;! (U), and corresponding energy histograms H(U) (inset), and (b)

ave

log f, as a function of MD steps for both staircase and linear interpolation
schemes for BBLN 46-mer.

ergy landscape. Due to the presence of a high degree of
energetic frustration, the 46-mer has been also used as a
benchmark to test various global optimization
adgorithms.‘m’48 More recently, replica exchange MC com-
bined with principal component analysis has been applied to
explore the local structural diversity of this model protein.49

We performed two STMD simulations using the differ-
ent interpolation schemes of Egs. (11) and (13) for the tem-
perature range of 7;=0.1 to T),=1.3 at To=T,, with the initial
modification factor f=1.0005 and the bin size A=1. The
temperature estimates in Fig. 6(a) converge to f,< 107/ after
10% and 5.8 X 107 MD steps, for the cases of staircase and
linear interpolations, respectively, realizing the flat energy
histograms in the inset of Fig. 6. Irrespective of the interpo-
lation scheme, the convergent temperature estimates are
quite similar and show good agreement with the inverse av-
erage energy, U, (U), corresponding to the true T(U). The
plot of log f,; as a function of MD steps in Fig. 6(b) reveals
that the linear interpolation scheme is more efficient in
achieving a flat histogram, through a more faithful represen-
tation of the statistical temperature.

The energy sampling for the case of linear T(U) in Fig.
7(a) displays a typical random walk, with very frequent
sweeps of the entire energy range, even with a vanishing
modification factor f,;<107’. The energy trajectory shows
two separate sampling domains, corresponding to high en-
ergy extended states and low energy folded or collapsed
states. STMD yields a broad sampling, even for very low
temperatures down to 7=0.1, while most previous‘u’43 stud-
ies have been restricted to 7=0.3 due to glassy dynamics in
the rough energy landscape, except for entropic tempering50
and replica exchange Monte Carlo.”

The power of STMD may be further illustrated by ex-
amining the inherent structures (IS). In Fig. 7(a), 76 450
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FIG. 7. (a) Energy trajectory beyond 7 X 107 MD steps with f,< 1077 for the
linear interpolation scheme, and (b) corresponding inherent structure (IS)
plot for BBLN 46-mer.

equilibrium configurations, saved every 10° MD steps, have
been mapped to 45 616 IS using conjugate-gradient minimi-
zation until the energy variation becomes less than 107. The
global minimum, or ground state, has been exactly located at
Uy=-49.2635, which is consistent with a recent conforma-
tional space annealing (CSA) study.* The IS plot shows vig-
orous transitions between different low-lying structures, veri-
fying that our simulation reproduces low energy folded states
correctly, overcoming a quasiergodicity at low temperature.
To check the performance of STMD more quantitatively, we
compared the number of different IS found with energy less
than AU+ U, with the results of CSA (Ref. 37) in Table I.
Compared to these sophisticated optimization results, STMD
finds more local minima as the energy increases from the
ground state U,

Previous studies have shown that the foldability
of proteins is mainly determined by two transitions. One is
the collapse transition from random coil states to collapsed,
but non-native, states at 7y=~0.65 in SBBLN 46-mer.**" This
transition is identified by the peak in the energy fluctuations,
i.e., the heat capacity Cy;,={(8U)?)/kzT?. Here we defined
Cyy(T)=(8XY)/ kpT?, 6X=X—(X). The other is the folding
transition from collapsed states to the native state originally

41,42,51,52

TABLE I. Number of IS less than Uy+AU for BBLN 46-mer and 69-mer in
STMD simulations, conformational space annealing (CAS) (Ref. 48), and
automated histogram filtering (AHF) (Ref. 29).

46-mer 69-mer
AU STMD CAS STMD AHF
1 5 5 3 3
2 40 36 44 47
3 189 147 205 175
4 498 339 588 486
5 1045 636 1389 935
6 1805 1010 2457 1542
7 2723 1387 3596 2237

J. Chem. Phys. 126, 135101 (2007)
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FIG. 8. (a) Entropy estimates of stepwise and linear interpolation scheme
for T(U), and (b) heat capacities C;‘}IU (dashed line) determined by reweight-
ing for 3.2X 107 energy data and C¥jy, (Solid line) and C}*;, (dotted line)
determined by reweighting for 764 50 selected equilibriummaﬁd IS configu-
rations, respectively, for BBLN 46-mer.

estimated at T_f%0.35,42 which is indicated by a peak in the

order parameter fluctuations, EQQ=(Q2>—<Q>2. The order pa-
42,51 . L

rameter, Q, measuring the structural similarity of a con-

figuration to the ground state or global energy minimum, is

L
— > Oe=|r;—r"
M',j>i+4 ! !

L

Q= ), 1)

where r;; and r?j are the relative distances between beads i
and j in the instantaneous configuration and the ground state,
respectively. Here M is the normalization constant and €
=0.2 is the threshold value to take into account thermal fluc-
tuations around the ground state.

The microscopic definition of the native state, which cor-
responds to a specific three-dimensional structure performing
its biological function, is nontrivial in the potential energy
landscape. It is not the minimum energy configuration, since
thermal fluctuations always exist. The IS formalism auto-
matically groups configurations which drain to the same IS,
i.e., those that belong to the same basin of attraction, so it
seems clear that configurations belonging to IS, are represen-
tative of the native state. It must also be considered that
multiple IS, notably those near the bottom of the “folding
funnel,” can share the structural motif of the folded state.

One advantage of STMD is that, once we determine the

entropy estimate S(U), any thermodynamic quantities can be
calculated at an arbitrary temperature using the reweighting.
Figure 8(a) shows the reweighted entropy estimates of both
interpolation schemes, obtained by collecting simulation data
with f,< 1077, and they are indistinguishable. As expected,
the collapse transition, signaled by the slope variation of the

convergent 7(U) around U= 20 in Fig. 6(a), is exactly asso-

ciated with the peak at T, in the heat capacity C‘l‘}lU in Fig.

8(b), which has been determined by the reweighting of 3.2
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FIG. 9. (a) Average order parameters Q(7T) and Q, (T) for ith beta strand,
and (b) order parameter fluctuations 2.,,(7) and EiniQrviEEi"i(T) for ith
beta strand for BBLN 46-mer. o

X 107 simulated energy data. We also calculated a partial
average, Ch7y,, using the energy data of 76 450 selected equi-
librium configurations. In contrast to the smooth behavior of
CEZ}IU the partial heat capacity C};;; shows a small ruggedness
at low temperatures, but the overall coincidence for the
whole temperature region confirms that the selected date set
is well equilibrated.

The transitions occurring in protein folding can also be
seen in inherent structure thermodynamics quantities, e.g.,
through the IS energy fluctuation heat capacity, CUhUh, in
Fig. 8. Since the mapping from equilibrium configurations to
local minima eliminates irrelevant thermal fluctuations, the
thermodynamic signature of the collapse transition is more
clearly demonstrated in C};";, rather than in C‘[‘}IU at the same
Ty. In addition to the mainl})gak around 7', a small shoulder
is observed in C ULU, but is smoothed out in CJ, at T
~(.95. The shoulder is associated with an early formation of
secondary structures of the second and fourth S strands,
which is identified in the partial IS order parameter Q;,; and
its fluctuations, EQ” 0.0 in Figs. 9(a) and 9(b), respectively,
for the ith B strand comprised of consecutive beads specified
in Table II.

In contrast to the sharp collapse transition consistent
with the previous study,42 the folding transition is not clearly
seen. The total order parameter Q in Fig. 9(b) is monotoni-
cally increasing crossing Ty and 7, with no saturation be-
havior indicating a dominant occupation of the native state.
The order parameter fluctuations 2., are also monotonically
increasing, with a small shoulder at 7 and a very broad peak

TABLE II. Classification of sequences of secondary structures in both 46-
mer and 69-mer.

B strand Ist 2nd 3rd 4th 5th 6th
46-mer 1-9 13-20 24-32 36-46
69-mer 1-9 13-20 24-32 36-43 47-55 59-69

J. Chem. Phys. 126, 135101 (2007)
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FIG. 10. Magnified view of heat capacities: C‘l‘}]U (dashed line) determined
by reweighting of 3.2 107 simulation data and C%}, (solid line) determined
by reweighting of 76 450 selected equilibrium configurations for SBBLN
46-mer.

at T~0.2, far below the previously determined 7. The fold-
ing transition has also been identified by thermal features
such as a shoulder or peak in the heat capacity.42 However,
Fig. 8(b) shows that the thermodynamic signature of the
folding transition is almost entirely suppressed in C‘;}IU and is
only detected as a small shoulder in r?C"(‘}IU/ JT (not shown).
Recently, the folding temperatures have been reassigned to
~(.27 in a replica exchange Monte Carlo study,49 based on
the heat capacity and the order parameter fluctuations. In-
deed, we find that the heat capacity CV;;, determined by a
smaller data set shows similar behavior at low temperature,
as in the magnified view of Fig. 10. However, one must take
care with a procedure that amounts to deliberately using in-
complete sampling. The smooth variation of the heat capac-
ity at low temperatures and the suppression of the folding
signature have also been observed with simulated
tempering53 for the same system with a smaller bond-
stretching constant.”!

With a database of IS in hand, a scatterplot in the order
parameters (U,,,Q;,) [Fig. 11(a)] clearly reveals the multi-
funnel structure of the landscape. We propose the scatterplot
as an alternative to the disconnectivity anz:11ysis.46’47’54 Below
U;;<—45 there exists an apparent energy barrier separating
the folding funnel leading to the global minimum, in which
conformations with Q;,>0.7 have been grouped together,
from misfolded conformations with Q;,<<0.65, which are
more easily accessible from the main branch of collapsed
states with U;;>-30. In our view, the low-lying IS in the
folding funnel constitute the native state.

Low-lying non-native IS are found at termini of the mis-
folding funnel. They differ from the native state primarily
through hydrophobic mismatches between [ strands due to
variations in the loop regions. Folding means a dominant
occupation of the native state, but the order parameter distri-
bution P(Q,T) in Fig. 11(b) reveals that there are still sig-
nificant populations for non-native IS even at very low T
=0.11. In addition to the peak at Q= 1, corresponding to the
native state occupation, P(Q,T) shows several sharp peaks at
0=0.3, 043, and 0.65, at both T=0.11 and 0.17, corre-
sponding to the low-lying non-native IS seen in Fig. 11(a).
Furthermore, the largest occupation probabilities after col-
lapse lie in the misfolding funnel, ranging from Q=0.2
to 0.6, and population of the folding funnel begins below
T=0.3.
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FIG. 11. (a) Multifunnel energy landscape visualized by IS scatterplot in
(Ui, 0Q,y), and (b) reweighted order parameter distributions P(Q,T) at sev-
eral temperatures.

The order parameter Q and the potential energy play
central roles in characterizing the protein folding process.
However, we have just seen that, in a multifunnel landscape,
averaging over substantially occupied, structurally dissimilar,
low-lying IS reduces the folding signatures signiﬁcantly3 Yin
O(T), 20, and C‘Z}IU The averaging will not occur unless the
algorithm employed can overcome quasiergodicity. Our prior
work showed**”! that, below the collapse temperature 7,
thermodynamics is dominated by a finite number of low-
lying IS. Then, with the usual indicators not working well,
the occupation probabilities for individual IS can be particu-
larly useful to elucidate a folding transition. To pursue these
ideas we have calculated the canonical average occupation
probabilities p,(T) by reweighting,

piT) = 2 Pls; B)Sisls — i), (22)

where s is the index for configurations taken from the STMD
trajectory and Sig(s—i) is nonvanishing only when configu-
ration s belongs to the basin attraction of IS. A somewhat
related analysis based on macroscopic thermodynamic states
determined by top-down free-energy minimization has been
used to find hierarchical properties of the energy landscape
in a small peptide.55

The results are shown in Fig. 12. The main observations
are that (i) the system begins to occupy low-lying IS with a
finite probability as 7 falls below the collapse temperature
Ty, (ii) the ground state occupation p, is less than p, and p,
over a “misfolding interval” extending from Ty down to a
new characteristic temperature which we have denoted”! by
Tp0%0.34, such that p, is the largest individual p; for T
<T,,; and (iii) there are still non-negligible populations for
excited states down to 7=0.1.

J. Chem. Phys. 126, 135101 (2007)
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FIG. 12. Average occupation probabilities p,(T) (i=0-5) for low-lying IS as
a function of the temperature and magnified view around the collapse tem-
perature 7,=~0.65 (inset) for BBLN 46-mer.

The analysis of p,(T) confirms our expectation of blurred
folding signatures, i.e., the monotonic increase of Q(7T) and
the nonexistence of a peak in 2, crossing 7. Furthermore,
the dominance of p; (i=1,2) over p, below the collapse tran-
sition explains why global optimization of the 46-mer so
often fails, leading to non-native or misfolded states. Indeed,
IS; and IS, belong to “megabasins”l associated with the mis-
folding funnel, which are more frequently visited in simu-
lated annealing than the native state.*

The slowing down of the folding process by trapping in
non-native IS is strongly correlated with ergodicity breaking
of the system. We found that conventional canonical MD
cannot correctly sample the configurational space around and
below T, and shows an initial condition dependence due to
the ruggedness of the PEL. In Fig. 13(a) and 13(b), we plot
the evolution of the IS of two independent canonical trajec-
tories starting from initial configurations belonging to the
ground (ISy=-49.2635) and second excited states (IS,=
—49.1488) at temperatures 7=0.3 and 0.4, respectively. At
T=0.3, the trajectory starting from IS, samples a restricted
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FIG. 13. IS plots for canonical MD starting from different initial configu-
rations of the ground state IS, (black) and second excited state IS, (gray) at
(a) T=0.3 and (b) T=0.4, and (c) canonical MD starting from IS, at 7'
=0.5.
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megabasin only, By q={IS,1Sg,1S,5,...}, belonging to the
folding funnel with Q;;>0.7. On the other hand, the trajec-
tory starting from IS, stays within another megabasin asso-
ciated with the unfolding funnel with Q;<0.7, Buro1d
={1S,.1S,,18,;.1S;7, ...}, during 5X 10® MD steps. At the
elevated temperature 7=0.4, both trajectories show a short
transient trapping and infrequent visits to the other megaba-
sin. As the temperature increases to 7=0.5 in Fig. 13(c), the
dynamics shows more frequent IS transitions crossing a
strong barrier between By, and B,.1q- This implies a broken
ergodicity, with preferred accessibility to the non-native IS;
and IS,, leading to a substantial slowing down of folding
below 7<<0.4.

B. B-barrel 69-mer

Recently, Rothstein and co-workers?*® developed the
automated histogram filtering method (AHF), which gener-
ates low energy states by combining a hierarchical clustering
and repeated simulated annealing. The performance of AHF
was tested”*° for the BBLN 69-mer, an extended version of
the 46-mer, with two additional beta strands. The primary
sequence is BoN3(LB)4N3BoN3(LB)4N3BoN;(LB)sL, for a six-
stranded S barrel global minimum. Since energetic frustra-
tion in the BBLN model arises primarily from conformal
diversity generated by hydrophobic mismatches of B strands
and variations in the loop regions, the increased complexity
of the 69-mer presents a more stringent test for STMD. The
structural diversity and the thermodynamics of the 69-mer
have also been studied in a massive replica exchange Monte
Carlo simulation using 97 replicas ranging from 7=0.14 to
2.0 with 5 X 107 MC sweeps for each replica.49

Due to an increased energy range, we used a relatively
large energy bin, A=2, for the same temperature range used
for the 46-mer, from 7,=0.1 to 7,=1.3, with Ty=1.3 and f

=1.000 25. The linear interpolation scheme for T(U) was ap-
plied to accelerate the convergence. The temperature esti-
mate T(U) in Fig. 14(a) is in good agreement with the in-
verse average energy U,! (U) with the simulation converged
to f,;<< 107 after 2.1 X 10% MD steps [Fig. 14(b)], and the flat
energy histogram is shown in the inset of Fig. 14(a). The
corresponding energy sampling in Fig. 15(a) displays several
folding-unfolding transitions during 5 X 107 MD steps with a
vanishing modification factor f,=107%,

The subsequent IS analysis in Fig. 15(b) locates the glo-
bal minimum of the 69-mer at —99.189, in agreement with
the AHF study,29 and vigorous IS transitions confirm that
STMD is very promising for sampling low-lying states, even
in a more complicated PEL. We obtained 125 030 IS by
minimizing 171 190 equilibrium configurations saved every
10> MD steps, subject to f;,<107°. The structures of low-
lying IS differ only by the relative orientation of hydropho-
bic strands and loop regions. As with the 46-mer, Table I
demonstrates that STMD finds more low energy IS than AHF
as the energy increases from the ground state. With a rougher
PEL, the 69-mer also has a larger number of local minima>°
than the 46-mer.

The thermodynamics of folding is quite similar to the
case of the 46-mer. The collapse transition is identified by

J. Chem. Phys. 126, 135101 (2007)
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FIG. 14. (a) Convergent temperature estimates T(U) using the linear inter-

polation scheme and reweighted inverse average energy U;VIe(U) and result-

ing histograms H(U) (inset), and (b) log f,; as a function of MD steps for
BBLN 46-mer.

the main peak in C%, in Fig. 16(a) at T=~0.71, which is
obtained by applying the reweighting to 1.2X 10® energy
data. For comparison we also calculated the partial heat ca-
pacities CPj;, and C§",, with the energy data of selected
171 190 equilibrium and IS configurations, respectively. As
observed in the 46-mer, the partial heat capacity, Clj;,, shows
several weak thermodynamic anomalies at low temperatures,
which have been ascribed to the glass and folding transition
temperatures.49 However, again, these thermal features are
strongly suppressed by increasing the number of simulation
data in the reweighting, as in the magnified view of Fig.
16(b). The overall coincidence of C3);, and CP%, at high tem-
peratures implies that the discrepancies at low temperatures
should be attributed to the statistics of the sampling data set.

150
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FIG. 15. (a) Energy trajectory and (b) corresponding IS plot beyond 3
X 108 MD steps, with f,< 1077, for BBLN 69-mer.
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FIG. 16. (a) Specific heats C%}, (dashed line) determined by reweighting for
1.2 10® energy data and CY, (solid line) and C};",, (dotted line) deter-
mined by reweighting for the energy data of 171 190 selected equilibrium
and corresponding IS configurations, respectively, and (b) magnified view of
CYil; (solid line) and C‘l’,‘:fyui\ (dashed line) for BBLN 69-mer.

Before the collapse a broad transition is signaled by a
peak in CP, or a shoulder in C%;, at T~1.0. The partial
order pararrliret[ér Q;,.; and the fluctuations 3, ; in Figs. 17(a)
and 17(b) reveal that this transition is mainly due to local
ordering of the second, fourth, and sixth strands. Interest-
ingly, there exists a strong correlation between the local-
ordering transition and the native state topology. In both the
46-mer and the 69-mer, the advanced formation of even-

Order parameter

Order parameter fluctuation

0.1 03 0.5 0.7 0.9 1.1 1.3
Temperature T

FIG. 17. (a) Average order parameters Q(7) and Q;, (T) for ith beta strand,
and (b) order parameter fluctuations 2,,(7) and X, (T) for ith beta strand
for BBLN 69-mer.
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P(Q.T)

0.6

FIG. 18. (a) Multifunneled energy landscape characterized by scatterplot in
(U, Q;,) and (b) reweighted order parameter distribution P(Q,7) at several
temperatures for BBLN 69-mer. In (a), IS, IS, IS,, and IS, correspond to
the native, first excited, second excited, and fourth excited IS states,
respectively.

numbered strands corresponding to outer parts of native [
barrels is mainly associated with the local-ordering transition
with a broad peak in the heat capacity. On the other hand, the
secondary structures of odd-numbered strands forming inner
contacts in native barrels are established through the collapse
transition.

As with the 46-mer, the thermodynamic signature asso-
ciated with folding is not clearly seen in Cj, or C?', in
Fig. 16(a). Only a small peak is observed in ﬁCZ"U/&I% and
dCyy, 19T at T=0.28. Furthermore (Fig. 17), the average
order If)arameter Q(T) is monotonically increasing and the
order parameter fluctuations 2,, do not show any folding
signature down to 7=0.1, except for a small shoulder around
Ty. This is even more monotone behavior than in the 46-mer,
which shows a broad peak around 7~0.23 in 2.

Again, the smoothing and suppression of the folding sig-
nature in our enhanced sampling are due to the contribution
of low-lying, non-native IS at low temperatures. The two-
dimensional scatterplot [Fig. 18(a)] in (U, Q;,) clearly dem-
onstrates the extraordinary complexity of the 69-mer PEL,
with several misfolding funnels competing with the folding
funnel below U;;<-93. Below typical energies for collapse,
the landscape bifurcates into several branches leading to dis-
similar IS at the bottom of each branch. The nature of aver-
aging in a multifunneled PEL is shown by the order param-
eter distributions P(Q,T) in Fig. 18(b). The peak in P(Q,T)
is localized around Q=0.1 above the collapse temperature
and broadens, with a shift to Q=0.3, crossing 74 For T
<0.42 the distribution spreads out over several misfolding
funnels and the folding funnel. The positions of the peaks of
P(Q,0.1) correspond to the IS at the bottoms of the multiple
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FIG. 19. Individual occupation probabilities p;(T) (i=0-4) for low-lying IS
as a function of temperature, and magnified view (inset) below the collapse
temperature 7»,=~0.71 for BBLN 69-mer.

funnels in Fig. 18(a), implying that the contribution of the
non-native IS to the thermodynamics is still non-negligible at
T=0.1.

The average occupation probabilities in Fig. 19 reveal
how the folding of the 69-mer is interrupted and slowed by
the presence of non-native IS. Crossing Ty, p,(T) rises rap-
idly above p, and begins to decrease below 7=0.15; p, also
exceeds p, from Ty to T=0.25. Remarkably, the native state
occupation p, is still lower than p; down to 7=0.1. This is in
sharp contrast to the case of the 46-mer, in which p, sur-
passes p; at an intermediate temperature T,,O:O.34. The per-
sistent dominance of p; to py down to 7=0.1 should be at-
tributed to the increased complexity of the PEL of the 69-
mer; in this case all we can say about T,70 is that it is <0.1.
Both IS, and IS, correspond to termini of major misfolding
funnels in Fig. 18(a), explaining why X, does not show any
folding signature down to 7=0.1. The existence of such a
large misfolding interval will cause a substantial slowing
down of folding through a kinetic trapping in misfolded
states.

V. CONCLUSIONS

In summary, our recently proposed statistical tempera-
ture molecular dynamics algorithm (STMD) has been ap-
plied to the 110-particle Lennard-Jones fluid and SBLN 46-
mer and 69-mer protein models to examine its performance
and applicability to biomolecular simulations. The tests on
the LJ fluid confirm that STMD works very well even with
large energy bin sizes, with a considerable acceleration of the
rate of convergence, while maintaining statistical accuracy.

The enhanced sampling of STMD combined with exten-
sive IS analysis explicitly verifies a multifunnel structure of
the potential energy landscapes of the BBLN 46-mer and
69-mer through two-dimensional scatterplots of the IS in
(Uy,Q;s), and reveals various characteristics of protein fold-
ing in terms of equilibrium and IS thermodynamic quantities.
The scatterplot provides a particularly clear picture of the
energy landscape and is proposed as an alternative to discon-
nectivity analysis.

Below the collapse temperature, the protein thermody-
namics is dominated by the contributions of a finite number
of low-lying IS and its estimation is affected by the effi-

J. Chem. Phys. 126, 135101 (2007)

ciency of sampling due to the energetic and entropic barriers
between the folding and misfolding funnels. Thermodynamic
folding signatures of both the 46-mer and the 69-mer are
significantly suppressed by taking into account the contribu-
tions of non-native IS. This means that the conventional ther-
modynamic signatures, i.e., the heat capacity or the order
parameter fluctuations, might not be applicable to character-
ize protein folding in multifunneled energy landscapes. We
recently proposed31 the configurational entropy fluctuations
as a thermodynamic indicator of folding under such circum-
stances.

The analysis of the average occupation probability,
pi(T), for individual IS demonstrates that there exists a “mis-

folding interval,” Ty=T= Ty in which the occupation for

non-native IS exceeds the native state occupation, and this
interval is strongly correlated with the frustration or rough-
ness of potential energy landscape. We believe that the exis-
tence and details of the misfolding interval are intimately
connected to the intermediate and poor foldabilities, respec-
tively, of the B-barrel-forming 46-mer and 69-mer through a
substantial slowing down of folding with a long-lived kinetic
trapping in misfolded states.
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