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Uncertainty of path integral averages at low temperature
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Burghardt, Eicke, and Stol4d. Chem. Physl08 1562(1998] have recently presented analytical
results for the coherent state path inted@EP) approximation to the harmonic oscillator thermal
density matrix in a generalized representation. In this work, the variance of the position and
momentum operators for the more common Feynman path integral approximation to the density
matrix is examined and compared with the results of the generalized CSPI approximation. Both path
integral approaches are found to predict minimum uncertainty states at low enough temperatures.
Particular attention is given to estimates of internal energy, which can place limits upon the
temperature range over which path integral approximations are valiRO@L American Institute

of Physics. [DOI: 10.1063/1.1403691

I. INTRODUCTION Il. REAL-SPACE PATH INTEGRAL AVERAGES

) ) ) o The starting point for any imaginary-time path integral
Imaginary-time path integration is an elegant and conveformulation is a functional representation of the statistical
nient way to calculate thermodynamic averages for equilibyensity operator. In the position representation, one may
rium (and possibly dynamicht®) properties of quantum me- write

chanical systems. This is particularly evident in computer N
S|mul.at|o_ns of many-body systems, since the amqunt of com- p(X,y)=f dxl"'dXN—lH (x;_1le FHMNIx,), 2.1)
putation involved does not grow exponentially with the size i=1

of the system. _ _ where x=X,,y=xy, and 8=1kT. Equation(2.1) is for-
Among the few well-known path integral formulatiofs, mally exact, but not very useful as it is. To simplify it, we

Feynman’s original real spad&SP) formulatior_Tr’ finds by  can factor the exponential using a symmetric form of the
far the widest application to problems in statistical Tyotter product formul

mechanic§71° A generally appreciatéd characteristic of 3

finite-N approximations to the fulN-dimensional RSPI is eB(T+V)/N:eBV/2NeﬁT/NeﬁV/2N+@(ﬂ_3), (2.2

the “classical collapse®? of some observables in the limit of N

low temperature. The finit&t approximation to the internal whereH=T+V, T=P?2m, andV=V(X) (upper caseX

energy of the one-dimensional harmonic oscillator, for ex-andP indicate operatojsAlthough unsymmetric Trotter fac-

ample, loses its ground state energylas0. To mitigate this  torizations are often used, E@2.2) is preferred since it

situation, the dimensionalitynumber of amplitudésN of  leaves the density matrix Hermitean. Neglecting the higher

the RSPl may be increased. IncreasiNg however, can order terms, one may follow an established procetitme

prove computationally prohibitive® write a finiteN expression for the density matrix in the po-
The coherent state path intedril*°(CSP) is an alter-  sition representation

native formulation to the RSPl which has been shown to be N

particularly well suited to study quantum systems at low p(x’y;N)ZJ’ dxl---de,ll_[ e~ BV(xi—1)/2N

temperatures. In contrast with the “collapse” behavior of the =1

RSPI, previous CSPI studies of the harmonic oscillator, by X (X;_q|@ FTN|x;)e~ AVOD/2N

Stolze and co-worker$:*” have shown that the finiti- ap- 1 '

proximation to the free energy may improve at lower tem- N

perature. =f dxg --dxy_ g dpy--dpy[] e AVei-o/N
In this note we use both of these path integral formula- =

tions to investigate harmonic oscillator observables, like the X (X;_1]e PN p){pj| x;ye = PY/2N

variance of the position operator, which cannot be calculated
from the partition function alone but which require averaging
over the density matrix. It is noted that although some RSPI

mN N/2
T,Bﬁz) f Xm"'dXN_l

observables “collapse” in th& —0 limit, others may “ex- N

pand,” and not go to the classical limit. This behavior is ><exp< —2 m_NZ(Xi—l_Xi)2
compared with that of the CSPI. Particular focus is given to =1 [2Bh

the position-momentum uncertainty product and to the inter-

nal energy, an observable of frequent interest in path integral + o (V(X;_1) + V(X)) ) 2.3
simulations. 2N '
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The N—<o limit of Eq. (2.3) gives the formal path integral,
althoughN must be finite for numerical evaluation. Note that
the RSPI expression fgs(x,y;N), in distinction from the
CSPI formula of the following section, involve$ analytic
integrations over momentum variablésr equivalently, a
functional Legendre transformation of the actioff) and is

interpreted as a weighted sum on paths in the configuration

space.
If we takeV(x) = 3mw?x?, Eq.(2.3) can be rewritten as

p(X,y;N)=e~ (MNI2B12) (X% +y?) g = (Bmw/AN) (x* +y?)

.

mN

N/2
Tﬁﬁz) JdXN—le(—xTAHBx), (2.4)

where

(MmN Bme? mN

A_(W—’_ 5N )|—(2ﬁﬁ2)s, (2.5

S= 5i+1,j+5i*l,j ,i j:1,2,. - ,N_l, (26)
mN

B:<B—hz (X8, 1+ Y6 -1). @7

| is the identity matrix. The integral in EQR.4) has a known
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FIG. 1. Real space path integral approximation @), where O

=mwX?/# (curves which “collapse” to the origin at low temperatirer

O=P?/mw# (curves which “expand” to infinity at low temperatyreThe
thin line is the exact result, while the bold line correspondsite3 and the
dashed line indicateld=10.

(2.12

S

Z=f dxp(x,x;N)=C
1 1

:E. [ Bho\\’
sml—(Nsmh l(W))

whereD=—(2A+B). The second moment of the position

(2.13

solution?* which has been applied to the harmonic oscillatoroperator is

before???Making use of the succinct form given by Kauff-
mann and Rafelskt we write down the following solution:

p(x,y;N)=C exg A(x*>+y?)+Bxy], (2.9
where
Bﬁw 2\ 1/2 1/2
mw<1+(_2N )
C= G , (2.9
. . _1
2mh smt’(ZNsmh (_ZN ))
Bh(’) 2\ 1/2
mw(l+ W)
A=- how
. N
2h sm)’(ZN sinh N ))
how
xcosr(ZN sinh1<— ) (2.10
,Bﬁ(l) 2\ 1/2
mw(1+ W)
B= BTl (2.11
i inp-1
ﬁsm?-(ZN sinh ( 5N ))

The form of Egs(2.8)—(2.1)) is very similar to the presen-
tation of Kauffmann and Rafelskf, with the difference that
the density matrix is symmetric andy, due to our choice
of Trotter factorization. This is important when calculating
averages for operatorg.g., the kinetic energy operator
which are not diagonal in the position representation.

The approximate density matrix(X,y;N), may be used
to calculate moments of and P. We begin with the parti-
tion function

1 1
<X2>:ZJ dXXZp(X,X;N)Iﬁ (2.19
.. Bho
5 cotl—(Nsmh 1(W))
" 2moe Bhw\?\1? (219
Skl
2N
and of the momentum operator
h? 92
<P2>:—7J dx—-zp(x,yiN) -
ﬁZ
=—7(2A—B) (2.1
_mwﬁ Bhw)?\1? N Bho
_T(l+<W) ) cotl-(Nsmh (W))
(2.17

By symmetry,(X)=(P)=0.

These results all become exacths>. With finite N,
in the T—0 limit, however,(X?)—0. This is the “classical
collapse” behavior observed for the average enévgyich is
proportional to(X?), as we shall shortly sg¢ein earlier
work.!? Looking at the momentum in this same lim{iP?)
—oo, The low temperature limit to the RSPI expression leads
to a broadening in the momentum distribution. Both of these
moments are drawn in Fig. 1. The uncertainty is

AXAP=(X?){(P?) = gcotr( N sinh1<Bhw

(2.18

which becomes minimal for aMl asT— 0. Unlike theexact
ground state of the harmonic oscillator, however, the mini-

mum uncertainty state approached at low temperature in Eq.
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(2.18 is asymmetridn the X and P variances. The ground The (canonical coherent state¥;?’~2° which had an

state of the finiteN RSPI belongs to a class of minimum early association with the classical-like dynamics of har-

uncertainty states called “squeezed staté$2* While AX ~ monic oscillator wave packetS, were first so-named by

andAP are proportional to one another at high temperature§lauber! They can be constructed as eigenstates of the har-

(as they are for all in the exact cage decreasing the tem- monic oscillator annihilation operator:

perature has the effect of squeezing the phase space distribu-

tion. ala)=ala), 3.1
The internal energy may be calculated either from theyhere

partition function or by directly averaging over the

Hamiltonian!®?®generally yielding different estimates of the

energy for finiteN and low temperature. The former ap-

proach leads to the thermodynamic, or Barker estimator fo

a

Mo 1/2
ﬁ) X+i(2mhw) Y2P. (3.2

ﬁ'he|a> are displaced ground states,

the energy,
Ei=—d4InZ |@)=U(a)]0),
3.3
Bhw U(a)=exdea'—a*a]l=exdi(pX—xP)/#], @3
b cot)-( N sinhl<W) ) where
:7 ﬁﬁu) o\ 172 :ma)2<X2>, (219)
(”( )) _(efxiay=[ 2| R 3.4
2N x={(a|X|a)= o ea, (3.9
while the latter scheme leads to the direct, or Hamiltonian "
estimator p=(a|P|a)=(2mhw)"*Im a. (3.9
1 (P% 1 i n Note that since is not Hermitean, its eigenvalues need not
Eh:Zf dx dy(y[H[X)p(x,yiN)= 5+ 5mw(X%).  be real. The coherent states are not orthogonal
(2.20 L _@_|a'|2 L -
The fact thatE, # E;, for finite N is equivalent to noting that (ala’)=ex 2 2 ’ (3.6
p(x,y;N) is not the exact Green’s function for the Bloch ]
equation, but do form a complete basis
%pI—Hp. (2.21) T|a><0‘|— ) (3.7

E, and E,, are, respectively, obtained as the left- and right-where d’a=d ReadIm a(=dx dp2#). Actually, since the
hand sides of Eq2.2]) after taking the trace and dividing by combination of basis states needed to construct a given su-
the partition function. Requiringe,= Ey, is therefore a nec- perposition is not unique, the coherent states are said to form
essary but not sufficient condition that the Green’s functionan overcompletebasis. As a consequence of overcomplete-
of Eq. (2.21) is well approximated byp(x,y;N). Accord- ness, an operator may be uniquely represented in the coher-
ingly, due to Eq(2.18), the level of agreement between theseent state basis in terms only of its diagonal
two estimators is an indication of the adequacyNaih RSPI  elements>202427.2839n particular, the antinormal symbol
simulations. For example, although there has been some cofwer P representation O_(«), for an operatolO is defined

cern that the low temperature behaviorf might lead to by

incorrect prediction of phase transitiotfsyse of bothE, and 42
E, has proven to be an effective safeguard againsttts. O:J @ |)O_(a)(al. 3.9
we shall see in the next section, the situation is more subtle ™

in the CSPI case. Although O is also unambiguously determined by just the

diagonal elements of its normally ordered functional repre-
ll. COHERENT-STATE PATH INTEGRAL AVERAGES sentation, it proves convenient to define

While the Feynman path integral discussed in the pre- ;o (a'|O]a)
- o : : O, (a',a)=——r——"
ceding section is certainly the most popular path integral

formulation, others have been investigated. The coherent- )
state formulation, which we focus on presently, and the?S 1t normal symbofQ representation To underscore the

closely related phase space path integral are botgeneral inequality of these two symbols, note that

well-known*?°In comparing the low-temperature properties

of the RSPI with those of the CSPI, we take a result of O+(a,a)=J
Burghardt, Eicke, and StolzBES)' as our starting point.

The following brief background therefore, is merely a guide  Finally, the transformation function from the coherent
to direct the reader’s attention to certain technical aspects dftate to the position representation is, to within an arbitrary
the discussiorimainly the issue of ordering phase factof?

(3.9

d2a! 12
O_(a')e le=a'l”, (3.10
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Mo /4 using[a,a’]=1), H_(«) is found by replacing with « and
(X|a)= e a' with «*.] The bounds on the exact partition function are
mo , (2me|*? la|?  a? Z.= f dx dpe*B(Hcl(x,p)if—L;):eiﬁhwlzzcl’ (3.17)
Xex —%X'i‘ T a/X—T—?. 2mh

(3.11) where Z, is the classical partition function—given by the
RSPI forN=1. Note that agfw—0,Z.—Z;. More gen-
Just as one does in constructing the RSPI, one may makgally, Z. —Z, as #—0 for any Hamiltonian whereH ..
use of either Eq¥3.7) and(3.9) or Eq.(3.8) to constructthe  =H + O(#).* Also note that, from Eqs(3.15 and(3.16),
two well-known CSPI formulationgsee, e.g., Ref. 15, pp. we expectZ. to carry the prefactoe™?"“? even for N

60-74, starting as usual from >1, although it will then multiply a function other thagy, .
pla,a’;N)=(a|(e FHN)N| o). (3.12 Now consider the free energy,

These formulations are, respectively, the norrfdCSP) |:+:_l|n Z+=Fc|i@, (3.18

and antinormalACSPI) coherent-state path integrals, both - B - 2

of which are contained within the following generalized gnd the internal energy
CSPI representatioh®*3*taken from the work of BES,

w
d2a1 d2aN N+1 N Et’iz—ﬁﬁln ZiZEdi?. (3.19
plasa'iN= [ 2 T (o o] - _ -
=1 =1 In the T—0 limit, the static approximation to the NCSPI
x @ BAL(ai-1,a)+B_ ()N (3.13 gives theexactground state energV.As B—0, however,

where the classical result becomes exact, the free energy and
wherea=aq, a'=ay.;, andA=¢H, B=(1-£§H with  (thermodynamic estimate fothe internal energy are always
0=<¢=<1> The NCSPI and ACSPI are special cases of Eqoyerestimatedunderestimatedfor the NCSPI(ACSP)). As
(3.13 whereg=1 and{=0, respectively. As we shall fur- \ye shall see in the next section, this type of behavior, a
ther explore below, another important special case of Egmanifestation of the commutation relation between the boson
(3.13 is that of symmetric ordering§=1/2. Note that be- creation and annihilation operators, is characteristic of the
cause the functional representation of operators in the cohefgrmonic oscillator ACSPI and NCSPI for all finité

ent state basis depends upon ordefisge Eq.(3.10], the For a symmetrically ordered Hamiltonian we haté®
NCSPI and the ACSPI give different approximations to the o2
. . a
density matrix, although both become exact\as . Zs:f = (ale M a) (3.20
A. Static approximation (N=1)
2
There are useful thermodynamic inequalities relating to %J' H<a|e*BHnIZef,8Ha/2| a) (3.21)
the normal and antinormal CSPI, which place bounds upon T
the exact value of the partition function in terms of the static d2a
approximation N=1): ~J' —e AH(@a)tH (a))2=7 (3.22
v
d?a d?a _1 :
— e BH(aa)cTre A< | g BH-(a) whereH =35(H,+H,), with H, andH, the normal and an-
T T

tinormal ordered boson expressions for the Hamiltonian, re-

(3.14 spectively. Symmetric ordering leads to accurate high tem-
These are sometimes called the Berezin-Liebperature behavior.
inequalitie$®?*33and have been applied to the estimation of
groun)%state energies as the low-temperature limit to the freg. Dynamic paths (N>1)
energy- . . . :

E?efore further discussion of the general CSPI approxi- _Takmg H:A+_B as the harmomc oscillator Hamil-

mation to the harmonic oscillator density matrix, we pause tgonian, the genera_hzed CSPI given abgtze. (3.13] can be
consider the static approximation more closely. If we areworked out analytically. BES have found that
interested in the one-dimensional harmonic oscillator, then la|? |a'|? &N
p(a’,a’,;N)ZWeXL{—T—T‘Fwa*a'

1 hw
H+(a,a)=ﬁw(|a|2+§ =Ha(X,p)+ =, (3.15 L
+Bﬁw<——§”, (3.23
_ 2 1 B hw 2
H_(a)—ﬁw |a’| _5 —HcI(X,p)_T, (316) Whereéz[l— (Bﬁwé‘/N)] and ’yE(l+ [ﬂﬁw(l_g)/N])
Using Egs.(3.1D), (3.23, and
where H(x,p) is the classical HamiltoniarfH ., (a,a) is sing Eqs.(3.1, (323, an
determined using Eqg3.9) and (3.1), with H written in N d?a d?%a’ S
terms of normally ordered boson operat@sto the right of p(X,y;N) = [ (X|a)p(a,a";N)(a'|y),
a"). After placingH in antinormal ordefa' to the right ofa, (3.24

Downloaded 07 Oct 2001 to 128.197.30.71. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



6838 J. Chem. Phys., Vol. 115, No. 15, 15 October 2001 T. W. Whitfield and J. E. Straub
we can write the CSPI in the form of E(R.8), with 1.6 T T T T T T T
l 14 " -1
. mo\ Y2 efioz -9 - ok i
= — , .
ah ('}/2N_ 52N)17 ( 5) 1k i
Mo (,y2N+ 52N) - O 08¢ -
=T o (’)/ZN— 52N) ) (3.26 0.6 | -
0.4 -
2mo NN 0.2F i
B: ﬁ (’)/2N— 52N) ' (327) 0 1 1 1 | 1 1 !
6 02 04 06 08 1 12 14
All of the results from the preceding secti¢in terms ofA, kT/hw

B, andC) follow: FIG. 2. Coherent state path integral approximation(6@f), where O

Bk — ) =mwX?/# or O=P?/ mw#. This is an ACSPI £=0) calculation. The thin
7= e 2 3.2 line is the exact result, while the bold line correspondsNte 3 and the
- =N (3.28 dashed line indicatesl=10. The CSPI curves are drawn downk®/7 »
=0.
o oyN+ N
<x2>: 2Mo ')’N_ 6N ’ (329
NN scheme £€=1/2) appears to give accurate averages not only
Miw y"+ 6 :
(P2)= S (3.30 at high temperatures, but for low temperatures as well. We
2 y -0 also see that foN odd andé+0, the uncertainty may be-
5 NN come less than minimal fd&T/% w<<&/N. This type of low-
AXAP= vy To. 3.3 temperature “classical collapse” behavior is different from
Y what we saw in the RSPI, where although the system may

all of which become exact dd— . Note that the position

become localized in position, the uncertainty remains at least

and momentum distributions are linearly related foNatind ~ as great as the minimum predicted by the uncertainty prin-
T, in distinction from the RSPI case—decreasing the temciple. .
perature does not squeeze the phase space distribution in the To compare these three CSPI schemes further, consider

CSPI. Moreover, the uncertainty becomes minimal, and théhe following measuré? which gauges how closely the ap-

moments take their ground state values at the zera of Proximate position distribution matches the exact one:

(,Bﬁg)gzN). This is true als_o f_or the ACSPI case, as may be , P X XN)  pad(X,X)) 2

verified by taking thelr — 0 limit. X (,8,§)=J dx Z 3 (3.39
Equations (3.29—(3.31) have poles atkT/Aw=(¢ coh ex

—3)/N for N even andé> 3. It is therefore natural, our pre- D D oD con Doy

vious discussion of the static approximation to the CSPI not- = \/ 5 2 \/ + Vo5 (3.39

; ; : T(Dext Deon) 2m

withstanding, to use this temperature as a lower bound for

calculating ¢>3%) CSPI averages, even for odd. Looking at Fig. 5, we again see that the choicetefl/2 is
Since the essential approximation made in either the noroptimal over a range of temperatures. The minimum appear-

mal or antinormal CSP! is a high temperature approximatioring in these figures &T/%w= ¢/N (this will not appear for

(i.e., thate #"N~1— gH/N), it is of interest to study these £=0) is due to the zero . Note thaty? is increasing for

averages at high temperature. Consider the difference b&T/iw<&/N.

tween the exact variand@f either position or momentum

and its CSPI approximation,

coh
r

'yN+5

Py

N

)
(AX)éx—(AX)ﬁoﬁm coth( B wl2) —

ol&)

This result is quite different from a similar expansion for the
RSPI averages. In the RSPI case, there is no leading term of
zeroth order inB—even forN small, the RSPI averages be-
come exact ag—0. In order for the CPSI averages to be-
come exact in the high temperature limit, we need either to
makeN large, or sett=1/2. We also note that the ACSPI

will overestimate the width of the distribution, while the NC- FIG- 3. Coherent state path integral approximation(af), where O

SPI gives an underestimate—iust the opposite to what WzmwX /h or O=P*/mwf This is a NCSPI £=1) calculation. The thin
9 . ] PP ﬁne is the exact result, while the bold line correspondd\te 3 and the

found earlier forE, (N=1). dashed line indicateNl=10. The CSPI curves are drawn downk®/% w

As can be seen in Figs. 2—4, the symmetric ordering=¢/2N.

) (3.32

h 26-1
" 2me N

B

N (3.33

02 04 06

0.8
kT huw
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1.6 T T T T T T T
1.4 7
1.2 7
1k ]
S 08 1
0.6F 1
0.4+ .

0.2 -

0 1 ] 1 1 1 1 1 _0'50-"' 0l2 OJ ! ] - 1 1
0 02 04 06 0.8 1 1.2 1.4 . 4 06 08 1 1.2 14
kT /hw kT /hw

FIG. 4. Coherent state path integral approximation(6f), where O FIG. 6. Coherent state path integral approximations of the internal energy,
=mwX?/# or O=P%muwf. In this calculationg=1/2. The thin line is the  E¢, calculated from thes derivative of the partition function. The thinnest
exact result, while the bold line correspondsNes3 and the dashed line line corresponds to the exact energy, the thickest line to the CSPIéwith

indicatesN=10. The CSPI curves are drawn downki®/% o= 0. =1/2, the dashed line to the ACSP§<0) and the remaining line to the
NCSPI ¢=1) calculation.N=3 throughout. The NCSPI curve is drawn

down tokT/Z w= &/2N, while the other curves are drawn kd/fw=0.

As was the case with the RSPI, there are different

schemes to estimate the internal energy. For example, o ) , o
This difference for the thermodynamic estimate is instead,

O Gtk el (1 g” (3.36 hol1-2¢ (B
= w - - . w -
t ny— SN 2 Eoy— t:_2 N + (N) . (3.39
and .
N To haveE,=E,(=E.) as B—0, one must either takél
fiw y"+06 —o0 Or use symmetric ordering. Abw temperatures, how-

En=7% PN 337 aver, the NCSPI is known to perform wéft!”3¢Low tem-

perature agreement between the two energy estimates can
confirm this: foré=1 andN>1, both E andE;, go to the
ground state energy #% o =N. Indeed, comparing Figs. 3

state energy as temperature is further decreased. Sinte and 7, we see thai,~E, over a range of low temperatures.

. . . . . By itself however, the requirement that=E,, is gener-
proportional to the variances, Figs. 2—4 show its behawora”y not as useful for the CSPI as for the RSPI. Looking at

The thermodynamic estimate of the energy is shown in FigsFigS 4 and 7, for example, we see that the symmetrically
6 and 7. In agreement with the low temperature free ' ' '

energy” E, for the (finite-N) ACSPI goes to—f w/2 asT ordered CSPI trivially satisfies this requirementTas 0.
—0.
At high temperatgre, 'the dlfference petyvegn the exac‘vl DISCUSSION
energy and the Hamiltonian estimate to it is given by Eq.
(3.33, We have shown that the “classical collapse” undergone
ho 26—1 by finite-N approximations to the harmonic oscillator RSPI

Eoy— Ehf\’*?T‘f‘O(s). (3.38

Both of these energy estimates become exact inNthex
limit. The Hamiltonian estimate of the energy is that of the
ground state aphwé=N, but may go below the ground

1072
1074

1078
1071
10—12
1071

_05 | 1 1 ] ! 1 |

0 02 04 06 08
L I | ! kT /hw
1075 103 107! 10
kT /hw FIG. 7. Coherent state path integral approximations of the internal energy,
E,, calculated from theB derivative of the partition function. The thinnest
FIG. 5. x? for the RSPI and CSPI approximations to the exact quantumline corresponds to the exact energy, the thickest line to the CSPI&with
probability distribution. The thinnest line corresponds to the RSP, the thick-=1/2, the dashed line to the ACSP§=£0) and the remaining line to the
est line to the CSPI witk=1/2, the dashed line to the ACSP§<£0) and NCSPI (¢=1) calculation.N=10 throughout. The NCSPI curve is drawn
the remaining line to the NCSPEE 1) calculation. down tokT/hw=&/2N, while the other curves are drawn kd/z w=0.

1 1.2 14
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