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Uncertainty of path integral averages at low temperature
T. W. Whitfield and John E. Straub
Department of Chemistry, Boston University, Boston, Massachusetts 02215

~Received 3 July 2001; accepted 25 July 2001!

Burghardt, Eicke, and Stolze@J. Chem. Phys.108, 1562~1998!# have recently presented analytical
results for the coherent state path integral~CSPI! approximation to the harmonic oscillator thermal
density matrix in a generalized representation. In this work, the variance of the position and
momentum operators for the more common Feynman path integral approximation to the density
matrix is examined and compared with the results of the generalized CSPI approximation. Both path
integral approaches are found to predict minimum uncertainty states at low enough temperatures.
Particular attention is given to estimates of internal energy, which can place limits upon the
temperature range over which path integral approximations are valid. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1403691#
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I. INTRODUCTION

Imaginary-time path integration is an elegant and con
nient way to calculate thermodynamic averages for equi
rium ~and possibly dynamical1–3! properties of quantum me
chanical systems. This is particularly evident in compu
simulations of many-body systems, since the amount of c
putation involved does not grow exponentially with the s
of the system.

Among the few well-known path integral formulations4

Feynman’s original real space~RSPI! formulation5 finds by
far the widest application to problems in statistic
mechanics.6–10 A generally appreciated11 characteristic of
finite-N approximations to the fullN-dimensional RSPI is
the ‘‘classical collapse’’12 of some observables in the limit o
low temperature. The finite-N approximation to the interna
energy of the one-dimensional harmonic oscillator, for e
ample, loses its ground state energy asT→0. To mitigate this
situation, the dimensionality~number of amplitudes! N of
the RSPI may be increased. IncreasingN, however, can
prove computationally prohibitive.13

The coherent state path integral4,14,15 ~CSPI! is an alter-
native formulation to the RSPI which has been shown to
particularly well suited to study quantum systems at l
temperatures. In contrast with the ‘‘collapse’’ behavior of t
RSPI, previous CSPI studies of the harmonic oscillator,
Stolze and co-workers,16,17 have shown that the finite-N ap-
proximation to the free energy may improve at lower te
perature.

In this note we use both of these path integral formu
tions to investigate harmonic oscillator observables, like
variance of the position operator, which cannot be calcula
from the partition function alone but which require averagi
over the density matrix. It is noted that although some RS
observables ‘‘collapse’’ in theT→0 limit, others may ‘‘ex-
pand,’’ and not go to the classical limit. This behavior
compared with that of the CSPI. Particular focus is given
the position-momentum uncertainty product and to the in
nal energy, an observable of frequent interest in path inte
simulations.
6830021-9606/2001/115(15)/6834/7/$18.00
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II. REAL-SPACE PATH INTEGRAL AVERAGES

The starting point for any imaginary-time path integr
formulation is a functional representation of the statisti
density operator. In the position representation, one m
write

r~x,y!5E dx1¯dxN21)
i 51

N

^xi 21ue2bH/Nuxi&, ~2.1!

where x5x0,y5xN, and b51/kT. Equation ~2.1! is for-
mally exact, but not very useful as it is. To simplify it, w
can factor the exponential using a symmetric form of t
Trotter product formula18

e2b(T1V)/N5e2bV/2Ne2bT/Ne2bV/2N1OS b3

N3D , ~2.2!

where H5T1V, T5P2/2m, and V5V(X) ~upper caseX
andP indicate operators!. Although unsymmetric Trotter fac
torizations are often used, Eq.~2.2! is preferred since it
leaves the density matrix Hermitean. Neglecting the hig
order terms, one may follow an established procedure4 to
write a finite-N expression for the density matrix in the po
sition representation

r~x,y;N!5E dx1¯dxN21)
i 51

N

e2bV(xi 21)/2N

3^xi 21ue2bT/Nuxi&e
2bV(xi )/2N

5E dx1¯dxN21 dp1¯dpN)
i 51

N

e2bV(xi 21)/2N

3^xi 21ue2bT/Nupi&^pi uxi&e
2bV(xi )/2N

5S mN

2pb\2D N/2E dx1¯dxN21

3expS 2(
i 51

N F mN

2b\2 ~xi 212xi !
2

1
b

2N
~V~xi 21!1V~xi !!G D . ~2.3!
4 © 2001 American Institute of Physics
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The N→` limit of Eq. ~2.3! gives the formal path integral
althoughN must be finite for numerical evaluation. Note th
the RSPI expression forr(x,y;N), in distinction from the
CSPI formula of the following section, involvesN analytic
integrations over momentum variables~or equivalently, a
functional Legendre transformation of the action19,20! and is
interpreted as a weighted sum on paths in the configura
space.

If we takeV(x)5 1
2mv2x2, Eq. ~2.3! can be rewritten as

r~x,y;N!5e2 ~mN/2b\2!(x21y2)e2 ~bmv2/4N!(x21y2)

3S mN

2pb\2D N/2E dxN21 e(2xTAx1Bx), ~2.4!

where

A5S mN

b\2 1
bmv2

2N D I2S mN

2b\2DS, ~2.5!

S5d i 11,j1d i 21,j ,i , j 51,2,. . . ,N21, ~2.6!

B5S mN

b\2D ~xd i ,11yd i ,N21!. ~2.7!

I is the identity matrix. The integral in Eq.~2.4! has a known
solution,21 which has been applied to the harmonic oscilla
before.12,22Making use of the succinct form given by Kauf
mann and Rafelski12 we write down the following solution:

r~x,y;N!5C exp@A~x21y2!1Bxy#, ~2.8!

where

C5S mvS 11S b\v

2N D 2D 1/2

2p\ sinhS 2N sinh21S b\v

2N D D D
1/2

, ~2.9!

A52

mvS 11S b\v

2N D 2D 1/2

2\ sinhS 2N sinh21S b\v

2N D D
3coshS 2N sinh21S b\v

2N D D , ~2.10!

B5

mvS 11S b\v

2N D 2D 1/2

\ sinhS 2N sinh21S b\v

2N D D . ~2.11!

The form of Eqs.~2.8!–~2.11! is very similar to the presen
tation of Kauffmann and Rafelski,12 with the difference that
the density matrix is symmetric inx andy, due to our choice
of Trotter factorization. This is important when calculatin
averages for operators~e.g., the kinetic energy operato!
which are not diagonal in the position representation.

The approximate density matrix,r(x,y;N), may be used
to calculate moments ofX and P. We begin with the parti-
tion function
Downloaded 07 Oct 2001 to 128.197.30.71. Redistribution subject to A
n

r

Z5E dx r~x,x;N!5CAp

D
~2.12!

5
1

2

1

sinhS N sinh21S b\v

2N D D , ~2.13!

whereD[2(2A1B). The second moment of the positio
operator is

^X2&5
1

Z E dx x2r~x,x;N!5
1

2D
~2.14!

5
\

2mv

cothS N sinh21S b\v

2N D D
S 11S b\v

2N D 2D 1/2 , ~2.15!

and of the momentum operator

^P2&52
\2

Z E dx
]2

]x2 r~x,y;N!U
y5x

52
\2

2
~2A2B! ~2.16!

5
mv\

2 S 11S b\v

2N D 2D 1/2

cothS N sinh21S b\v

2N D D .

~2.17!

By symmetry,^X&5^P&50.
These results all become exact asN→`. With finite N,

in the T→0 limit, however,^X2&→0. This is the ‘‘classical
collapse’’ behavior observed for the average energy~which is
proportional to ^X2&, as we shall shortly see! in earlier
work.12 Looking at the momentum in this same limit,^P2&
→`. The low temperature limit to the RSPI expression lea
to a broadening in the momentum distribution. Both of the
moments are drawn in Fig. 1. The uncertainty is

DX DP5A^X2&^P2&5
\

2
cothS N sinh21S b\v

2N D D ,

~2.18!

which becomes minimal for allN asT→0. Unlike theexact
ground state of the harmonic oscillator, however, the m
mum uncertainty state approached at low temperature in

FIG. 1. Real space path integral approximation of^O&, where O
5mvX2/\ ~curves which ‘‘collapse’’ to the origin at low temperature! or
O5P2/mv\ ~curves which ‘‘expand’’ to infinity at low temperature!. The
thin line is the exact result, while the bold line corresponds toN53 and the
dashed line indicatesN510.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6836 J. Chem. Phys., Vol. 115, No. 15, 15 October 2001 T. W. Whitfield and J. E. Straub
~2.18! is asymmetricin the X and P variances. The ground
state of the finite-N RSPI belongs to a class of minimum
uncertainty states called ‘‘squeezed states.’’23,24 While DX
andDP are proportional to one another at high temperatu
~as they are for allT in the exact case!, decreasing the tem
perature has the effect of squeezing the phase space dis
tion.

The internal energy may be calculated either from
partition function or by directly averaging over th
Hamiltonian,10,25generally yielding different estimates of th
energy for finite-N and low temperature. The former ap
proach leads to the thermodynamic, or Barker estimator
the energy,

Et52]b ln Z

5
\v

2

cothS N sinh21S b\v

2N D D
S 11S b\v

2N D 2D 1/2 5mv2^X2&, ~2.19!

while the latter scheme leads to the direct, or Hamilton
estimator

Eh5
1

Z E dx dŷ yuHux&r~x,y;N!5
^P2&
2m

1
1

2
mv2^X2&.

~2.20!

The fact thatEtÞEh for finite N is equivalent to noting tha
r(x,y;N) is not the exact Green’s function for the Bloc
equation,

]

]b
r52Hr. ~2.21!

Et and Eh are, respectively, obtained as the left- and rig
hand sides of Eq.~2.21! after taking the trace and dividing b
the partition function. RequiringEt5Eh is therefore a nec-
essary but not sufficient condition that the Green’s funct
of Eq. ~2.21! is well approximated byr(x,y;N). Accord-
ingly, due to Eq.~2.18!, the level of agreement between the
two estimators is an indication of the adequacy ofN in RSPI
simulations. For example, although there has been some
cern that the low temperature behavior ofEt might lead to
incorrect prediction of phase transitions,12 use of bothEt and
Eh has proven to be an effective safeguard against this.26 As
we shall see in the next section, the situation is more su
in the CSPI case.

III. COHERENT-STATE PATH INTEGRAL AVERAGES

While the Feynman path integral discussed in the p
ceding section is certainly the most popular path integ
formulation, others have been investigated. The coher
state formulation, which we focus on presently, and
closely related phase space path integral are b
well-known.4,20 In comparing the low-temperature properti
of the RSPI with those of the CSPI, we take a result
Burghardt, Eicke, and Stolze~BES!17 as our starting point.
The following brief background therefore, is merely a gui
to direct the reader’s attention to certain technical aspect
the discussion~mainly the issue of ordering!.
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The ~canonical! coherent states,14,27–29 which had an
early association with the classical-like dynamics of h
monic oscillator wave packets,30 were first so-named by
Glauber.31 They can be constructed as eigenstates of the
monic oscillator annihilation operator:

aua&5aua&, ~3.1!

where

a[S mv

2\ D 1/2

X1 i ~2m\v!21/2P. ~3.2!

The ua& are displaced ground states,

ua&5U~a!u0&,
~3.3!

U~a![exp@aa†2a* a#5exp@ i ~pX2xP!/\#,

where

x5^auXua&5S 2\

mv D 1/2

Rea, ~3.4!

p5^auPua&5~2m\v!1/2 Im a. ~3.5!

Note that sincea is not Hermitean, its eigenvalues need n
be real. The coherent states are not orthogonal

^aua8&5expF2
uau2

2
2

ua8u2

2
1a* a8G , ~3.6!

but do form a complete basis

E d2a

p
ua&^au51, ~3.7!

where d2a5d Rea d Im a(5dx dp/2\). Actually, since the
combination of basis states needed to construct a given
perposition is not unique, the coherent states are said to f
an overcompletebasis. As a consequence of overcomple
ness, an operator may be uniquely represented in the co
ent state basis in terms only of its diagon
elements.15,20,24,27,28,32In particular, the antinormal symbo
~or P representation!, O2(a), for an operatorO is defined
by

O5E d2a

p
ua&O2~a!^au. ~3.8!

Although O is also unambiguously determined by just t
diagonal elements of its normally ordered functional rep
sentation, it proves convenient to define

O1~a8,a!5
^a8uOua&

^a8ua&
, ~3.9!

as its normal symbol~Q representation!. To underscore the
general inequality of these two symbols, note that

O1~a,a!5E d2a8

p
O2~a8!e2ua2a8u2. ~3.10!

Finally, the transformation function from the cohere
state to the position representation is, to within an arbitr
phase factor,29
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6837J. Chem. Phys., Vol. 115, No. 15, 15 October 2001 Uncertainty of path integral averages
^xua&5S mv

p\ D 1/4

3expF2
mv

2\
x21S 2mv

\ D 1/2

ax2
uau2

2
2

a2

2 G .
~3.11!

Just as one does in constructing the RSPI, one may m
use of either Eqs.~3.7! and~3.9! or Eq.~3.8! to construct the
two well-known CSPI formulations~see, e.g., Ref. 15, pp
60–74!, starting as usual from

r~a,a8;N!5^au~e2bH/N!Nua8&. ~3.12!

These formulations are, respectively, the normal~NCSPI!
and antinormal~ACSPI! coherent-state path integrals, bo
of which are contained within the following generalize
CSPI representation17,33,34taken from the work of BES,

r~a,a8;N!5E d2a1

p
¯

d2aN

p )
i 51

N11

^a i 21ua i&)
i 51

N

3e2b(A1(a i 21 ,a i )1B2(a i ))/N, ~3.13!

where a5a0 , a85aN11 , and A5jH, B5(12j)H with
0<j<1.35 The NCSPI and ACSPI are special cases of E
~3.13! wherej51 andj50, respectively. As we shall fur
ther explore below, another important special case of
~3.13! is that of symmetric ordering,j51/2. Note that be-
cause the functional representation of operators in the co
ent state basis depends upon ordering@see Eq.~3.10!#, the
NCSPI and the ACSPI give different approximations to t
density matrix, although both become exact asN→`.

A. Static approximation „NÄ1…

There are useful thermodynamic inequalities relating
the normal and antinormal CSPI, which place bounds u
the exact value of the partition function in terms of the sta
approximation (N51):

E d2a

p
e2bH1(a,a)<Tr e2bH<E d2a

p
e2bH2(a).

~3.14!

These are sometimes called the Berezin-L
inequalities15,24,33and have been applied to the estimation
ground state energies as the low-temperature limit to the
energy.36

Before further discussion of the general CSPI appro
mation to the harmonic oscillator density matrix, we pause
consider the static approximation more closely. If we a
interested in the one-dimensional harmonic oscillator, the

H1~a,a!5\vS uau21
1

2D5Hcl~x,p!1
\v

2
, ~3.15!

H2~a!5\vS uau22
1

2D5Hcl~x,p!2
\v

2
, ~3.16!

where Hcl(x,p) is the classical Hamiltonian.@H1(a,a) is
determined using Eqs.~3.9! and ~3.1!, with H written in
terms of normally ordered boson operators~a to the right of
a†!. After placingH in antinormal order~a† to the right ofa,
Downloaded 07 Oct 2001 to 128.197.30.71. Redistribution subject to A
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using@a,a†#51!, H2(a) is found by replacinga with a and
a† with a* .# The bounds on the exact partition function a

Z65E dx dp

2p\
e2b(Hcl(x,p)6

\v
2 )5e7b\v/2Zcl , ~3.17!

where Zcl is the classical partition function—given by th
RSPI forN51. Note that asb\v→0, Z6→Zcl . More gen-
erally, Z6→Zcl as \→0 for any Hamiltonian whereH6

5Hcl1O(\).15 Also note that, from Eqs.~3.15! and ~3.16!,
we expectZ6 to carry the prefactore7b\v/2 even for N
.1, although it will then multiply a function other thanZcl .

Now consider the free energy,

F652
1

b
ln Z65Fcl6

\v

2
, ~3.18!

and the internal energy

Et,652]b ln Z65Ecl6
\v

2
. ~3.19!

In the T→0 limit, the static approximation to the NCSP
gives theexact ground state energy.37 As b→0, however,
where the classical result becomes exact, the free energy
~thermodynamic estimate for! the internal energy are alway
overestimated~underestimated! for the NCSPI~ACSPI!. As
we shall see in the next section, this type of behavior
manifestation of the commutation relation between the bo
creation and annihilation operators, is characteristic of
harmonic oscillator ACSPI and NCSPI for all finiteN.

For a symmetrically ordered Hamiltonian we have,38,39

Zs5E d2a

p
^aue2bHsua& ~3.20!

'E d2a

p
^aue2bHn/2e2bHa/2ua& ~3.21!

'E d2a

p
e2b(H1(a,a)1H2(a))/25Zcl , ~3.22!

whereHs5
1
2(Hn1Ha), with Hn andHa the normal and an-

tinormal ordered boson expressions for the Hamiltonian,
spectively. Symmetric ordering leads to accurate high te
perature behavior.

B. Dynamic paths „NÌ1…

Taking H5A1B as the harmonic oscillator Hamil
tonian, the generalized CSPI given above@Eq. ~3.13!# can be
worked out analytically. BES have found that

r~a,a8;N!5
1

gN expF2
uau2

2
2

ua8u2

2
1

dN

gN a* a8

1b\vS 1

2
2j D G , ~3.23!

whered[@12 (b\vj/N)# andg[(11 @b\v(12j)/N#).
Using Eqs.~3.11!, ~3.23!, and

r~x,y;N!5E d2a

p

d2a8

p
^xua&r~a,a8;N!^a8uy&,

~3.24!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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we can write the CSPI in the form of Eq.~2.8!, with

C5S mv

p\ D 1/2 eb\v(
1
2 2j)

~g2N2d2N!1/2, ~3.25!

A52
mv

2\

~g2N1d2N!

~g2N2d2N!
, ~3.26!

B5
2mv

\

dNgN

~g2N2d2N!
. ~3.27!

All of the results from the preceding section~in terms ofA,
B, andC! follow:

Z5
eb\v(

1
2 2j)

gN2dN , ~3.28!

^X2&5
\

2mv

gN1dN

gN2dN , ~3.29!

^P2&5
m\v

2

gN1dN

gN2dN , ~3.30!

DX DP5
\

2

gN1dN

gN2dN , ~3.31!

all of which become exact asN→`. Note that the position
and momentum distributions are linearly related for allN and
T, in distinction from the RSPI case—decreasing the te
perature does not squeeze the phase space distribution
CSPI. Moreover, the uncertainty becomes minimal, and
moments take their ground state values at the zero od
(b\vj5N). This is true also for the ACSPI case, as may
verified by taking theT→0 limit.

Equations ~3.28!–~3.31! have poles atkT/\v5(j
2 1

2)/N for N even andj. 1
2. It is therefore natural, our pre

vious discussion of the static approximation to the CSPI n
withstanding, to use this temperature as a lower bound
calculating (j. 1

2) CSPI averages, even forN odd.
Since the essential approximation made in either the n

mal or antinormal CSPI is a high temperature approximat
~i.e., thate2bH/N'12bH/N!, it is of interest to study these
averages at high temperature. Consider the difference
tween the exact variance~of either position or momentum!
and its CSPI approximation,

~DX!ex
2 2~DX!coh

2 5
\

2mv S coth~b\v/2!2
gN1dN

gN2dND ~3.32!

'
\

2mv

2j21

N
1OS b

ND . ~3.33!

This result is quite different from a similar expansion for t
RSPI averages. In the RSPI case, there is no leading ter
zeroth order inb—even forN small, the RSPI averages be
come exact asb→0. In order for the CPSI averages to b
come exact in the high temperature limit, we need eithe
makeN large, or setj51/2. We also note that the ACSP
will overestimate the width of the distribution, while the NC
SPI gives an underestimate—just the opposite to what
found earlier forEt (N51).

As can be seen in Figs. 2–4, the symmetric order
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scheme (j51/2) appears to give accurate averages not o
at high temperatures, but for low temperatures as well.
also see that forN odd andjÞ0, the uncertainty may be
come less than minimal forkT/\v,j/N. This type of low-
temperature ‘‘classical collapse’’ behavior is different fro
what we saw in the RSPI, where although the system m
become localized in position, the uncertainty remains at le
as great as the minimum predicted by the uncertainty p
ciple.

To compare these three CSPI schemes further, cons
the following measure,40 which gauges how closely the ap
proximate position distribution matches the exact one:

x2~b,j!5E dxS rcoh~x,x;N!

Zcoh
2

rex~x,x!

Zex
D 2

~3.34!

5ADcoh

2p
22A DexDcoh

p~Dex1Dcoh!
1ADex

2p
. ~3.35!

Looking at Fig. 5, we again see that the choice ofj51/2 is
optimal over a range of temperatures. The minimum app
ing in these figures atkT/\v5j/N ~this will not appear for
j50! is due to the zero ind. Note thatx2 is increasing for
kT/\v,j/N.

FIG. 2. Coherent state path integral approximation of^O&, where O
5mvX2/\ or O5P2/mv\. This is an ACSPI (j50) calculation. The thin
line is the exact result, while the bold line corresponds toN53 and the
dashed line indicatesN510. The CSPI curves are drawn down tokT/\v
50.

FIG. 3. Coherent state path integral approximation of^O&, where O
5mvX2/\ or O5P2/mv\ This is a NCSPI (j51) calculation. The thin
line is the exact result, while the bold line corresponds toN53 and the
dashed line indicatesN510. The CSPI curves are drawn down tokT/\v
5j/2N.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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As was the case with the RSPI, there are differ
schemes to estimate the internal energy. For example,

Et5\vF ~12j!gN211jdN21

gN2dN 2S 1

2
2j D G ~3.36!

and

Eh5
\v

2

gN1dN

gN2dN . ~3.37!

Both of these energy estimates become exact in theN→`
limit. The Hamiltonian estimate of the energy is that of t
ground state atb\vj5N, but may go below the ground
state energy as temperature is further decreased. SinceEh is
proportional to the variances, Figs. 2–4 show its behav
The thermodynamic estimate of the energy is shown in F
6 and 7. In agreement with the low temperature fr
energy,17 Et for the ~finite-N! ACSPI goes to2\v/2 asT
→0.

At high temperature, the difference between the ex
energy and the Hamiltonian estimate to it is given by E
~3.33!,

Eex2Eh'
\v

2

2j21

N
1OS b

ND . ~3.38!

FIG. 4. Coherent state path integral approximation of^O&, where O
5mvX2/\ or O5P2/mv\. In this calculation,j51/2. The thin line is the
exact result, while the bold line corresponds toN53 and the dashed line
indicatesN510. The CSPI curves are drawn down tokT/\v50.

FIG. 5. x2 for the RSPI and CSPI approximations to the exact quan
probability distribution. The thinnest line corresponds to the RSPI, the th
est line to the CSPI withj51/2, the dashed line to the ACSPI (j50) and
the remaining line to the NCSPI (j51) calculation.
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This difference for the thermodynamic estimate is instead

Eex2Et5
\v

2

122j

N
1OS b

ND . ~3.39!

To haveEt5Eh(5Eex) as b→0, one must either takeN
→` or use symmetric ordering. Atlow temperatures, how-
ever, the NCSPI is known to perform well.16,17,36Low tem-
perature agreement between the two energy estimates
confirm this: forj51 andN.1, both Et and Eh go to the
ground state energy atb\v5N. Indeed, comparing Figs. 3
and 7, we see thatEt'Eh over a range of low temperature

By itself however, the requirement thatEt5Eh is gener-
ally not as useful for the CSPI as for the RSPI. Looking
Figs. 4 and 7, for example, we see that the symmetric
ordered CSPI trivially satisfies this requirement asT→0.

IV. DISCUSSION

We have shown that the ‘‘classical collapse’’ undergo
by finite-N approximations to the harmonic oscillator RS

-

FIG. 6. Coherent state path integral approximations of the internal ene
Et , calculated from theb derivative of the partition function. The thinnes
line corresponds to the exact energy, the thickest line to the CSPI wij
51/2, the dashed line to the ACSPI (j50) and the remaining line to the
NCSPI (j51) calculation.N53 throughout. The NCSPI curve is draw
down tokT/\v5j/2N, while the other curves are drawn tokT/\v50.

FIG. 7. Coherent state path integral approximations of the internal ene
Et , calculated from theb derivative of the partition function. The thinnes
line corresponds to the exact energy, the thickest line to the CSPI wij
51/2, the dashed line to the ACSPI (j50) and the remaining line to the
NCSPI (j51) calculation.N510 throughout. The NCSPI curve is draw
down tokT/\v5j/2N, while the other curves are drawn tokT/\v50.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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leads to a minimum uncertainty state at low temperatu
that is asymmetric in the position and momentum varianc
The CSPI variances by comparison, are always proportio
to one another, as in the exact case. In the finite-N approxi-
mation to the CSPI, the uncertainty becomes minimal
kT/\v5j/N ~which implies zero temperature for the AC
SPI!. We have seen that ifN is not large enough, the mini
mum uncertainty state will obtain for too high~NCSPI! or
too low ~ACSPI! a temperature. In the case of the NCSPI~or
any representation withj.1/2!, which may not be defined
below kT/\v5j/2N, the uncertainty may become less th
minimal in the rangej/N.kT/\v.j/2N. Symmetric order-
ing of operators (j51/2) seems to improve this situation
although there is still a ‘‘collapse’’ in the uncertainty belo
kT/\v5j/N.

In the high temperature regime, where RSPI avera
are very good, CSPI averages may be poor. We have
that both the NCSPI and ACSPI schemes imply a cons
underestimate or overestimate, respectively, to variance
position and momentum~along with uncertainty and interna
energy!. This behavior may be understood by noting the
fect of reordering the boson operators in the static appr
mation. Symmetric ordering of the CSPI yields averag
which become exact to leading order inb, as they do for the
RSPI.

We have discussed different methods to estimate inte
energies in path integral calculations. Estimation of inter
energies is of frequent interest in path integral computatio
whether performed with a numerical matrix multiplicatio
technique,41,42 which has already been applied to the eva
ation of CSPI’s,17 or methods more suitable for many-bod
problems. In the case of the RSPI, it is convenient to
both Et and Eh as a check on the adequacy ofN—for all
finite-N, the two estimates become equal asb→0 and di-
verge from one another asb→`. For the CSPI, where the
foregoing is generally not true, this approach becomes m
subtle. Since equality betweenEt andEh is a necessary, bu
not sufficient condition for accurately approximating t
density matrix, it may happen that the two estimates for
internal energy agree with one another, but not with the ex
internal energy. We have noted this situation with the sy
metrically ordered CSPI for the harmonic oscillator, asb
→`. Nontrivial agreement betweenEt andEh in CSPI ap-
proximations, however, confirms the effectiveness of norm
ordering at low temperatures and symmetric ordering
higher temperatures.

In numerical work, the primary advantage of using t
coherent state, rather than the more traditional real sp
formulation of path integrals, comes from the low tempe
ture convergence properties of the NCSPI. With this in mi
it is suggested that agreement betweenEt andEh may serve
as a useful guide to identify theupper limit of convergence
in such calculations. One can also imagine schemes in w
agreement between the two energy estimates is mainta
by adjustingj from 1 to 1/2, as temperature is increased.
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